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Abstract: Recently, an increase in wildfire incidents has caused significant damage from economical,
humanitarian, and environmental perspectives. Wildfires have increased in severity, frequency, and
duration because of climate change and rising global temperatures, resulting in the release of massive
volumes of greenhouse gases, the destruction of forests and associated habitats, and the damage to
infrastructures. Therefore, identifying burned areas is crucial for monitoring wildfire damage. In this
study, we aim at detecting forest burned areas occurring in South Korea using optical satellite images.
To exploit the advantage of applying machine learning, the present study employs representative
three machine learning methods, Light Gradient Boosting Machine (LightGBM), Random Forest
(RF), and U-Net, to detect forest burned areas with a combination of input variables, namely Surface
Reflectance (SR), Normalized Difference Vegetation Index (NDVI), and Normalized Burn Ratio (NBR).
Two study sites of recently occurred forest fire events in South Korea were selected, and Sentinel-2
satellite images were used by considering a small scale of the forest fires. The quantitative and
qualitative evaluations according to the machine learning methods and input variables were carried
out. In terms of the comparison focusing on machine learning models, the U-Net showed the highest
accuracy in both sites amongst the designed variants. The pre and post fire images by SR, NDVI,
NBR, and difference of indices as the main inputs showed the best result. We also demonstrated that
diverse landcovers may result in a poor burned area detection performance by comparing the results
of the two sites.

Keywords: forest fire burned area detection; Sentinel-2; Random Forest; LightGBM; U-Net; input
variables analysis; model performance analysis

1. Introduction

In the past decade, increasing wildfire events have become one of the world’s most
destructive natural hazards, which has resulted in extensive damage from economical,
humanitarian, and environmental perspectives [1]. Due to climate change and rising
temperatures, wildfires have become more severe, frequent, and long-lasting, which has
led to the release of massive amounts of greenhouse gases, the destruction of forests and
their related habitats, and the damage to infrastructure and property [2–6]. As a result,
identifying burned areas is crucial for monitoring wildfire damage. It aids in the growth of
vegetation, the nutrient deposition on the forest floor, and the maintenance of a healthy
forest ecosystem [7].
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Wildfires frequently occur in areas where several causes interact, making early iden-
tification by in situ observations challenging. Remote sensing imaging has been useful
in detecting wildfire regions due to its ability to identify changes in large areas over long
periods of time that are difficult to notice from the ground [8]. Remote sensing has been
a method for wildfire monitoring using the Earth observation satellite data [9–11]. Earth
observation systems based on satellites can give consistent and regular readings across
large portions of the surface. This provides for quick and cost-effective monitoring of
wildfire progression around the world [3].

Satellite sensors like Sentinel-2 and Landsat-8 have multispectral bands sensitive to
fire disturbance in the visible, near infrared (NIR), and short-wave infrared (SWIR) [12].
The amount of wildfire-related radiation reflectance can be described in terms of the
spectral wavelength [13]. For example, fire-disturbed regions absorb more NIR radiation
than unburned areas, whereas burned regions reflect more radiation in the visible and
SWIR bands [14]. As a result, several spectral indices for burned area detection have been
developed, including the Normalized Difference Vegetation Index (NDVI), the Burned
Area Index Modified (BAIM), the Normalized Burn Ratio-SWIR (NBRSWIR), and the
Normalized Burn Ratio (NBR) [15–21]. Among them, NBR, constructed by NIR and
SWIR bands, has been frequently employed in burned area mapping by utilizing the
optical data (e.g., [22,23]). The NBR is primarily sensitive to living chlorophyll and water
content of vegetation and soil due to the fact that NIR is sensitive to photosynthetic
components and SWIR is sensitive to vegetation moisture. To improve the burned area
discrimination, the indices such as dNBR and dNDVI can be differently normalized by the
relevant bitemporal pair (i.e., pre-fire and post-fire scenes), which also requires cloud-free
pre-fire satellite imagery [24]. Optical-based spectral indices for various vegetation types
frequently demonstrate strong sensitivity to low, moderate, and high burn severity, with
results that are not site-specific [23,24]. For example, an automatic thresholding chain based
on the dNDVI and dNBR was proposed to map the burned areas at a national scale by
using Sentinel-2 data [25]. Since the next Earth observation satellites will have onboard
data processing and constrained storage for earlier scenes, such bitemporal indices increase
preprocessing time and restrict potential uses. When applied to a variety of landscapes,
certain automated approaches based on spectral signatures necessitate the time-consuming
and difficult fine-tuning of a set of thresholds [26]. Therefore, nonparametric machine
learning algorithms have received a lot of attention for outperforming traditional threshold-
based approaches using spectral indices in burned area detection [27].

