friried applied
e sciences

Article

IMU: A Content Replacement Policy for CCN, Based on
Immature Content Selection

Salman Rashid *

check for
updates

Citation: Rashid, S.; Razak, S.A.;
Ghaleb, EA. IMU: A Content
Replacement Policy for CCN, Based
on Immature Content Selection. Appl.
Sci. 2022, 12, 344. https://doi.org/
10.3390/app12010344

Academic Editor: Yangquan Chen

Received: 18 November 2021
Accepted: 27 December 2021
Published: 30 December 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Shukor Abd Razak *

and Fuad A. Ghaleb *

School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
* Correspondence: rashid.salman@graduate.utm.my (S.R.); shukorar@utm.my (S.A.R.);
abdulgaleel@utm.my (FA.G.)

Abstract: In-network caching is the essential part of Content-Centric Networking (CCN). The main
aim of a CCN caching module is data distribution within the network. Each CCN node can cache
content according to its placement policy. Therefore, it is fully equipped to meet the requirements
of future networks demands. The placement strategy decides to cache the content at the optimized
location and minimize content redundancy within the network. When cache capacity is full, the
content eviction policy decides which content should stay in the cache and which content should
be evicted. Hence, network performance and cache hit ratio almost equally depend on the content
placement and replacement policies. Content eviction policies have diverse requirements due to
limited cache capacity, higher request rates, and the rapid change of cache states. Many replacement
policies follow the concept of low or high popularity and data freshness for content eviction. However,
when content loses its popularity after becoming very popular in a certain period, it remains in the
cache space. Moreover, content is evicted from the cache space before it becomes popular. To
handle the above-mentioned issue, we introduced the concept of maturity /immaturity of the content.
The proposed policy, named Immature Used (IMU), finds the content maturity index by using the
content arrival time and its frequency within a specific time frame. Also, it determines the maturity
level through a maturity classifier. In the case of a full cache, the least immature content is evicted
from the cache space. We performed extensive simulations in the simulator (Icarus) to evaluate the
performance (cache hit ratio, path stretch, latency, and link load) of the proposed policy with different
well-known cache replacement policies in CCN. The obtained results, with varying popularity and
cache sizes, indicate that our proposed policy can achieve up to 14.31% more cache hits, 5.91%
reduced latency, 3.82% improved path stretch, and 9.53% decreased link load, compared to the
recently proposed technique. Moreover, the proposed policy performed significantly better compared
to other baseline approaches.

Keywords: content replacement; content placement; content-centric networking; cache networks;
immaturity; stretch reduction

1. Introduction

Due to advancements in technology, things are becoming more integrated and intelli-
gent, leading to a rapid increase in Internet usability. Internet usage patterns demonstrate
that new era applications are becoming more sensitive in bandwidth and latency. IP video
traffic is expected to dominate overall IP traffic by 82% by 2022 [1], up from 74% in 2017 [2].
Internet users are not interested in the location of the storage server. Their primary interest
is having Internet connectivity that assures fast and reliable retrieval of desired information.
Content-centric networking (CCN) has proven to be a promising solution to meet the
needs of future networks [3]. CCN naturally supports in-network caching and it attempts
to respond to the requested data when a user request contains the name or identity of
the desired data. CCN assigns each piece of data a unique identity and addresses data
objects at the network level, in contrast to the Internet’s host-centric architecture. CCN

Appl. Sci. 2022, 12, 344. https:/ /doi.org/10.3390/app12010344

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12010344
https://doi.org/10.3390/app12010344
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6684-9646
https://orcid.org/0000-0002-8824-6069
https://orcid.org/0000-0002-1468-0655
https://doi.org/10.3390/app12010344
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12010344?type=check_update&version=2

Appl. Sci. 2022,12, 344

20f22

naturally supports in-network caching and many-to-many communication [4]. When the
user request contains the name or identification of the desired data object, the network
attempts to respond to the request with the data object. The name can also belong to a
location or a host machine. This mechanism makes CCN more general than the host-to-host
communication model [5].

