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Abstract: Ground vibration is one of the most unfavourable environmental effects of blasting activ-
ities, which can cause serious damage to neighboring homes and structures. As a result, effective
forecasting of their severity is critical to controlling and reducing their recurrence. There are several
conventional vibration predictor equations available proposed by different researchers but most of
them are based on only two parameters, i.e., explosive charge used per delay and distance between
blast face to the monitoring point. It is a well-known fact that blasting results are influenced by
a number of blast design parameters, such as burden, spacing, powder factor, etc. but these are
not being considered in any of the available conventional predictors and due to that they show a
high error in predicting blast vibrations. Nowadays, artificial intelligence has been widely used in
blast engineering. Thus, three artificial intelligence approaches, namely Gaussian process regression
(GPR), extreme learning machine (ELM) and backpropagation neural network (BPNN) were used
in this study to estimate ground vibration caused by blasting in Shree Cement Ras Limestone Mine
in India. To achieve that aim, 101 blasting datasets with powder factor, average depth, distance,
spacing, burden, charge weight, and stemming length as input parameters were collected from the
mine site. For comparison purposes, a simple multivariate regression analysis (MVRA) model as well
as, a nonparametric regression-based technique known as multivariate adaptive regression splines
(MARS) was also constructed using the same datasets. This study serves as a foundational study
for the comparison of GPR, BPNN, ELM, MARS and MVRA to ascertain their respective predictive
performances. Eighty-one (81) datasets representing 80% of the total blasting datasets were used
to construct and train the various predictive models while 20 data samples (20%) were utilized for
evaluating the predictive capabilities of the developed predictive models. Using the testing datasets,
major indicators of performance, namely mean squared error (MSE), variance accounted for (VAF),
correlation coefficient (R) and coefficient of determination (R2) were compared as statistical evalua-
tors of model performance. This study revealed that the GPR model exhibited superior predictive
capability in comparison to the MARS, BPNN, ELM and MVRA. The GPR model showed the highest
VAF, R and R2 values of 99.1728%, 0.9985 and 0.9971 respectively and the lowest MSE of 0.0903. As a
result, the blast engineer can employ GPR as an effective and appropriate method for forecasting
blast-induced ground vibration.

Keywords: artificial intelligence; backpropagation neural network; blast-induced ground vibration;
Gaussian process regression
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1. Introduction

Ground vibration is one of the main adverse blasting outcomes that has received
significant attention in the mining and civil industries [1,2]. Ground vibration is known to
have a lot of adverse impacts on the environment (cracks on building structures) and the
stability of pit walls. It is worth mentioning that several factors contribute to the occurrence
of these blast-induced ground vibrations. These factors can be categorized into controllable
factors and uncontrollable factors [3,4]. The controllable factors are those that the blast
engineer has control over and can change. These include the blast design parameters of
stemming length, hole depth, spacing, burden, hole inclination and explosive parameters
of delay timings, a maximum charge per delay, and total charge. The uncontrollable
factors are those the blast engineer has no control over, and they include both geotechnical
and geomechanical parameters such as rock strength, faults, and folds [5–9]. The peak
particle velocity (PPV) is the index for assessing ground vibration induced by blasting [10].
When detonation of explosives takes place, high energy is released in the blast hole which
fractures the rock surrounding the blasthole [11]. Some of the energy released is used to
fragment and displace the rock mass. The rest of the energymove through the ground as
ground vibration andimpacts surrounding structures.

Due to the adverse impact of blast-induced ground vibration, it has always been in the
interest of the blast engineer to model and predicts its occurrence to minimize vibration level
as much as possible. In that regard, a lot of research has been conducted since the 1950s [12]
to develop models for predicting ground vibration arising out of blasting operations. These
models have been developed using empirical techniques through to the use of artificial
intelligence (AI) techniques [13]. These AI techniques have been found to produce more
accurate results than the empirical techniques and hence have received worldwide attention
due to their unique capabilities [14]. AI techniques that have been developed and used in
the prediction of blasting outcomes (ground vibration, air overpressure, and flyrock) are
outlined in Table 1. It is worth noting that all abbreviations used in this work are presented
in the Abbreviations Section.

Table 1. AI Models developed and applied to predict ground vibration, air overpressure and flyrock.

References Methods Application

[3,15–28] FL, SVR, ANFIS, ANN, CART, GPR, ICA,
SVM, ELM, GEP, PSO, BN Ground Vibration Prediction

[29–33] PSO-ANN, FIS, ANN, ICA_ANN,
BIENN, GP, M5DT, SVM, KNN, CHAID Air Overpressure Prediction

[34–39] PSO-ANN, RF, BN, BBO-ELM, ORELM,
ELM, WOA-SVM, GP Flyrock

More recently in ground vibration studies, other researchers have applied evolutionary
and metaheuristic optimization algorithms to optimize simple AI techniques. Some of
these works are presented in Table 2.

Table 2. Hybrid Models developed and applied to predict ground vibrations.

References Hybrid Models

[40–54]

PSO-ANN, ICA-ANN, ABC-ANN, PSO-ANFIS, ICA-FIS,
FFA-ANN, GA-ANFIS, PSO-ANFSI, PSO-XGBoost, GA-SVR,

PSO-SVR, FFA-SVR, GA-ANN, GWO-RVR, BAT-RVR, HHOA-RF,
ICA-XGBoost, ICA-M5DT, HHOA-ELM, GOA-ELM

Table 3 provides a detailed summary of some research on ground vibration prediction.
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Table 3. Input parameters, size of data and AI techniques for prediction of ground vibration.