Fortunately, combined with recent remarkable improvements in processing capabil-
ities, the availability of remote sensing data has boosted the ability to use data-centric
methods for wildfire detection [27]. Consequently, there has been an increasing interest in
using machine learning approaches in wildfire monitoring and management. The ability
of machine learning algorithms to automatically detect complicated spatiotemporal pat-
terns in data without the requirement for expert descriptions [28]. Since machine learning
algorithms rely on the dispersion and distribution of the training data without making
any assumptions, automated burned area detection becomes possible [12]. Various ma-
chine learning techniques have been widely applied in wildfire monitoring, such as the
Random Forest (RF), the Support Vector Machines (SVM), the Artificial Neural Networks
(ANN), and the decision trees [27]. In [29], an automatic burned area mapping system was
proposed employing paired Sentinel-2 images, using the SVM for an initial classification
and a multiple spectral-spatial classification strategy for delineating the final burned area.
Moreover, the RF and the seed-growing techniques were used to construct a worldwide
burned area mapping approach [30]. Gibson et al. [31] proposed a study that examined
large-scale wildfires in New South Wales, Australia. The researchers performed numerous
tests by applying the RF method, which is trained on a variety of spectral indices, such as
dNDVI and dNBR.
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Recently, deep learning-based techniques were developed to detect wildfire regions
using satellite imagery due to their benefits of fusing contextual information and multi-
scale spatial details [12,31–33]. Pinto et al. [32], for example, suggested a deep learning
method for mapping burned areas using MODIS satellite imagery. Langford et al. [33]
employed a five-layer deep neural network (DNN) with MODIS derived variables (e.g.,
NDVI and surface reflectance (SR)) to map fires in Interior Alaska. Several machine learning
algorithms, e.g., Light Gradient Boosting Machine (LightGBM), HRNet, U-Net, Fast-SCNN,
and DeepLabv3+, were applied to Sentinel-2 and Landsat-8 imagery in wildfire regions [12].
Among the deep-learning approaches, U-Net-based semantic segmentation approaches
were commonly used to classify the burned areas [7,34,35]. De Bem et al. [34] recently
investigated the performance of U-Net and ResUnet using a bitemporal Landsat image pair.
Knopp et al. [35] presented a processing chain based on U-Net for burned area detection
using uni-temporal Sentinel-2 data.

This work aims at detecting forest burned areas occurring in South Korea using
satellite images. To exploit an advantage of applying machine learning methods, here,
we employed three representative machine learning methods, LightGBM, RF, and U-Net,
to detect forest burned areas with a combination of input variables including SR, NDVI,
and NBR. Three different Schemes while varying the combination of input variables were
suggested and compared. Two study sites recently occurring forest fire events in South
Korea were selected, and Sentinel-2 satellite images were used by considering a small scale
of the forest fires. The quantitative and qualitative evaluations according to the machine
learning methods and input variables were carried out.

Main contributions of this study can be summarized as follows. First, a detailed com-
parison of burned area detection performance between the deep learning-based machine
learning model and ensemble learning-based machine learning models was performed.
Based on the comparative results, advantages and disadvantages of each model for de-
tecting the burned area were presented, allowing readers to choose the proper model for
their detection cases. Second, the burned area detection performance was evaluated while
varying the combination of input variables for training the model and obtaining the burned
area detection map. It was also included to confirm the possibility of detecting the burned
area by using only one satellite image acquired after the forest fire event.

2. Study Area and Data
2.1. Study Area

The study focused on two cases of forest fires that occurred in South Korea (Figure 1).
Site A is Goseong, Gangwon-do and Site B is Andong, Gyeongsangbuk-do. As the fre-
quency of dry days in winter and spring has grown, wildfires have become more common
in these areas. The forest fire in Site A started at about 19:00 on 4 April 2019 and was
put out around 18:00 on 5 April 2019. The damaged area was approximately 1227 ha. A
forest fire in Site B started at about 15:00 on 24 April 2020 and was put out at 14:00 on
26 April 2020. The forest fire destroyed a forest area of around 1944 ha. While Site A has
heterogeneous land-covers, including forest, cropland, built-up, waterbody, and snow with
high-altitude mountainous areas, Site B consists of homogeneous land covers, such as forest
and cropland.
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Figure 1. Study area (true color and false color composition of Sentinel-2 image). (a) True color image
collected on April 2019 of Site A, (b) False color image collected on April 2019 of Site A, (c) True color
image collected on April 2020 of Site B, and (d) False color image collected in April 2020 of Site B.