In-network caching provides a solution for traditional Internet architecture that works
in the application layer [3]. The content of the CCN cache changes rapidly due to enormous
data demands. Furthermore, CCN is a solution that works on the network layer level [6].
It allows the CCN node to cache a temporary copy of the requested content. CCN can
minimize network traffic and maximize content availability by providing the desired
content closer to the consumer [7]; it is difficult to decide the cache location of the content
to satisfy consumer requests and improve network performance [8]. In addition, it is
also important to determine which content should be removed from the cache space to
accommodate new content in the cache. Improper content selection causes the degradation
of network performance [9]. In-network caching faces several challenges, including limited
cache storage, caching replacement and placement, caching traffic, and complex network
topology [10,11].

The performance of the CCN depends on the content placement and replacement
policies. The content placement policy decides the appropriate cache location of each
content [1]. Hence, the node selection for content caching should be optimized to satisfy
consumer requests, with minimum overhead. Due to the limited cache capacity in the node,
any cached content in the cache needs to be removed to accommodate new content [12].
Content replacement policy is responsible for choosing the right content against defined
criteria [13]. The network performance and cache hit ratio decreases if popular content is
removed from the cache or unpopular content remains in cache for a long time [14-17].

Although cached contents at all nodes, along with the routing path, increase the
network performance and cache hit ratio, it is not a practical approach due to the finite
cache space. That is, if the cache space is full and new content arrives, one of the cached
content needs to be removed from the cache space. However, most existing replacement
policies follow the concept of the Least Frequently Used (LFU) or Least Recently Used
(LRU) policy to replace the content which is not effective for CNN [18]. The newly arrived
content may become popular over time due to high demand. When popular content loses
its popularity, it stays in the cache due to previous popularity. Therefore, the network
performance may decrease due to the overstay of previous popular content that is currently
unpopular or the eviction of currently popular content. To solve this issue and improve
network performance, we introduced a new concept of content maturity and immaturity to
deal with the aforementioned issues. The content that loses its popularity over a specific
time frame and stays in the cache for a long time is called immature content. In contrast, the
content will be considered mature if it has high popularity and is also recently requested in
the network within a specific time frame. Every new content is neither popular nor mature.
Content should stay in the cache for some time to know its maturity level. Hence, such
content is not evicted from the cache, which is yet to become popular. In addition, this
concept removes content from the cache that loses its popularity after being highly popular
for some time.

A content replacement policy is proposed in this work called IMU (Immaturity
used). This policy removes content from the cache that is immature within a limited
time frame. Therefore, most of the contents in the cache are recently used and highly
popular, leading to a better cache hit ratio and network performance. The key contributions
are summarized below:

e A new concept of content maturity /immaturity has been introduced to design and
develop an effective content eviction policy. The proposed content eviction policy
evicts the content from cache through the immature content selection to improve the
cache hit ratio, latency, path stretch, and link load.

Appl. Sci. 2022,12, 344

30f22

e A mechanism to calculate the maturity level of the content has been designed and
developed using the content frequency and arrival time of the content.

e Icarus[19] has been used to verify the performance of the proposed policy with existing
state-of-the-art content replacement policies. Subsequently, we gained substantial
improvement in cache hit ratio, latency, path stretch, and link load.

The rest of this paper is organized as follows: We discuss the related work in Section 2.
The proposed policy is described in Section 3, which highlights its contribution. Section 4
describes the simulation environment and parameters as well as the result analysis and
discussion. Finally, the conclusion and future work are in Section 5.

2. Related Work

Content eviction policy works when the cache space is filled with content. The
eviction policy provides a mechanism to replace existing contents with requested contents
in the cache. The eviction policy must keep popular contents in the cache with the least
processing complexity. In general, an eviction policy should have two properties. First,
the eviction policy should not remove popular content from the cache. Second, it also
keeps the most frequently used contents in the cache by applying some sort of priority.
Several eviction policies were proposed in the past [9,19-25]. Some of the most popular
eviction policies include First in First out (FIFO), Random Replacement (RR), Least Recently
Used (LRU), Least Frequently Used (LFU), Window-LFU (W-LFU), Least Frequent Recently
Used (LFRU), Popularity Prediction Caching (PPC), Network-oriented Information-centric
Centrality for Efficiency (NICE), NC-SDN, and Least Fresh First (LFF). A brief description
of each cache eviction policy is summarized below.