References Technique
Input Parameters No. of

Datasets R2
Rock Mass Blast Design Explosives Other

[55] ANN ν, BI, E, Pv HD, B, S VOD, Q H 154 0.9864

[15] FIS - - Q H 33 0.92

[56] ANN HD Q H 162 0.9493

[57] SVM, ANN - - Q H 37 SVM = 0.89,
ANN = 0.85

[16] FIS - B, S, ST Q H 120 0.95

[58] ANN - - Q H 20 0.93

[40] ANN-PSO RD B, S, N, HD,
SD Q H 44 0.94

[59] ANN ST, HD Q H 69 0.957

[60] ANN - HD, ST Q H 115 0.98

[28] ANN-PSO RQD ST, BS, SD PF, Q H 88 0.89

[61] GA-ANN,
ANFIS - - Q H, RD 70 GA-ANN = 0.988,

ANFIS = 0.92

[62]
WNN,

GMDH,
ANN

- HD, NH PF, Q H 210
WNN = 0.712,

GMDH = 0.684,
ANN = 0.729

[63] GP, RSM,
MARS Q H 200

GP = 0.7864,
RSM = 0.7832,

MARS = 0.8056

[64] ANFIS - - Q H 90 0.983

[65] ANN - - Q H 68 0.955

[66] ANN PF, Q H 88 1

[22] GPR, ANN - HD, NH PF, Q H 210 GPR = 0.695,
ANN = 0.688

[49] SaDE-ELM,
ELM, ANN - HD, NH PF, Q H 210

SaDE-ELM = 0.759,
ELM = 0.728,
ANN = 0.729

[67] MARS, ANN - HD, NH PF, Q H 210 MARS = 0.7074,
ANN = 0.6879

[68] LSSVM,
ANN - HD, NH PF, Q H 210 LSSVM = 0.73,

ANN = 0.729

Nevertheless, the application of single AI techniques is still of interest in this ever-
growing technological world. ANN has been developed by [69] to predict the earth surface
deformation. Thus, the predictive capacities of three artificial intelligence algorithms,
backpropagation neural network (BPNN), ELM, and GPR, are investigated in this study
using blasting data from a quarry (Ras Limestone Mine of Shree Cement) in India to
estimate PPV values. A multivariate adaptive regression spline (MARS) approach, as
well as a multivariate regression analysis (MVRA) model, was developed and used for
comparison purposes. Studies have been made to compare the GPR and BPNN [22], MARS
and BPNN [67], ELM and BPNN [70], GP and MARS [63], GPR and MVRA [71] and BPNN
and MVRA [55]. However, little has been done in the literature to compare the predictive
performance of GPR, MARS, BPNN, ELM and MVRA in ground vibration prediction
studies. In that regard, this study is exploratory. It is worth mentioning that the empirical
models developed for predicting blast-induced ground vibration were not considered
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in this study. The reason is that studies done by [17,40,53,57,59,72,73] have proved that
these empirical models do not produce accurate results. The models used in this study
consider seven effective parameters, namely the average depth, a maximum charge per
delay, powder factor, spacing, burden, distance and stemming length, because, as shown
in [5–7], they significantly affect the intensity of ground vibration.

2. Study Site and Data Description

The Ras Limestone Mine of Shree Cement is located 30 km from Beawar City, Ajmer
District, Rajasthan, India. The mining concession of 750.0 ha lies between longitude
E 74◦10′5.96′′ to E 74◦11′9.62′′ and latitudes N 26◦16′57.13′′ to N 26◦15′36.23′′, on toposheet
No. 45 J/3 & 45 J/4 of the survey of India.

The projected production capacity of the mine is 25.3 million tons of limestone per
year. The mining area is generally rocky with no overburden. A general strike of limestone
at Ras Mine is North-South direction and dips in the eastern direction. Limestone has four
major folds and one reverse fault. Limestone strata are massive, blocky and fractured in
different portions of the deposit. HRB 150 (INDUS Make) drills are used for drilling hole
diameter of 165 mm. ANFO with cast booster/slurry explosives and nonel detonators
are used as explosives for blasting limestone. Figure 1 shows a blasting round view with
Figure 2 showing the close-up view of blasted limestone at Shree Cement Ras Limestone
Mine in India.
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As a part of this study, for the establishment of the various models described therein,
a total of 101 sets of data were collected from the Ras limestone mine. The data collected
consisted of parameters such as average depth (m), spacing (m), burden (m), powder factor
(t/kg), the distance between the blasting point and the monitoring station (m), stemming
length (m), a maximum charge per delay (kg) and PPV (mm/s). In the creation of the
various models, the input parameters were average depth (m), spacing (m), burden (m),
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powder factor (t/kg), the distance between the blasting site and the monitoring station (m),
stemming length (m), and maximum charge per delay (kg), while the output parameter
was PPV. Table 4 shows the statistical description of the dataset collected.

Table 4. Description of dataset parameters.