2.2. Data Preparation

Forest fires in Korea are small scale compared to those in Australia or in the United
States. Therefore, satellites with low spatial resolution were considered unsuitable due to
these characteristics. In this study, the Multi Spectral Instrument (MSI) sensor of the Sentinel-2
satellite operated by the European Space Agency (ESA) was used because it has suitable
spatiotemporal resolution to monitor forest fires at a small scale. The Sentinel-2 satellites are
made up of two satellites having the same chrematistics (i.e., 2A and 2B) that are moving on
the same orbit with 180 degrees apart. The temporal resolution of a single Sentinel-2 satellite
is ten days; the combined constellation revisit of the two satellites is thus five days. Table 1
shows the data acquisition date of the study sites. Sentinel-2 satellite images are available at
various product levels. Among them, Level 2A products, which have been geometrically and
atmospherically corrected by ESA’s ‘Sen2Cor’ process, were used in this study due to their
suitability for forest burned area detection studies that require the SR data. There are three
spatial resolutions accessible at the Sentinel-2 (10 m, 20 m, and 60 m), and each resolution
offers different kind of bands. A total of nine bands with 20 m spatial resolution data—
B2 (Blue), B3 (Green), B4 (Red), B5–7 (Red Edge 1–3), B8a (Narrow NIR), B11 (SWIR 1), and
B12 (SWIR 2)—were used to classify the forest fire damaged area.

Table 1. Description of satellite image collection.

Sites Event Date Acquisition Date Size Resolution & Product Level

Site A 4 April 2019 Pre-event 26 March 2019 494 × 655 pixels
Spatial Resolution: 20 m
Product Level: Level-2A

Post-event 8 April 2019

Site B 24 April 2020 Pre-event 14 April 2020 886 × 976 pixels
Post-event 29 April 2020

To increase the accuracy of the forest fire detection, NDVI, dNDVI, NBR, and dNBR
were employed in addition to the nine bands given by Sentinel-2 satellites in this work.
NDVI is the most widely used vegetation index in the field of the agriculture and the
environment studies. dNDVI was calculated to estimate fire burn damage by subtracting
post-fire image from pre-fire image. The NBR is calculated using the NIR band, which
is sensitive to vegetation, and the SWIR band, which is sensitive to soil moisture content
(Equation (1)) [36]. NBR uses the magnitude of the spectral difference between NIR and
SWIR bands normalized by dividing by the sum of the two. A higher NBR value means
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healthy vegetation, while a lower NBR value suggests a burned-out area or bare soil. It
is possible to distinguish bare soil from the damaged region since it tends to have a value
near to 0. In the case of dNBR, it is determined by subtracting the pre-fire and post-fire
images in the same way as dNDVI, calculated as Equation (2). The higher the dNBR
value in the positive range, the greater the damage; the region where the dNBR value is
negative may grow trees and vegetation again after affecting the forest fire. To establish
objectivity of the relationship between the dNBR value and the fire burn severity, the United
States Geological Survey (USGS) proposed a taxonomy to evaluate forest fire burn severity
according to the dNBR value [37].

NBR =
NIR − SWIR
NIR + SWIR

(1)

dNBR = Pre f ireNBR − Post f ireNBR (2)

Ground reference data were collected from satellite images by visual interpretation
with the help of the forest map given by the Korea Forest Service. Specifically, the reference
data were classified into two classes, i.e., forest and non-forest, by overlaying the forest
map. After that, the reference data were refined using Sentienl-2A/B and Google Earth
images in 2019 and 2020 through a visual inspection. There are three classes in the ground
reference data, i.e., forest, burned area, and non-forest.

3. Methodology

This study aims at detecting small scale forest fire burned areas with various combina-
tions of input variables and machine learning models to compare their performance. To
this end, classification of forest fire burned areas was conducted by using nine bands of
Sentinel 2A/B satellite images before and after occurring forest fires, together with four
vegetation indices and their differences (NBR, NDVI, dNBR, dNDVI) as input variables.
Three different machine learning models, LightGBM, RF, and U-Net, were applied.