As the name suggests, FIFO replaces the content from the cache based on a first-come,
first-serve basis. The content item that comes first in the cache is evicted first when there
is a need for replacement [20]. It does not deal with the importance or priority of the
content being replaced by the new content. RR policy randomly selects existing content
from the cache to replace it with new content [21]. However, it has no particular criteria for
content selection from the cache. LRU is a typical policy that has extensive usage in cache
eviction [22]. LRU keeps track of the usage of each content in cache. When the replacement
request is received, LRU checks the requested content in the cache. If this requested content
is not already in the cache, it evicts the least recently used content to accommodate the
requested content. Therefore, LRU is simple to implement and has less computational
delay.. But on the other side, LRU does not consider the content frequency (dynamic
changes of popularity over time), which plays a significant role in network performance
and the cache hit ratio.

LFU keeps track of the frequency of each content in the cache [23]. LFU serves to
store the most popular content in the cache statically. It keeps a counter of how many
times the content is requested. Whenever a request is received for content, the counter
value is incremented by one. When the cache space is full and there is a requirement to
replace content, the content with the least counter value is selected to evict. LFU keeps
popular content in the cache, but it requires a very high processing time that leads to
performance degradation in CCN. Further, when content that has been popular for some
time loses its popularity, it stays in the cache, causing severe performance losses. W-LFU is
an eviction policy that uses a limited number of access requests over a time window [24].
This technique tries to solve the LFU problem by keeping the history of the requested
contents. This record of history is referred to as a window. The size of this window is
directly proportional to the total number of contents and the cache size in the network.
This policy demonstrates considerable improvements, but it fails to evict suitable content
in the case of bursty requests. Moreover, this policy only observes a small portion of the
cache, making it impractical for full cache capacity.

LFRU is the combination of LRU and LFU [25]. According to the LFRU eviction policy,
a cache divides into unprivileged and privileged partitions. The privileged partition is
known as a protected partition. The popular content is pushed into the privileged partition.

Appl. Sci. 2022,12, 344

4 0f22

If the privileged partition is fully occupied and there is no more space available to store
content, the LFRU ensures that the content is evicted from the unprivileged partition and
that content is transferred from the privileged to the unprivileged partition. Filtering out
the locally popular contents and placing the popular contents in the privileged partition
are the key features of the LFRU eviction policy. This policy demonstrates considerable
improvements, but it fails to evict suitable content in the case of bursty requests. Moreover,
this technique also requires a large processing time to manage partitions.

PPC is a chunk-level in-network caching eviction policy [26]. It is capable of predicting
the popularity of the video chunks. PPC stores content based on the popularity that it
predicts. On the other side, the contents that have the least popular prediction are evicted
out. This eviction scheme is also termed the Assist-predict model. It is based on the request
information of the neighboring chunks. It also predicts future popularity by using past
experience with the popularity of the content. If the popularity of the new content is
less than the former popularity, the newly incoming chunk does not cache. Otherwise,
it evicts the future content based on popular prediction. This model-based prediction
technique works well but fails to predict properly against frequently changing requests.
Moreover, this policy leads to high network load due to control signaling overhead and
high computational workload. The NC-SDN eviction model was introduced as a cache
eviction algorithm that relies on SDN (software-defined networking) [16]. NC-SDN model
uses three arguments. First, it calculates data popularity; second, it comes to know the
location of cache management switches; third, it facilitates cooperation among different
nodes in the network. When the cache is fully occupied, it checks the popularity of each
content and replaces the least popular content with new content. Although the replacement
technique is straightforward, the control traffic and exchange of information between the
switches are very high, leading to performance losses.

LFF is a content replacement policy that predicts the time of the next event [27]. Based
on the prediction, it controls the residual life of retrieved content. When the cache capacity
is full, this policy measures the time for which the content is considered invalid. In addition,
this policy checks whether the source has been updated after retrieving the content to check
the validity of each content. This policy ignores the high replacement rate in the central
node and does excessive computing, making it impractical for large CCN. NICE has been
introduced as a new metric for cache management in ICN [28]. This policy uses a method
that computes the centrality. Centralization is used in the replacement phase to manage
cache contents. This method is based on the number of caches instead of the number of
contents. Content is replaced when the NICE value is high, as the contents move from one
cache to the other due to the centrality of the content. However, it causes high network
load and computational complexity.