Parameter Category Symbol Units Minimum Average Maximum Standard
Deviation

Average depth

Inputs

AD m 7.76 11.88 14.46 1.64
Burden B m 4.5 4.54 5.5 0.15
Spacing S m 5.5 6.02 7 0.31
Distance D m 250 1356.44 4150 906.21

Powder factor PF t/kg 5.38 6.30 7.83 0.44
Stemming length SL m 3 3.48 4 0.29

Maximum charge per Delay MC kg 73 129.49 180 22.94

Peak Particle Velocity Output PPV mm/s 0.7 4.08 15.19 3.16

The values for the maximum charge per delay, stemming length, powder factor,
spacing, burden, and average depth as statistically described in Table 2 were obtained from
the daily blast plans of the mine. The distance values were calculated using the coordinates
of the blasting face and monitoring locations obtained using a Global Positioning System
(GPS). As shown in Figure 3, the PPV values were monitored using an Instantel Micromate
ISEE Std/XM seismograph [74].
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It is worth mentioning that the mine has no permanent monitoring location due to
different blasting positions. Thus, in monitoring the ground vibration due to blasting, the
seismograph is positioned using pegs with an arrow on the geophone pointing towards
the blast site. Figure 4 shows the portable monitoring station used by the mine. It is worth
noting that the terrain of the Ras Limestone Mine is generally hilly.

The correlation coefficient matrix shows how strong the interaction between the input
parameters (average depth, burden, spacing, distance, powder factor, stemming length,
and maximum charge per delay) and the measured PPV is, as shown in Table 5.
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Table 5. Matrix of Correlation Coefficients Between Input Parameters and PPV Measured.

AD B S D PF SL MC PPV

AD 1
B 0.1697 1
S 0.3347 0.8330 1
D 0.1407 −0.0467 −0.0201 1
PF −0.1046 0.5294 0.4905 −0.1069 1
SL 0.7702 −0.1507 −0.0235 0.0595 −0.1329 1

MC 0.9301 0.3514 0.4996 0.1617 −0.2019 0.6145 1
PPV −0.0016 0.1492 0.2160 −0.7503 0.0789 −0.0837 0.0293 1

3. Methodology

In this section, the mathematical description of the different methods applied in this
study will be briefly outlined. Furthermore, the procedure followed to develop the various
models as well as the models’ performance indicators will be outlined.

3.1. Study Steps

A systematic methodology was utilized in this study. First, the data collected were
prepared by removing all outliers and then were partitioned into two sets (training set
and testing set) and normalized into the interval [–1,1]. Then the various models were
built by selecting the model’s hyperparameter. The models were then trained using the
training dataset. Finally, the model’s results were assessed based on the test dataset by some
performance indicators. The performance results were then analyzed to either finetune the
model’s hyperparameter or select the model as optimum. Figure 5 shows the flowchart
applied in this study.
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3.2. Mathematical Description of the Different Methods
3.2.1. GPR
Gaussian Process (GP)

GP is a nonparametric Bayesian technique that is used in regression modelling [75].
This GP process can be described as a finite assemblage of a set of arbitrary parameters
that follow a multivariate Gaussian (normal) distribution [76]. That is, for every given
input point from a set of input vectors r = (r1, r2, r3, . . . , rm), the probability distribution
over its function h(r) follows a Gaussian distribution. Thus, a GP h(r) is precisely shown in
Equation (1) as:

h(r) ∼ GP
(
b(r), g

(
r, r′
))

(1)

From Equation (1) it can be deduced that a GP is fully characterized by a covariance
function g(r, r′) and a mean function (MF) b(r) as expressed in Equation (2).{

b(r) = E[h(r)]
g(r, r′) = E[(b(r)− h(r))(b(r′)− h(r′))]

(2)

For the basic GPR, the MF is normally set as 0, however, there many other MFs which
can be applied in building the GPR model [77]. The noted MFs in literature have been
categorized into two kinds, namely: simple and composite. The simple MFs include zero,
one, constant, linear, polynomial, nearest neighbor MFs etc. whereas the composite ones
include: the scaled version, sum, product, power and warped MFs [77]. It is worth noting
that this study adopted an MF with a constant, b.

The covariance function on the other hand is the main component in the development
of the GPR model. The best covariance function is dependent on the data being modelled.
Literature is replete with a number of these covariance functions [70]. However, the notable
ones include: the rational quadratic, matérn class, squared exponential and the exponential
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covariance functions. The most often used covariance function is the squared exponential
covariance function [77,78].

Prediction Using GP

In the case of a regression modelling problem, an output variable q can be approxi-
mated, given function h(r) with an additive noise εi component inherent in the dataset as
shown in Equation (3).

qi = h(ri) + εi (3)

Assuming this noise component εi has a zero mean and variance σ2
n , the prior on the

noisy data is expressed in Equation (4) as:

cov(q) = g
(
r, r′
)
+ σ2

n In (4)

where In is a matrix of the n-dimensional unit.
The GP h(r) (see Equation (1)) is then precisely considered in Equation (5) as:

h(r) ∼ GP
(

b(r), g
(
r, r′
)
+ σ2

n I
)

(5)

It should be emphasized that the GP model training, seeks to ascertain the best possible
hyperparameter set Θ =

[
β, χ, υ2

s , σ2
n
]

that best fits the data sets. This can be done by the
use of a maximum possible method [69] in which the log-likelihood function is maximized
(Equation (6)).

log(p(q|r, Θ )) =
1
2

log
(

det
(

g
(
r, r′
)
+ σ2

n I
))
− 1

2
qT
(

g
(
r, r′
)
+ σ2

n I
)−1

q− n
2

log2π (6)

Of all the maximum likelihood functions available, the conjugate gradient method is
the most widely used [79] and hence was used in this study. It finds the optimal hyperpa-
rameter sets by using the partial differential of the log-likelihood function (Equation (6)) in
relation to the hyperparameter set, Θ as shown in Equation (7).