Of the three types of machine learning models used in this study, the LightGBM and
the RF are ensemble learning-based machine learning models that operate on a pixel basis,
and the U-Net is a deep learning-based machine learning model that operates based on
image patches. The operation process of the pixel-based machine learning models (i.e.,
Light GBM and RF) and the image patch-based machine learning model (i.e., U-Net) used
in this study is shown in Figure 2.
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Figure 2. Input data characteristics according to machine learning models.

The flow chart of this study is presented in Figure 3. After conducting the prepro-
cessing to prepare the input variables, three Schemes were developed according to the
combination of input variables for performing the machine learning-based burned area
detection approaches. More specifically, Scheme 1 used post forest fire image only and
two indices, which are NDVI and NBR. Scheme 2 exploited pre and post forest fire images
without vegetation index. Finally, using the pre and post forest fire images, four vegetation
indices (i.e., two indices for each image) and two difference images of the indices were
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selected as input variables for Scheme 3. The dataset of the three divided cases was trained
in machine learning models, LightGBM, RF, and U-Net. Then, 60% of the dataset was
utilized for training, and 40% of the remaining data was used for validation. Models’ per-
formance was tested using the label image of post forest fire. As a result, the quantitative
and qualitative forest fire burned area detection performances were analyzed using nine
difference cases (i.e., three Schemes with three models for each Site A and Site B). The
detailed explanation of the machine learning approaches with the tuned hyperparameter
values and of the classification Scheme design was given in the following subsections.
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3.1. Machine Learning Approches
3.1.1. LightGBM

The Gradient Boosting Machine (GBM) is a machine learning model that employs the
weights of model as gradients. There are several algorithms developed from existing GBM,
including Adaboost, XGboost, and LightGBM. Among them, LightGBM, an ensemble-
based machine learning model that has recently been announced, is known to perform
much more quickly and accurately [38,39]. Therefore, the LightGBM was employed in this
study because of its simplicity but reliable classification performance.

LightGBM is a decision tree-based method that significantly reduces learning time
compared to existing GBMs, and it presented a solution to the existing limitation intro-
ducing Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB).
GOSS is a learning approach that uses only the remaining data with large gradients except
for the small gradient element. EFB is a feature reduction technique. In this study, optimal
hyperparameters were identified using a grid search based on cross validation. Table 2
shows the optimized parameters for each Scheme.
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Table 2. Parameters of LightGBM model.

Model
Parameters

Scheme 1 Scheme 2 Scheme 3

Boosting type GBDT (traditional Gradient Boosting Decision Tree)
Colsample bytree 0.6 0.8 0.8

Maxdepth 7 1 4
Min. child weight 10 20 10

Num. of estimators 900 300 900
Num. leaves 15 15 15
Subsample 0.6 0.6 0.6

Learning rate 0.005 0.005 0.005

3.1.2. RF

RF is a Classification And Regression Trees (CARTs) based on ensemble approach
proposed to overcome the overfitting problem that frequently happens in existing deci-
sion trees [40]. It has an advantage of being computationally efficient due to its simple
structure [41]. In addition, it has characteristics suitable for training datasets with plenty of
variables while showing high performance in multiclass classification of remote sensing
data [42]. Considering that many variables are used in this study and performing multiclass
classification to detect forest fire burned area, the RF model was judged to be a suitable
model for the comparative evaluation.

RF generates multiple decision trees, and each tree predicts the final classification result
by aggregating the results of the trees through majority voting. The RF model includes
two randomization procedures, random selections of training samples, and input features.
These processes alleviate CARTs weaknesses of the overfitting issue. In comparison to the
LightGBM model, the RF has less hyperparameter influence on the model’s performance.
It is also optimized based on the same grid search method as LightGBM. Model parameters
optimized were ‘Num. of estimators’ (50, 70, and 10), ‘Max depth’ (16, 13, and 10), ‘Min.
sample leaf’ (10, 5, and 5), and ‘Min. Sample split’ (13, 9, and 9) for Scheme 1, Scheme 2,
and Scheme 3, respectively.

3.1.3. U-Net

U-Net is a Fully Convolution Network (FCN)-based model for semantic segmentation
introduced in [43]. Despite being intended for biomedical image segmentation, it has been
used in many studies in the remote sensing field, such as land cover classification and
object detection, because it performs well, even with a small amount of training data [44].
The study sites in South Korea also have limitations in extracting training data because
of the small scale of the fire damaged region. For this reason, the U-Net was selected as a
deep learning model for performance comparison with ensemble learning-based machine
learning models in this study while considering the advantage that high performance can
be derived even in the limited training data.