Most of the replacement strategies [27-34] on CCN focus on content frequency, pop-
ularity, and time freshness. These policies ignore the concept of content immaturity in
content eviction; it is neither popular nor mature when new content is cached in the cache.
We need some time to evaluate whether this content has become popular or not. If that
content is removed from the cache, the consumer has to retrieve it from the publisher,
which affects network performance. Therefore, content may become popular for a certain
period, and then its popularity starts decreasing [29]; if that content is not removed from
the cache, network performance and the cache hit ratio also degrade. When the cache space
is low and the popularity of the content changes frequently, it becomes challenging for the
content eviction policy to decide which content should be evicted from the cache space. A
content eviction policy should be able to provide equal opportunities for each content to
become mature. Therefore, we introduced a concept of maturity and immaturity of the
content, and our proposed cache replacement policy uses this concept to accommodate
the request of new content. The proposed policy evicts immature content to solve content
popularity issues.

Appl. Sci. 2022,12, 344

50f22

3. Proposed Content Replacement Policy

Content replacement policy is an integral part of CCN cache management. The nodes
in CCN need to free up space over time, due to limited cache space, so that new contents
are cached. It is a crucial decision to evict content from the cache, which, in turn, increases
or decreases network performance and the cache hit ratio. Numerous content replacement
policies decide to evict content from the cache using various criteria, such as time in the
cache, frequency, popularity, and node centralization. These policies do not use content
immaturity for eviction. The proposed policy selects immature content from the cache that
stays for a long time in the cache and has a lower frequency in a particular time window.
Thus, the proposed policy avoids unnecessary content occupation in the cache space. Due
to immature content eviction, network nodes contain more requested content within the
cache space. Therefore, more customer interests are satisfied within the network.

The proposed technique determines the mature/immature contents. Algorithm 1
elaborates the procedure to label a content, s; is mature or immature. The proposed policy
keeps track of each content’s arrival time and frequency at each node. The current time
and the frequency of the node s; is denoted by TCf/Si and F ¢s; respectively. The proposed
technique calculates the content period, T}, ; , with the help of content frequency, F &s;, and
content arrival time, ch,sr Therefore, it determines the duration of the content s; in the

cache space. Then, the proposed policy calculates the maturity index M ; . by dividing
the frequency of the content F ¢s; and content period T, . . The maturity classifier M, is
calculated using the median of maturity indexes M, « Median (M i sﬂ) . Content s; whose

maturity index M ds exceeds the value of M, is classified as mature content; otherwise,
it is immature content. The median is used for finding the relevant mean value of the

maturity index M ; _, because it is not affected by lower or extreme high set values. Thus,

this provides a fair value to the maturity classifier M;.

Algorithm 1: Determine the mature and immature content.

Input: Suppose S € {s1,52,53,...,5x} is set of contents.
Output: Categorization of contents.

ch,sl. is the arrival time of ith content.

F &si is the frequency of ith content.
Wr s the size of the time window.
Tps 8 the time period of ith content.

M s 18 the maturity index of ith content.

M, is the maturity classifier.
1. fori=1:n
Tp,s[— WT - ch,s,

Mcf,si A ‘Fé/Si/Ip,si

2. M, « Median <Mci,s,,
3. fori=1:mn
if CT,S,‘ >= ML
s; is mature
else

s; is immature

Algorithm 2 describes the next part of our proposed policy. When a node v receives
an interest packet for content s;, and the time window has not expired, then the proposed
policy finds the requested content s; in the local cache. In the case of a cache hit, the
proposed policy increments the frequency of content s; by one and associates a new arrival

time TCf/Si' Moreover, node v discards the interest packet from PIT and replies through the

Appl. Sci. 2022,12, 344

6 of 22

data packet to the requested consumer. Otherwise, a cache miss means that the requested
content s; is being cached for the first time in CS. Thus, its frequency &s; is one and it is
associated with the current timestamp ch,sf" When the cache is full, it selects content s;

with a minimum value of the maturity index M ; and evicts it from the cache space. Then,
the proposed technique checks the time window Wr ; if Wt is expired, then the frequency

of all content F ¢s, is set to one, and the previously associated timestamp T.; ¢ remains the
same.

Algorithm 2: IMU Replacement Policy.