∂
∂Θi

log(p(q|r, Θ )) = 1
2 qTG−1 ∂G

∂Θi
G−1q− 1

2 tr
(

G−1 ∂G
∂Θi

)
= 1

2 tr
((

ββT − G−1) ∂G
∂Θi

) (7)

where β = G−1q and G = g(r, r′).
Given the joint prior distribution of the training output variable, q at point a and the

value q∗ to be predicted at the test point r∗ expressed in Equation (8), the GPR model is
able to predict q∗ by calculating the posterior distribution p(q∗|r, q, r∗ ) (Equation (9)).[

q
q∗

]
∼ GP

([
b(r)
b(r∗)

]
,
[

g(r, r) + σ2
n I g(r, r∗)

g(r∗, r) g(r∗, r∗)

])
, (8)

p(q∗|r, q, r∗ ) ∼ GP(q∗, cov(q∗)), (9)

Here q∗ (Equation (10)) is the mean value which is the estimation of q∗ and cov(q∗)
(Equation (11)) is the predictive variance matrix of the test data, which reveals the credibility
of the prediction values [79].

q∗ = b(r∗) + g(r∗, r)
[

g(r, r) + σ2
n I
]−1

(q− b(r)) (10)

cov(q∗) = g(r∗, r∗)
[

g(r, r) + σ2
n I
]−1

g(r, r∗) (11)
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3.2.2. BPNN

BPNN is a widely used AI technique that was developed to mimic the human brain.
In this, there is an input layer that takes impulses from the outside environment as inputs
to the network. These inputs xk are weighted by connecting weights wk and relayed to the
hidden layer. The hidden layer contains processing units called neurons which transform
the weighted input by a transfer function, t. It is noteworthy that biases b are added
to the transfer function before the transformation process. The hidden layer’s output is
subsequently conveyed to the output layer, which is transformed by a transfer function
operating inside the hidden layer. The network’s predicted values are then derived from
the output, ŷ from the output layer as shown in Equation (12).

ŷ = t

(
m

∑
k=1

wkxk + b

)
(12)

In training the BPNN, a training algorithm is used in updating weights and biases
based on the backpropagation error, e (divergence in true and predicted value) as shown in
Equation (13) so as to produce a network with a minimum propagation error.

e = y− ŷ (13)

Several training algorithms have been developed for such purposes. However, the
Levenberg–Marquardt algorithm [80] is the widely used training function due to its high
convergence speed and accuracy and thus was used in this study.

3.2.3. MARS

The MARS algorithm is a non-parametric algorithm developed by [81] to estimate the
complex nonlinear correlation between model inputs and output. This estimating process is
achieved by automatically building a series of linear piecewise regression models through
the use of basis functions, to fit the given data pair.

In the general, the MARS model is of the form precisely considered in Equation (14):

f̂ (z) = β0 +
N

∑
k=1

βkλk(z) (14)

where f̂ (z) signifies the estimated output parameter value, β0 is constant, λk(z) is the
kth basis function, βk signifies the kth basis function’s coefficient and z signifies the input
variable. The basis function act as a hinge function to split the data into separate sections,
which can be modelled individually. Each basis function can be precisely considered in
Equation (15) as:

λk(z) =
Ik

∏
i=1

[
sik ·

(
zv(i,k) − hik

)]
+

(15)

where Ik is the quantity of splits that formed λk(z), sik is the selected sign with value ±, v(i, k)
labels the predictor variable and hik is the knot value on the corresponding input variables.

The MARS algorithm adopts two main steps namely: the forward selection process and
the backward deletion process; to develop its model. In the forward selection process, the
model is initially constructed with a constant basis function. New pairs of basis functions
are thereafter iteratively included in the model to reduce the training residual sum-of-
squares error; to improve the model. However, as many basis functions are added in the
forward process; the model built becomes overfit and cannot generalize well with unseen
data. The backward deletion process is then introduced to remove all redundant basis
functions. It employs the generalized cross-validation (GCV) Equation (16) to evaluate the
performance of individually created models as it eliminates the unwanted basis functions.
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The individually created model with the least value of GCV is then chosen as the optimal
MARS model.

GCV(Q) =

1
H

H
∑

j=1

(
yj − f̂Q

(
zj
))2

(
1− C(Q)

H

)2 (16)

where yj and f̂Q
(
zj
)

denotes the actual output and predicted values of the training samples,
and H represents the total number of training samples. As shown in Equation (17), C(Q) is a
penalty for model complexity that is proportional to the model’s number of basis functions.

C(Q) = (Q + 1) + pQ (17)

where p is the penalty cost for the optimization of every single basis function which works
as a smoothing variable. The details of MARS as well as the selection of the p are in [76].

3.2.4. MVRA

MVRA is a statistical tool applied to fit a model to establish a linear relation between
a set of input parameters (independent variables) and an output parameter (dependent
variable) [82]. This fitted model can then be used to make predictions on new data. MVRA
works by studying the correlation between the various input parameters and output
parameters to construct simultaneous equations so as to acquire the best-fit equation. It
uses an ordinary least squares fit on the dataset to find the best-fit equation. It forms a
regression matrix in the process of solving simultaneous equations. The regression matrix
is then solved using the backslash operator to obtain the regression coefficient as well as
the intercept [83]. Generally, the MVRA is mathematically expressed in Equation (18) as:

Y = β0 + β2X2 + β3X3 + . . . + βkXk (18)

where β1, . . . , βk are the regression coefficients, β0 is the intercept X1, X2, . . . , Xk is the
independent variable and Y is the dependent variable.