The structure of U-Net is shown in Figure A1 at Appendix A. In U-Net, accuracy was
improved by minimizing information loss in the convolution layer using Skip-connection.
Furthermore, it is useful since it allows for the usage of previously inaccessible location
data [45,46]. In this study, the optimal hyperparameters were determined based on the grid
search method. Ten times tests were performed, and different hyperparameter values were
applied for each test. Through this process, optimal hyperparameters were determined
in consideration of training accuracy, validation accuracy, and loss. Model parameters
optimized were Batch Size = 30, Epoch = 100, Learning Rate = 1 × 104, Optimizer = ‘Adam’,
and Loss function = ‘Categorical cross entropy’. The 32 × 32 size patches of input images
were extracted and fed into U-Net.
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3.2. Classification Scheme Design

A total of 920 sample points were randomly extracted, and then a 32 × 32 image patch
was extracted from the points as center. The ratio of samples for each class, which were
evenly extracted while considering the area portion of the classes over the study sites, was
determined to be 5:2:3 (forest: burned area: non-forest) (Figure 4).
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In this study, three Schemes were constructed based on different input variables to
evaluate the performance of forest fire detection. Scheme 1 is composed of SR, NDVI, and
NBR data, which were collected after the forest fire. Scheme 2 utilized data from both
before and after the forest fire but did not include the NDVI and NBR. SR, NDVI, and NBR
data from both before and after forest fires are included in Scheme 3. The impact of the
input data composition on classification accuracy was identified. Table 3 summarizes the
data included in each Scheme.

Table 3. Components of dataset by scheme.

Scheme Num. Spectral Bands Num. Indices Total

Scheme 1 9 images
(post fire image, 9 bands)

2 images
(PostNDVI, PostNBR) 11 variables

Scheme 2 18 images
(pre and post fire images, 9 bands each) - 18 variables

Scheme 3 18 images
(pre and post fire images, 9 bands each)

6 images
(PreNDVI, PreNBR, PostNDVI, PostNBR,

dNDVI, dNBR)
24 variables

3.3. Accuracy Assessment

In this study, the forest fire burned area detection based on machine learning models
was conducted by classifying into three classes, i.e., forest, burned area, and non-forest.

However, the purpose of this study is to detect the burned area. Therefore, two
classes (forest and non-forest) were combined and expressed as a binary classification
image (i.e., burned area and unburned area) for an intuitive understanding of the areas
affected by the forest fire burned area. Classification performance was then assessed using
five accuracy evaluation metrics: Overall Accuracy (OA), recall, precision, F1-score, and
kappa. The OA represents the ratio of the number of correctly predicted samples among all
samples (Equation (3)). The recall, also known as sensitivity, is calculated in Equation (4).
It represents the ratio between the predicted true value and the actual true value. The
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precision (Equation (5)) can be used to assess the accuracy of the recall value because there
is a trade-off relationship between these two accuracy assessment metrics. Even though
all three metrics are useful, there are limitations to effectively representing the algorithm’s
performance under the unbalanced dataset. For this reason, quantitative analysis was
conducted using both F1-Score and Kappa, which are accuracy evaluation metrics that can
sufficiently maintain reliability in an unbalanced dataset. F1-Score is the harmonic average
of recall and precision values (Equation (6)), and Cohen’s Kappa can evaluate the degree of
agreement between the classification results and reference data (Equation (7)).

OA =
TP + TN

TP + TN + FP + FN
(3)

where TP, TN, FP, and FN stand for true positive, true negative, false positive, and false
negative, respectively.

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

F1 Score =
2 × Precision × Recall

Precision + Recall
(6)

Kappa = P0−Pe
1−Pe

P0 = TP+TN
TP+TN+FP+FN = OA

Pe =
(TP+FN)×(TP+FP)
(TP+TN+FP+FN)2 + (FN+TN)×(FP+TN)

(TP+TN+FP+FN)2

(7)