Input: Request for a content s; at node v
Output: Content selection for replacement of newly arrived content
1. if Wr is not expired
check local cache
if cache hit
‘Fé,si — 'Fé,s, +1
ch,s,» < current time
else if cahe_size == full

s « select the content with min M d.
evict sy

place s; in cache

‘FE,S“ 1

ch,s,' < current time

Si

else
place s; in cache
'Fé,si — 1
ch,si < current time
2. else
for each's;
-F &si +—1
Update Wt
gotostep 1

For simplicity, we assume that all the CCN based routers (node) have the same cache
sizes, cached content, and discrete instants of time for interests to arrive. CS is the local
cache size, and the window size is denoted by Wt . There are some events related to
content s;, including received interest packet, received data packet, reply data packet,
forward interest packet, cached content, eviction from the cache, and look-up content in
local CS. The received interest packet (RIP), received data packet (RDP), reply data packet
(REDP), forward interest packet (FIP), cached content (CC), eviction from the cache (EC),

and look-up content (LU) are denoted by f{sip, R, iy Rse iy Fsip’ Cs, Es and L, respectively.
These notations are helpful to understand the whole process of the proposed policy. For
example, initially, we assumed the value of cache space (CS) =6, Wr =4s,t=][1, 2,3, 4,

..., 13],5€{A,B,C,D,E E G, H, I}, as presented in Figure 1.

AlBlc|a|p|B|E|F[q/HE|dI].] Window Size

r

Cached ' INNGGGG—_— Hi SN Evict

Figure 1. Node cache space, window size, and caching events.

Appl. Sci. 2022,12, 344

7 of 22

The consumer’s requested content (RC) is in the same sequence, window size, and
cache space illustrated in Figure 1. The colors indicate three caching processes: cached, hit,
and evicted content from the cache. With the help of these colors, we can easily understand
the new entry in our tables and variations in the values.

We assume that the cache of a node is empty. The detailed caching process att =1
to t = 4 is expressed in Table 1, and Table 2 also maps the IMU process with values. More-
over, we see the effect of values after the window Wr is not expired. The router receives an
interest packet for content A R Aip but does not find that content in its CS after look-up La,

then routers the same interest packet forwards F 4;, to the next router. The next router has

A content and responds through the data packet R Acy from which it receives the packet
of interest. Furthermore, the router received A data packet R4 i is then cached ¢ A41inCS,
along with values Te¢s, =1, Fes 4=1T,,, =4 and M cis, = 0-25. This process will be the
same for content B and C. When a hit occurs at t = 4, then the values of ch,s A =4 F Esq = 2
Tp,s L =1 and M csq = 2. Furthermore, window Wyt has expired at the same t = 4, but the
cache space is not yet full. Then, the router receives an interest packet for content A R Aip:
The hit occurred at t = 4 and changed the values of values ch,s =4 F esa=2Tps, =1, and
=2.00.

CT,SA

Table 1. Caching process att=1to t = 4.

Time RC RIP LU FIP REDP RDP C,C EC
: s i, i Fs, R, Rs,, G, B,
1 A Ra, (1) La@ Fa,® Ry, @ Ry ® Gy
2 B R, (1) Ly) Fg, (3) Ry, @) Rg, 0 Cs (6)
3 C Re, (1 Le @) Fe, 3) Re, @ Rg, 0 Ce (6)
4 A Ry, (1) La@ Ry,)

Table 2. IMU processatt=1tot=4.

»
—

Time F &5 Tpsi
4 0.25
0.25
0.33
0.25
0.33
0.50
2.00
0.33
0.50

cf,s; cl,s;

-+

1l

w
NlR >0 >|T|>]|>
W IN | W N =N =
el D e e e e
N | Q| = | N W W]|

Table 3 describes the detailed caching process at t =5 to t = 8, and Table 4 also maps
the IMU process with values. Table 4 demonstrates that the new window Wr starts at

t =5, and that all the values of F ¢s; become 1 and retain all the values of ch,si. Content
D has cached CD at t = 5 and displays the values of F &sp = 1, ch,SD =5 T, =4 and
M. , =025in Table 4. Furthermore, at this stage, cache space CS = 4. After the hit occurs

cls

Appl. Sci. 2022,12, 344

8 of 22

at t = 6, the values of ch,sD =6, F &sp = 2 TP,SD =3,and M csp = 0.67 have changed. New

contents are cached att =7 and t = 8, ¢ and ¢, respectively.

Table 3. Caching processatt=5to t =8.