3.2.5. ELM

In 2004 Huang introduces the mathematical model of ELM. The ELM’s basic principle
is based on a single hidden layer feed-forward neural network (SLFN) (Figure 6). Because
of its improved generality, simplicity, and efficient forecasting nature, the ELM has been
employed in a variety of application areas [84].
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The basic premise of ELM is as follows: Given N as the number of hidden units, K as
the number of training samples, and the activation function f ( ) in the hidden units, the
output of the ELM om for the mth training sample is depicted in Equation (19) as:

om =
N

∑
i=1

βi f (wk, bi, xm) m = 1, . . . , K (19)

where bi is the hidden neurons’ bias factor, xm denotes the number of inputs, βi denotes
the output weight vectors and wk denotes input weight vectors. The sigmoid function is
used as an activation function. The sigmoid function’s output is essentially in a range of 1
to 0. To determine the output weights, the linear equation (Equation (20)) is employed.

β = H†Y (20)

where H denotes the output matrix of the hidden layer, H† the Moore–Penrose generalized
inverse [85] of H, and Y denotes the ELM output targets. In Equation (21), Equation (20) is
written as:

Hβ = Y (21)

Equation (22) can be used to define H, β, Y as follows:

H =

 p(x1)
...

p(xK)

 =

 f (w1, b1, x1) · · · f (wN , bN , x1)
... · · ·

...
f
(
w1, b1, xj

)
· · · f

(
wN , bN , xj

)


N×K

, β =

βY
1
...

βY
N

 and Y =

yY
1
...

yY
K

 (22)

In this case, the hidden layer’s feature mapping is p(x). H is the ELM’s output.

3.3. Procedures for Model Construction
3.3.1. Data Selection and Division

In modelling the various approaches presented in this study, the hold-out cross-
validation technique was employed to partition the entire 101 datasets. The datasets were
split into the 80:20 ratio. The first 80% of the total datasets were used as the training set
(representing 81 training datasets). The remaining 20% (representing 20 datasets) were
used as the test set. This strategy was adopted because [86,87] have proved that a ratio of
80:20 or 70:30 will produce accurate prediction results and will not cause overfitting.

3.3.2. Data Normalization

In the data preparation phase, it is expedient that the input parameters be normalized.
This is because the input parameters have different input ranges order and those with
the higher values have the potential to skew the prediction results to themselves. Thus,
to avoid this predicament and give equal chances to each input parameter to influence
the prediction outcome, the input parameters defined in Table 1 were normalized into the
interval [–1,1] [88,89] utilizing Equation (23).

Fi = Fmin +
(Ei − Emin)× (Fmax − Fmin)

(Emax − Emin)
(23)

where Ei signifies the actual data, Emax and Emin refer to the maximum values and minimum
of the actual data, Fi are the normalized data and Fmin and Fmax being the min-max values
of −1 and 1 in that order.

3.3.3. Model Development

For the development of the GPR model, five different models based on the squared
exponential (Equation (24)), exponential (Equation (25)), rational quadratic (Equation (26)),
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matérn 3/2 (Equation (27)), and matérn 5/2 (Equation (28)), covariance function as well as
the functions were developed. Each model had a constant MF.

g
(
r, r′
)
= υ2

s exp
[
−‖r− r′‖

2χ2

]
(24)

g
(
r, r′
)
= υ2

s exp
[
−‖r− r′‖

χ

]
(25)

g
(
r, r′
)
= υ2

s exp
[
−‖r− r′‖

2βχ2

]−β

(26)

g
(
r, r′
)
= υ2

s exp

[
1 +

√
3‖r− r′‖

χ

]
exp

[
−
√

3‖r− r′‖
χ

]
(27)

g
(
r, r′
)
= υ2

s exp

[
1 +

√
5‖r− r′‖

χ
+

5‖r− r′‖2

3χ2

]
exp

[
−
√

5‖r− r′‖
χ

]
(28)

where β is the rational quadratic covariance’s shape parameter, χ is the length scale, and υ2
s

is the covariance function’s signal variance.
The model with the lowest mean squared error and highest correlation coefficient on

the test dataset was chosen as the optimum GPR model. For the BPNN model, a three-
layered architecture was chosen—the first with the input layer, the second with a hidden
layer and the thirdly with an output layer. A single hidden layer was used because it has
been established to be a reliable predictor for any prediction problem [90]. Furthermore,
in the case of hidden and output layers, hyperbolic and linear transfer functions were
selected and used. The Levenberg–Marquardt algorithm was used to train this BPNN
model. According to the suggested values by the previous researchers, a range of 1 to 40 for
neurons was tried and the optimum number was the one that gives the lowest MSE on the
test dataset [91,92]. The optimum number of neurons in the hidden layer that resulted in the
lowest MSE on the test dataset was determined using a sequential experimental procedure
in the construction of the ELM model. In that regard, 1 to 20 neurons were tried. It is worth
stating that, the building of the MARS model, entails the choice of the highest number of
basis functions to be used in the forward selection stage as well as the maximum degree of
interaction. These serve as constraints in the development process. Based on their levels of
interaction, three independent MARS models were built in this study–zero-degree, first
degree and second-degree. Furthermore, a maximum of 20 basis functions were selected
for the forward selection stage. The model with the highest correlation coefficient and
lowest mean squared error (MSE) was chosen as the optimum MARS model. The MVRA
model was developed using the same dataset for the development and testing of the GPR,
BPNN, ELM and MARS models. The MVRA solves the multilinear regression equations
established for the various input parameters and PPV using the least square technique in
order to find the regression coefficient (Equation (18)) for each input parameter as well as
the intercept.