4. Result
4.1. Comparison of Forest Burned Area Detection Performance

The classification performance for three Schemes in Site A and B is summarized in
Tables 4 and 5, respectively. The values in the tables were averaged with 10 times repetitions
of the results. In the case of binary classification of Scheme 3, a simple threshold value
was applied to the dNBR image to extract the burned area for the comparison point of
view. To this end, the threshold value applied for the extraction of the forest fire burned
area was classified into the burned area and the unburned area based on the burn severity
standard proposed by the USGS [37]. As a result, the dNBR binary classification map was
constructed by mapping the values of low severity (<+0.1) or higher to the wildfire burn
area and the values below (>+0.1) to the unburned area. The results from U-Net showed
the highest accuracies (OA and Precision) among the three machine learning approaches
in both Sites A and B. However, all Schemes in Site B have lower Recall values in U-Net
compared to other methods. It is considered that LightGBM and RF tend to over detect
burned areas compared to U-Net. As mentioned above, F1-Score and Kappa are much
appropriate metrics in the unbalanced dataset. U-Net exhibits an enhanced Kappa and
F1-Score in both multiclass and binary classification when compared to LightGBM and RF,
indicating that the deep learning model was successful in identifying forest burned regions.
The LightGBM, RF, and U-Net classification results also compared with the dNBR result,
and showed the better classification performance for three Schemes in site A and B.
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Table 4. Summary of the burned area detection results for Site A.

Multiclass Classification

- OA Recall Precision F1-Score Kappa

Scheme 1
LightGBM 0.85 0.78 0.60 0.68 0.73

RF 0.85 0.74 0.62 0.67 0.74
U-Net 0.93 0.87 0.89 0.88 0.88

Scheme 2
LightGBM 0.86 0.80 0.68 0.73 0.76

RF 0.86 0.78 0.67 0.72 0.75
U-Net 0.93 0.88 0.89 0.89 0.88

Scheme 3
LightGBM 0.88 0.81 0.71 0.76 0.78

RF 0.87 0.81 0.70 0.75 0.77
U-Net 0.93 0.89 0.88 0.89 0.88

Binary Classification

- OA Recall Precision F1-Score Kappa

Scheme 1
LightGBM 0.92 0.78 0.60 0.68 0.63

RF 0.92 0.74 0.62 0.67 0.62
U-Net 0.97 0.87 0.89 0.88 0.86

Scheme 2
LightGBM 0.94 0.80 0.68 0.73 0.69

RF 0.93 0.78 0.67 0.72 0.68
U-Net 0.98 0.88 0.89 0.89 0.87

Scheme 3

LightGBM 0.94 0.81 0.71 0.76 0.73
RF 0.94 0.81 0.70 0.75 0.71

dNBR 0.92 0.56 0.63 0.59 0.55
U-Net 0.98 0.89 0.88 0.89 0.88

Table 5. Summary of the burned area detection results for Site B.

Multiclass Classification

- OA Recall Precision F1-Score Kappa

Scheme 1
LightGBM 0.90 0.96 0.61 0.74 0.79

RF 0.91 0.97 0.60 0.74 0.80
U-Net 0.94 0.90 0.91 0.90 0.87

Scheme 2
LightGBM 0.91 0.97 0.67 0.79 0.81

RF 0.92 0.97 0.63 0.76 0.81
U-Net 0.94 0.91 0.92 0.92 0.87

Scheme 3
LightGBM 0.91 0.96 0.67 0.79 0.80

RF 0.91 0.96 0.68 0.79 0.81
U-Net 0.94 0.92 0.91 0.92 0.88

Binary Classification

- OA Recall Precision F1-Score Kappa

Scheme 1
LightGBM 0.98 0.96 0.61 0.74 0.74

RF 0.98 0.97 0.60 0.74 0.73
U-Net 0.99 0.90 0.91 0.90 0.90

Scheme 2
LightGBM 0.98 0.97 0.67 0.79 0.78

RF 0.98 0.97 0.63 0.76 0.75
U-Net 0.99 0.91 0.92 0.92 0.91

Scheme 3

LightGBM 0.98 0.96 0.67 0.79 0.78
RF 0.98 0.96 0.68 0.79 0.79

dNBR 0.98 0.93 0.67 0.78 0.77
U-Net 0.99 0.92 0.91 0.92 0.92

As highlighted in the analysis according to the Schemes, Scheme 3, which used both
pre- and post-fire images, showed the highest accuracy, while Scheme 1, which used only
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post-fire images, was the lowest accuracy. Because pre- and post-fire images provide
change information, it is not surprising that accuracy is high. The use of additional indices
(including NDVI, NBR, and dNBR) in Scheme 3 did not significantly improve the detection
performance, yielding results comparable to Scheme 2. However, Scheme 3 was more
accurate than Scheme 2 in site A, implying that using more indices could be useful in
detecting burned areas. The improvement of accuracy is not dramatic in U-Net, showing
stable classification accuracy. U-Net conducts image-based learning, while LightGBM
and RF conduct pixel-based learning. It demonstrates that image-based learning is more
effective in detecting the burned area because it can consider the shape as well as pixel
value of the burned area.