Time RC RIP LU FIP REDP RDP cc EC
t S; Rs,»,, Ls Fs,«,, Rsfd,, Rs,;,, CS Es
5 D Rp, (1) Lo () Fp,® Rp, @ Rp, () b (6)
6 Rg, (1) Lz (2) RBMP ®)
7 E R, (1) Le @ F, 3) Rp,, @ RE,, (5) Ce(6)
8 F Rg, (1) Lr (2 Fr, (3) R, @) Rg,, (5) Cr(6)
Table 4. IMU processatt=5tot=8.
Time Si cf,s; F &s; TP/Si Mc'I',s,- Time Si TCf,Si FE,Sf IP,Sf Mcl',si
A 4 1 5 0.20 B 6 2 3 0.67
(o5 B 2 1 7 0.14 A 4 1 5 0.20
C 3 1 6 0.17 t=7 C 3 1 6 0.17
D 5 1 4 0.25 D 5 1 4 0.25
B 6 2 3 0.67 E 7 1 2 0.50
e A 4 1 5 0.20 B 6 2 3 0.67
- C 3 1 6 0.17 A 4 1 5 0.20
D 5 1 4 0.25 o C 3 1 6 0.17
t=
D 5 1 4 0.25
E 7 1 2 0.50
F 8 1 1 1.00

Content E and F have cached ¢ g and ¢ r, respectively, at t = 6 and t = 7, and the new
values are presented in Table 4. We see that the caching process is displayed step by step
in Table 3, and the numbers are associated with each process to illustrate the sequence of
this process.

Table 5 reflects caching events from t = 9 to t = 12. Att = 9, the router receives an
interest packet of G RG{,,- After the look-up Lg content is not found in CS, the interest

packet is forwarded FGW to the next router. This time, CS is full when it receives the Rg ”
data packet. Now, we find the lowest M cse = 0.10 value and remove that content EC from

CS. Therefore, it caches the new content % with the associated values of ch,S c=9 F &se = 1

Tpso =4 and M s =0-25in the CS. We can observe in Table 6 how the IMU works when
the memory is full and new content arrives simultaneously.
We repeat the same process at t = 10 for content H. The hit occurs at t =11, and t = 12

updates the values of ch,sE, F &g IP,SE, and M cispr A8 illustrated in Table 6. The hit occurred
at t =11 and t = 12 for requested contents E and G, respectively. Table 5 illustrates that
the minimum caching process and forwarding operations have been minimized when the
hit occurs.

Appl. Sci. 2022, 12, 344 90f22
Table 5. Caching process att =9 to t = 12.
Time RC RIP LU FIP REDP RDP cc EC
t Si Rsi,, Ls Fsi,, Rsed,, dep CS Es
9 G Rg, (1) Lc @ Fg, 3 Rg,, (@) Rg,, (5) Ce) Ec (6)
10 H Ry, (@) Ly @ Fu,® Ry, @ Ry, Cu) B4 (6)
11 E R, (1) Lr (2 REM 3)
12 G Rg, (1) e @ R, 4
Table 6. IMU process att =9 to t = 12.
Time Si ch,s; “FE,Si TP,Si Mcf,s,» Time Si ch,s,- F &5 IP,Si s
B 6 1 7 0.14 E 11 2 2 1.00
A 4 1 9 0.11 B 1 7 0.14
t=9 C 3 1 10 0.10 t=11 D 1 8 0.13
D 5 1 8 0.13 F 1 5 0.20
E 7 1 6 0.17 G 9 1 4 0.25
F 8 1 5 0.20 H 10 1 3 0.33
G 9 1 4 0.25 G 12 2 1 2.00
B 6 1 7 0.14 E 11 2 2 1.00
A 4 1 9 0.11 t=12 B 1 7 0.14
t=10 D 5 1 8 0.13 D 1 8 0.13
E 7 1 6 0.17 F 1 5 0.20
F 8 1 5 0.20 H 10 1 3 0.33
G 9 1 4 0.25
H 10 1 3 0.33

Table 7 describes the detailed process of caching at t = 13. The cache space CS is
full, and the time window Wy has expired; Table 8 demonstrates that when the new time
window starts, all the values of F &s; become one (1) and retain the values of TCf,S," The exact
process that was performed at t =9 and t = 10 is repeated at t = 13. The IMU used the ch,sz'

and F &s; for calculating the maturity index McI ;. of the content s;. This value indicates the

791

maturity of the content with the specific time window Wr .