3.3.4. Performance Indicators

The performance of the various models constructed in this study was assessed using
performance measures such as variance accounted for (VAF), correlation coefficient (R),
coefficient of determination (R2) and mean squared error (MSE). These indicators are
precisely shown in Equations (29)–(32) as:

MSE =
1
p

[
p

∑
i=1

(si − qi)
2

]
(29)
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R =

p
∑

i=1
(si − s)(qi − q)√

p
∑

i=1
(si − s)2 ×

√
p
∑

i=1
(qi − q)2

(30)

R2 =


p
∑

i=1
(si − s)(qi − q)√

p
∑

i=1
(si − s)2 ×

√
p
∑

i=1
(qi − q)2


2

(31)

VAF =

(
1− var(si − qi)

var(si)

)
(32)

where q represents the mean of the estimated values, qi represents the estimated values,
si represents the measured values, p is the number of observations, while s denotes the
average of the measured values.

4. Results and Discussion
4.1. Developed Models
4.1.1. Gaussian Process Regression

As shown in Table 6, the optimum GPR model that produced the MSE of 0.0903 and
the highest R-value of 0.9986 for the testing dataset, had a matérn 3/2 covariance function
with a noise variance of 0.06434, a length scale of 3.6019, and a signal variance of 7.0339.
This indicates that the GPR-matérn 3/2 can generalize well with unseen datasets relative to
the other GPR models. Hence, GPR-matérn 3/2 model was selected as the best GPR model
in this study.

Table 6. Results of the Five different GPR Models.

Covariance Functions
Training Testing

R MSE R MSE

Matérn 3/2 0.9961 0.0798 0.9986 0.0903
Matérn 5/2 0.9978 0.0452 0.9956 0.1546

Squared exponential 0.9978 0.0458 0.9942 0.1812
Rational quadratic 0.9978 0.0458 0.9942 0.1812

Exponential 1.0000 0.0000 0.9850 0.3008

4.1.2. BPNN

As shown in Table 7, the optimal BPNN model has one neuron in the hidden layered
network. Thus, having an architecture [7-1-1] which means seven input parameters and
one neuron in the hidden layer, and an output layer. This is because it has the lowest MSE
value on test datasets.

Table 7. Results of BPNN for Different Architectures.

Architecture Number of Neurons
in Hidden Layer

Training Testing

R MSE R MSE

7-1-1 1 0.9929 0.1453 0.9924 0.1714
7-2-1 2 0.9956 0.0902 0.9909 0.2085
7-4-1 4 0.9680 0.6452 0.8312 3.8234
7-5-1 5 0.9247 1.4831 0.9699 0.5622
7-6-1 6 0.9995 0.0105 0.4489 156.8569
7-7-1 7 1.0000 0.0007 0.9830 0.3294
7-8-1 8 1.0000 0.0002 0.9536 0.9092
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Table 7. Cont.

Architecture Number of Neurons
in Hidden Layer

Training Testing

R MSE R MSE

7-10-1 10 1.0000 1.0244 × 10−21 0.2794 83.2970
7-15-1 15 1.0000 1.97866 × 10−22 0.9293 2.2797
7-20-1 20 1.0000 5.7607 × 10−24 0.9008 2.4538
7-24-1 24 1.0000 1.5760 × 10−23 0.8714 5.0448
7-28-1 28 1.0000 4.9485 × 10−25 0.7352 6.7391
7-30-1 30 1.0000 3.6328 × 10−26 0.7831 5.6888
7-34-1 34 1.0000 5.7972 × 10−20 0.8136 8.5761
7-38-1 38 1.0000 9.7338 × 10−26 0.5893 7.7243
7-40-1 40 1.0000 1.6407 × 10−25 0.6707 16.7280

4.1.3. MARS

As shown in Table 8, the developed MARS model with the first order of interaction
had the highest R values as well as the lowest MSE values on both the training and test
datasets. Hence it was chosen as the optimum MARS model in this study.

Table 8. Results of Different MARS Models.

Interaction Order
Training Testing

R MSE R MSE

Zero Order 0.9924 0.1548 0.9895 0.2605
First Order 0.9944 0.1145 0.9953 0.1038

Second Order 0.9940 0.1220 0.9923 0.1506

In the developmental process of the selected first order of interaction MARS model,
only eight basis functions after the backward elimination stage were used out of the 20 basis
functions employed in the forward selection stage. The eight basis functions of the selected
MARS model and their respective equations are shown in Table 9.

Table 9. The Relationship Between Basis Functions and their Related Equations.

Basis Function Equation

BF1 max (0, D – 850)
BF2 max (0, 850 – D)
BF3 max (0, D – 550);
BF5 max (0, MC – 96.764);
BF6 max (0, 96.764 – MC)
BF7 max (0, D – 1750) × BF5;

BF10 max (0, MC – 119) × BF3;
BF11 max (0, 119– MC) × BF3;

The developed optimum MARS model for predicting ground vibration as a result of
blasting is provided in Equation (33).

PPV = −2.85717− (0.0211305× BF1) + (0.0270673× BF2) + (0.0190881× BF3)
+(0.033926× BF5)− (0.0570272× BF6) +

(
5.46015× 10−5 × BF7

)
+
(
3.56504× 10−5 × BF10

)
+
(
2.79304× 10−5 × BF10

) (33)

4.1.4. ELM

With respect to the experimental results shown in Table 10, the optimum ELM model
developed had 12 neurons in the hidden layer with a sigmoid activation function. Thus,
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having a structure [7-12-1] that represents seven inputs with 12 neurons in the hidden layer
and one output.

Table 10. Training and Testing R and MSE Results for ELM.