4.2. Comparison of Spatial Distributions of Forest Burned Area Detection Results

Figures 5 and 6 illustrate the maps of the burned area for Site A and B, respectively.
The area affected by forest fires is expressed as a ‘burned area’, and the area without forest
fire damage is expressed as an ‘unburned area’. According to the results in Tables 4 and 5,
U-Net shows the best performance among three machine learning approaches in both sites.
Pixel-based learning approaches, including LightGBM and RF, showed the noise in burned
area detection, while there is little noise in U-Net results. As mentioned above, it is because
U-Net could consider both the shape and pixel value of the burned area. The performance
of the spatial distribution of burned area detection improved with the use of both pre- and
post-fire images (Scheme 2) and additional indices including NDVI, NBR, dNDVI, and dNBR
(Scheme 3). It produces less noises of burned area detection as more information is employed.

Different types of land cover can be identified at Sites A and B. While Site A has a
heterogeneous distribution of land cover, Site B has a homogeneous distribution. These
features explain why Site B’s accuracy outperforms than that of Site A (Tables 5 and 6).
Similarly, Site B had a less noisy spatial distribution of the burned area. Sites A and B also
differ in terms of their topography, which includes elevation and latitude/longitude. Site
A has a lower latitude and lower elevation than Site B. This can be confirmed through the
True Color Image (TCI) images of Sites A and B. Although the two images were acquired at
a similar time, vegetation did not grow in the left area of Site A, and snow was distributed
only in some areas at Site A only. On the other hand, it is not possible to check the snow-
covered land at all areas of Site B, and it is assumed that vegetation is growing in a balanced
manner in all areas by seeing that most of the mountain areas in the image are green. As a
result, the forest class in Site A is mixed with snow, resulting to a significantly greater rate of
false detection than the forest class in Site B. The spatial distribution of dNBR was compared
with machine learning results. It performed poor with lots of noise. False detections in the
water body were also identified at both sites when using the dNBR (Figures 5 and 6).

Table 6. Time requirement for training to detect burned area.

- Site A Site B

- Accuracy Training Time Accuracy Training Time

Scheme 1
LightGBM 0.88 175.5 s 0.92 143.8 s

RF 0.78 17.5 s 0.95 17.6 s
U-Net 0.91 173.2 s 0.94 175.4 s

Scheme 2
LightGBM 0.89 190.4 s 0.93 163.9 s

RF 0.84 18.2 s 0.94 17.3 s
U-Net 0.90 177.2 s 0.97 176.8 s

Scheme 3
LightGBM 0.90 196.2 s 0.94 175.6 s

RF 0.88 18.5 s 0.90 17.3 s
U-Net 0.91 174.1 s 0.97 179.2 s
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5. Discussion
5.1. Analysis of Forest Fire Burned Area Detection Errors

In this study, LightGBM and RF, which are ensemble learning-based machine learning
approaches, and U-Net, which is a deep learning-based machine learning approach, were
used to detect the burned area caused by forest fires. Sentinel-2A/B satellite images before
and after occurring forest fires were used as input data (e.g., SR, NDVI, and NBR). Three
Schemes, each of which was composed of different combinations of the aforementioned
data, were evaluated. Based on accuracy assessment, the optimal model for detecting
burned areas was identified. In both sites, the U-Net showed greater overall accuracy than
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the LightGBM and RF (Figures 5 and 6). Figure 6 also demonstrates this tendency. The
diverse patterns of land cover at Site A revealed noise, resulting in misclassification in
the burned area [47]. Although the ensemble-based machine learning models generated
numerous misclassified pixels in Schemes 1 and 2, the rate of misclassified pixels was
reduced in Scheme 3 (Figures 7 and 8). This is because of the incorporation of vegetation
indices as input data in Scheme 3. It indicates that use of temporal data (before and after
the forest fire) as well as additional input data (vegetation indices) contributed to improve
the burned area detection accuracy.
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The U-Net obtained robust modeling performance in all Schemes. Although misclas-
sified pixels were detected, most of the pixels were identified close to the burned area’s
boundary. This is because the degree of damage weakens toward the boundary [48]. The
ensemble learning-based machine learning models generally exhibits a strong sensitivity
to the properties of the training data and weak performance in noise [49]. In contrast, the
U-Net model is more resilient to noise and less sensitive to the properties of the training
data than the ensemble-based machine learning models [50–52]. It is therefore appropriate
to use the U-Net to identify burned areas from forest fires.
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In Site B, the ensemble learning-based machine learning models outperformed U-Net
in terms of recall value (Table 4). It is because the ensemble-based models over-detected the
burned areas. This tendency is clearly shown in Figure 8. The recall value errors are due to
the FP pixels, which are presented as gray colors in Figure 8. Detecting more pixels than
the actual number of pixels indicates false alarms, and the recall value could be abnormally
high [53]. In this case, using the F1-Score and Kappa coefficient can be suitable for evaluating
the detection performance rather than the recall error. [54]. The highest F1-Score and Kappa
values were consistently achieved by the U-Net for all Schemes in Site B.