The tables demonstrate that the lower value of a content maturity index M cis; TOPTE-
sents a longer stay in the cache space, with a lower frequency (popularity) over a particular
time frame Wr . Therefore, this content is evicted from the cache when the cache space is
full. It takes some time to define the maturity /immaturity of new cached content. There-
fore, the content should not be evicted without checking the level of a content maturity
index; the tables indicate that the maturity index value of new cached content is greater
than others. Content that has become popular over time, but loses its popularity, has a
higher frequency than other content. Therefore, this kind of content stays in CS for a long
time and wastes cache space. However, the window Wr is used to equalize the frequency
of all contents after a specific time, and immature content is selected from the maturity

index M (s toevict content from the CS. The proposed policy has significantly improved
the cache hit ratio, bandwidth usage, latency, and path stretch.

Appl. Sci. 2022,12, 344 10 of 22
Table 7. Caching process at t = 13.
Time RC RIP LU FIP REDP RDP cC EC
t Si Rsi,, Ls Fsi,, Rsed,, de}’ CS Es
13 I Ry, (1) L@ Fi, 3 R, @ Ry, (5) ¢ @) Ep (6)
Table 8. IMU process at t = 13.
Time Si ch,s,- & Tprsi Mcf,s,» Time Si Tcl",s,- FE,Si TPISi Mcf,s;
G 12 1 5 0.20 F 8 1 9 0.11
—13 E 11 1 6 0.17 H 10 1 7 0.14
t= B 6 1 11 0.10 I 13 1 4 0.25
D 5 1 12 0.08

4. Performance Evaluation

We performed a simulation in the GEANT network topology using the Icarus [13]
simulator, to evaluate the performance of our policy. The GEANT topology consists of 40
nodes and 60 edges. The cache capacity of each node in the network is the same and ranges
between 4% to 20% of the total content population. We used warm-up requests to settle
caches before running the actual experiment, to minimize experimental errors. The cache
warm-up requests are 40,000 and measured requests are also 40,000. We also used measured
requests for performance evaluation. Zipf’s law is used to distribute the popularity of the
content and popularity distribution of the exponent alpha («) € [0.6, 0.8, 1.0] used in our
simulation. For fair comparison with state-of-the-art replacement policies, the popularity of
requested contents follows a Zipf distribution with a parameter ranging from 0.6 to 1.0, as
presented in [10]. The lower and higher values indicate a low and high correlation between
content requests [30]. The parameters of our simulation setup are mentioned in Table 9.

Table 9. Simulation Parameters.

Parameters Value

Warm-up Requests 40,000

Measured Requests 40,000

Model of Popularity 0.6,0.8,1.0

Total Contents 100,000

Cache Capacity 4-20%

Consumer Request Rate 1.0 request/s

Placement Policy LCE, CL4M, ProbCache, LCD, opt-Cache
Topology GEANT

The obtained results have been compared with state-of-the-art content replacement
policies, including LRU, LFU, FIFO, and LFRU. To check the effectiveness of our ap-
proach, we compared popular cache placement policies, including Leave Copy Everywhere
(LCE) [27], Cache Less for More (CL4M) [31], ProbCache [32], Leave Copy Down (LCD) [33],
and opt-Cache [10], with our proposed replacement policy (IMU). These placement policies
indicate the more redundant data to less redundant data in the network, respectively [10].
These placement policies indicate the more redundant data to less redundant data in the
network. These results prove the effectiveness of our proposed technique with different
cache sizes and populations, using various performance metrics such as cache hit ratio,
latency, link load, and path stretch. These performance metrics are compared one by one,
as explained below.

Appl. Sci. 2022,12, 344

11 0f 22

Hit Ratio

0.14

0.12

0.10

0.08

0.06

0.04

0.02

4.1. Cache Hit Ratio

The cache hit ratio is an essential metric for evaluating the performance of CCN cache.
It identifies the response to network cache storage, in which content is cached locally within
a specific time frame. Two terms are important in the cache hit ratio. The first is the cache
hit (requested content is found from the cache), and the second is the cache miss (unlike
cache hit). When content is available in the cache, the content request does not forward to
the publisher. Therefore, a higher hit ratio indicates good cache performance and represents
low bandwidth utilization, reduction in latency, and low server load. The cache hit ratio is

defined as follows:
Cacheyjts

Hit Ratio =
Cachey;s + Serverpis

)

Our proposed strategy, IMU, compared to existing well-known replacement strategies
in terms of the cache hit ratio. We have extracted the results from low to high popularity
and different cache sizes. We first comment that content eviction policies behave the same
under different caching strategies. Regardless of the content eviction policy, we observe
in Figure 2 that the opt_cache performs best and the LCE performs the worst in terms of
the cache hit ratio. Moreover, different eviction policies affect the performance of the cache
hit ratio.