Architecture Number of Hidden
Neurons

Training Testing

R MSE R MSE

7-1-1 1 0.6989 5.2395 0.8328 2.9447
7-2-1 2 0.7562 4.3848 0.8797 2.3808
7-5-1 5 0.9371 1.2477 0.9877 0.4775
7-8-1 8 0.9441 1.1130 0.9624 0.7056
7-10-1 10 0.9910 0.1832 0.9948 0.1832
7-12-1 12 0.9958 0.0870 0.9957 0.1384
7-15-1 15 0.9950 0.2181 0.9930 0.1521
7-18-1 18 0.9836 0.3341 0.9914 0.1989
7-20-1 20 0.9848 0.3080 0.9862 0.2530
7-25-1 25 0.9919 0.1656 0.9738 0.7639

4.1.5. MVRA

The developed MVRA model hsa an R-value of 0.7909 for the training dataset and
0.8310 for the test dataset. With respect to the MSE, the developed MVRA model had a
value of 3.8341 for the training dataset and 3.2456 for the test dataset. Thus, the developed
MVRA model using the training datasets for this study is shown in Equation (34).

PPV = 7.237178 + 0.714419AD− 2.80436B + 3.443905S− 0.02705MC
−2.33861SL− 0.67419PF− 0.00284D

(34)

4.2. Assessment of Models Performance

In evaluating the prediction capabilities of the five predictive models presented in the
study, the statistical performance outcomes of the testing samples are outlined in Table 11.

Table 11. PPV Prediction Results of Various Models.

Model MSE R R2 VAF (%)

GPR 0.0903 0.9985 0.9971 99.1728
MARS 0.1038 0.9953 0.9906 98.8692
ELM 0.1381 0.9957 0.9915 98.5469

BPNN 0.1714 0.9924 0.9848 98.2273
MVRA 3.2456 0.8310 0.6906 66.0603

Notionally, a predictive model is said to be accurate if R and R2 are 1, MSE is 0 and VAF
is 100%. In that regard, it can the seen that the GPR with the MSE value of 0.0903 closest to
0, R values of 0.9985 closest to 1, R2 values of 0.9971 closest to 1 and VAF value of 99.1728%
closest to 100% outperformed all the techniques applied in this study. This shows the
reliability of the GPR in predicting ground vibration. The MARS performed better than the
ELM by having had MSE value of 0.1038 and a VAF value of 98.5469% with the ELM having
an MSE value of 0.1381 and a VAF value of 98.2273%. The ELM also performed better than
the BPNN with MSE and VAF values of 0.2178 and 98.1919%. It is worth mentioning that the
GPR, MARS, ELM and BPNN were superior in predicting ground vibration to the simple
MVRA model which had an MSE of 3.2456, R-value of 0.8310, the R2 value of 0.6906 and
VAF value of 66.0603%. Figure 7 depicts the interpretation of the obtained results.
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(e) MVRA.

As ground vibration is one of the most unfavorable environmental effects of blasting
operations which can cause serious damage to neighboring residences and structures, a
precise prediction of its severity is critical to managing and lessening its incidence. The R,
R2 and VAF values for the GPR, MARS, BPNN, and ELM may not vary significantly, but
any predictive model that delivers the most accurate prediction is of paramount relevance
to the blast engineer. Hence the need to develop different models. This study found that
the GPR is more accurate in forecasting ground vibration than the MARS, BPNN, ELM and
MVRA and that it can be used by blast engineers to predict blast-induced ground vibration.

4.3. Sensitivity Analysis

To determine the most and least effective parameters, sensitivity analysis is performed
to examine how the model responds to changes in the input variables with respect to PPV.
Hence, in this study, a sensitivity analysis approach implemented in [93] was adopted.
Here, while keeping the ranges of all other parameters fixed, the mean value of one of the
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input variables is increased (i.e., New mean = Old mean + 5% Old Mean) and subsequently
the amount of changes in the predicted PPV using the GPR model is recorded. The obtained
results are graphically illustrated in Figure 8.
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As can be seen in Figure 8, increasing the mean values of spacing and maximum
charge per delay, increases PPV. Furthermore, increasing the mean values of distance and
stemming length decreases PPV. Increasing burden slightly increased PPV. Nevertheless,
increasing values of powder factor and average hole depth did not significantly impact the
values of PPV. It can thus be said that the most influential parameters that can affect PPV
greatly are spacing, a maximum charge per delay, distance and stemming length.

5. Conclusions

In this paper, three AI models of GPR, ELM and BPNN were developed and applied to
predict blast-induced PPV. In showing the predictive capabilities of these AI techniques, a
MARS and MVRA model were also developed. In developing and evaluating these models,
101 datasets obtained from Ras Limestone Mine of Shree Cement, India were utilized. Out
of the 101 datasets, 81 were utilized to create the various models, while the remaining
20 were used as test sets for the models that were developed. The input parameters in
the creation of the various models were average depth (m), burden (m), spacing (m),
powder factor (t/kg), the distance between the monitoring station and the blasting site (m),
stemming length (m), and maximum charge per delay (kg), while the output parameter
was PPV. The various developed models were then evaluated using performance metrics of
R, R2, MSE and VAF. The results obtained showed that the GPR model had the lowest MSE
of 0.0903, and the highest R, R2, and VAF values of 0.9985, 0.9971 and 99.1728% respectively,
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indicating that it was superior to the other models in predicting blasting-induced ground
vibration. This was followed by MARS which had MSE, R, R2 and VAF values of 0.1038,
0.9953, 0.9906 and 98.8692% respectively. Then ELM had an MSE of 0.1381, R-value of
0.9957, R2 value of 0.9915 and VAF value of 98.5469. Then the BPNN with an MSE, R,
R2 and VAF of 0.1714, 0.9924, 0.9848 and 98.2273% respectively. The MVRA performed
very poorly as it had, with the highest MSE of 3.2456, and lowest R-value of 0.8310, the R2

value of 0.6906 and the VAF value of 66.0603%. The results obtained show that the GPR
model can be utilized to forecast blast-induced ground vibration in the mining industry.
The sensitivity analysis of the dataset found that spacing, a maximum charge per delay,
distance and stemming length had a great influence on PPV whereas burden, powder factor
and average depth had slight to no influence on PPV.