5.2. Assessment of Training Efficiency According to the Models

The training time and accuracy of the models were tested for evaluating the efficiency.
The identical hardware environment was used to train the machine learning models (i.e.,
AMD Ryzen 95900X 12-Core CPU, NVIDIA Geforce RTX 3060, and 64GB RAM). The results
are summarized in Table 6. There was a notable difference in training times between the
ensemble learning-based machine learning models. The LightGBM model, compared to
the RF model, has more parameters to be tuned [55,56] so that the longer computation
time is required. The training accuracy for each Scheme for LightGBM and RF models is
also shown to be unstable. It exhibited low accuracy in Site A and high accuracy in Site B.
Although the computation speed of U-Net for burned area detection was not the fastest,
U-Net demonstrated consistent accuracy regardless of Sites and Schemes. In order to detect
burned areas, deep learning approaches like U-Net could produce reliable results.

6. Conclusions

Forest fires are occurring frequently not just in Korea but all around the world. For the
rapid restoration of forests, a more accurate burned area detection map is required. Satellite
remote sensing effectively provides the accurate extent of burned area and damaged map
from forest fire because it can provide spatiotemporal images with a low cost. In this study,
three machine learning models (LightGBM, RF, and U-Net) were used to detect burned
areas and three Schemes were tested to investigate how the input data composition affects
the performance of each model. Through the qualitative and quantitative assessment, a
model adequate for detecting burned areas was identified. Among the three machine
learning approaches, U-Net, a deep learning-based model, showed the robust and high
accuracy in detecting burned areas. Ensemble-based approaches, such as LightGBM and
RF, performed poorly and showed noise in Site A showing the heterogeneous land covers.
When using satellite images before and after forest fires as well as NDVI and NBR indices,
the burned area detection performance was the best regardless of the input variables in both
Sites A and B. It was also found that obtaining the accurate burned area detection results
was difficult by using one image acquiring after the forest fire event. Although machine
learning approaches performed significantly worse due to a lack of information, the U-Net
had the highest accuracy. It is considered that the U-Net can be used even with limited data,
i.e., only satellite images after occurring the forest fires. Post-disaster images are generally
easy to collect, while prior images are more challenging. This benefit is regarded as an
important feature in monitoring disasters, such as the detection of burned areas from forest
fires. The results of the qualitative and quantitative studies lead to the conclusion that the
deep learning-based model outperforms the ensemble learning-based machine learning
models in identifying burned regions from forest fires.

This study tested three Schemes using different combinations of SR and two indices. In
addition to used indices, various satellite-based factors that are related to forest fires, such
as the soil index or water index, can be used to detect the burned area. It is expected that
by using more information, it will be feasible to detect burned areas with greater accuracy.
Additionally, the distribution of land covers was not properly accounted for the training
data, especially in Site A where the land covers are heterogeneous. Future research should
thus consider topographical variables such as land covers and broaden the variety of data
by including information directly impacted by forest fires. Furthermore, beyond using
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the well-known model like U-Net itself, future works will develop the model to improve
the performance of the forest fire burned area detection. Finally, study sites occurring in
large-scale forest fires, e.g., in the United States or Australia, will be considered to confirm
whether the demonstrated results from this study are applicable, such as in wide areas
as well.
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Figure A1. Structure of U-Net.

Appendix A shows the structure and characteristics of U-Net. Figure A1 shows
the U-Net structure. In the structure of the encoder and decoder, this model has 23 con-
volutional layers. U-Net’s encoder is called a contracting path, and it converts a high-
dimensional image into a low-dimensional image and extracts features. After that, it is
composed of a decoder structure called an expanding path that changes the encoded image
back to its original form. Unlike other semantic segmentation models, U-Net adapts to the
skip connection mechanism to connect compressed data from the contracting path to the
expanding path directly.
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