Author Contributions: Conceptualization, E.T.M., R.M.B., C.K.A., M.K.; methodology, R.M.B.,
C.K.A.; software, R.M.B., C.K.A.; formal analysis, R.M.B., C.K.A.; resources, E.T.M., R.M.B., C.K.A.;
data curation, R.M.B. writing—original draft, M.B., E.T.M., R.M.B., C.K.A., M.K., M.M.S.S., S.K.;
writing—review and editing, M.B., E.T.M., R.M.B., C.K.A., M.K., M.M.S.S., S.K.; Supervision, E.T.M.,
M.K., S.K.; funding acquisition, M.M.S.S. All authors have read and agreed to the published version
of the manuscript.

Funding: The research is partially funded by the Ministry of Science and Higher Education of the
Russian Federation under the strategic academic leadership program ‘Priority 2030′ (Agreement
075-15-2021-1333 dated 30 September 2021).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: Authors are thankful to Pankaj Agarwal, Assistant Vice President and Manage-
ment of Shree Cement, Beawar, Rajashthan for providing data for the preparation of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

Abbreviations Explanations
ABC Artificial bee colony
ANN Artificial neural network
BA Bat-inspired Algorithm
BN Bayesian network
BBO Biogeography-based optimization
BI Blastability index (compressive strength/tensile strength)
BIENN Brain-inspired emotional neural network
B Burden
BS Burden spacing ratio
CHAID Chi-square automatic interaction detector
CART Classification and regression tree
H Distance between blasting face and monitoring point (m)
XGBoost Extreme gradient boosting machine
ELM Extreme learning machine
FFA Firefly algorithm
FIS Fuzzy inference system
FL Fuzzy logic
GPR Gaussian process regression
GEP Gene expression programming
GA Genetic algorithm
GP Genetic programming
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GOA Grasshopper optimization algorithms
GWO Grey wolf optimization
GMDH Group method of data handling
HHOA Harris hawk optimization algorithm
HD Hole depth
ICA Imperialistic competitive algorithm
KNN K-nearest neighbors
LSSVM Least square support vector machine
M5DT M5′ decision tree
Q Maximum charge per delay
MARS Multivariate adaptive regression splines
ANFIS Neuro-fuzzy inference system
NH Number of holes
N Number of rows
ORELM Outlier robust ELM
PSO Particle swarm optimization
V Poisson’s ratio
PF Powder factor
Pv P-wave velocity
RF Random forest
RVR Relevance vector regression
RSM Response surface methodology
RD Rock density
RQD Rock quality designation
SaDE Self-adaptive differential evolution
S Spacing (m)
ST Stemming length
SD Subdrilling
SVM Support vector machines
SVR Support vector regression
VOD Velocity of detonation
WNN Wavelet neural network
WOA Whale optimization algorithm
E Young’s modulus
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9. Leskovar, K.; Težak, D.; Mesec, J.; Biondić, R. Influence of Meteorological Parameters on Explosive Charge and Stemming Length
Predictions in Clay Soil during Blasting Using Artificial Neural Networks. Appl. Sci. 2021, 11, 7317. [CrossRef]

10. Lizarazo-Marriaga, J.; Vargas, C.A.; Tiria, L. A new approach to predict local site effects related to blast-induced ground vibrations.
J. Geophys. Eng. 2018, 15, 1843–1850. [CrossRef]

http://doi.org/10.1016/j.soildyn.2008.07.003
http://doi.org/10.1007/s00366-016-0475-9
http://doi.org/10.3390/app10041403
http://doi.org/10.1016/j.measurement.2015.07.019
http://doi.org/10.1007/s00366-016-0463-0
http://doi.org/10.1007/s00366-016-0442-5
http://doi.org/10.1007/s13762-017-1395-y
http://doi.org/10.3390/app11167317
http://doi.org/10.1088/1742-2140/aab8b3


Appl. Sci. 2022, 12, 9189 20 of 22

11. Isheyskiy, V.; Marinin, M.; Dolzhikov, V. Combination of Fracturing Areas After Blasting Column Charges during Destruction of
Rocks. Int. J. Eng. Res. Technol. 2019, 12, 2953–2956.

12. Duvall, W.I.; Petkof, B. Spherical Propagation of Explosion-Generated Strain Pulses in Rock; US Department of the Interior, Bureau of
Mines: Washington, DC, USA, 1959.

13. Hidayat, R.; Cahyadi, T.A.; Winarno, E.; Saptono, S.; Koesnaryo, S. A Review of Artificial Intelligent for Prediction Ground
Vibration in Blasting. In Proceedings of the 15th ReTII National Seminar, Yogyakarta, Indonesia, 27 October 2020; pp. 187–193.

14. Zadeh, L.A. Fuzzy logic, neural networks and soft computing. In Safety Evaluation Based on Identification Approaches Related to
Time-Variant and Nonlinear Structures; Vieweg+ Teubner Verlag: Wiesbaden, Germany, 1993; pp. 320–321.
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