Figure 2 illustrates that the IMU’s performance is better than the existing replacement
strategies; this is because the IMU not only considers the time ch,sz‘ but also the frequency
F ¢s; Of the requested content within the specific period Wr . When the Wr is expired, then

all the F ¢s; initialize to their starting frequency (F &s;= 1). Moreover, it helps to evict content
from the cache space whose popularity increases for a while and decreases shortly. When

the cache is full, it is evicted from the cache after selecting the least value of the maturity
index M ; . The advantage of immature content eviction from the cache is that most of the
content is mature, which leads to a higher cache hit ratio.

0.12

-.g 010
o
=
=
0.08
0.06
—
0.04
T T T T T
0.04 0.08 0.12 0.16 0.20 T T T T T
0.04 0.08 0.12 0.16 0.20
Cache Size .
—#—FIFO—® LRU—A— LFU—¥—LFRU ¢ IMU Cache Size
—=—FIFO LRU—A— LFU—y— LFRU MU

Figure 2. Cont.

Appl. Sci. 2022,12, 344

12 of 22

Hit Ratio

0.14

0.12

0.10

0.08

0.06

0.04

0.16

0.14
0.12

2

]

[}

-4

-

E 0.10
0.08
0.06

T T T T T 0.04 T T T T T
0.04 0.08 0.12 0.18 0.20 0.04 0.08 0.12 0.16 0.20
Cache Size Cache Size
—=—FIFO LRU—A— LFU—¥— LFRU IMU —=—FIFO LRU—A— LFU—y— LFRU IMU

(0) (d)

=086

0.20

0.18

0.16
=
B 014
4
=
T o012

0.10

0.08

0.06

T T T T T
0.04 0.08 0.12 0.16 0.20
Cache Size
—=—FIFO LRU—A— LFU—y— LFRU MU

(e)

Figure 2. Caching hit ratio with different cache sizes and « by using different placement policies.
(a) Cache hit ratio with LCE. (b) Cache hit ratio with CL4M. (c) Cache hit ratio with ProbCache. (d)
Cache hit ratio with LCD. (e) Cache hit ratio with opt-Cache.

We observed that FIFO underperformed because contents are removed from the cache
in the same order in which they were cached, regardless of how many times they were
previously accessed. Besides, increasing cache space and similar content requests improve
FIFO’s performance because the content stays in the cache for a longer period, which
increases the chances of increasing the cache hit ratio. LFU performs better than LRU when
the cache size is large and the content is repeatedly requested because LFU considers the
frequency of the requested content, while LRU does not. Moreover, LFU caches popular
content and evicts unpopular content from the cache. Besides, contents are often evicted
from the cache when the cache size is small. However, LFU displays low performance
in small cache sizes. LFRU has better performance due to the coupling of LRU and LFU;
however, when the content request rate is minimum from the maximum normalized request
rate, the content is evicted from the unprivileged partition. Therefore, the new content is
cached in the unprivileged partition. Besides, if the content request rate is higher than the
maximum normalized request rate, it chooses the least recent content from the privileged
partition and pushes that content into the unprivileged partition. Hence, new content is
cached in the privileged partition and hit counter associated with each partition. However,
content that loses popularity stays in the unprivileged partition for a long time due to its

Appl. Sci. 2022,12, 344

13 of 22

high frequency. IMU outperformed FIFO, LRU, LFU, and LFRU in terms of the cache hit
ratio by 48.33%, 30.07%, 26.34%, and 14.31%, respectively.

The percentage (%) of IMU performance in different popularities, and low to high
cache sizes with different content placement strategies, is presented in Table 10. We
observed that IMU is outperformed with low popularity because, if such content is popular
for some time but its popularity decreases with time and its frequency is high, then IMU
evicts this content from the cache space. When the cache space is low and the popularity
of the content changes frequently, it becomes very difficult for the content eviction policy
to decide which content should be removed from the cache space. Hence, the IMU policy
evicts immature content from the cache space and gives each content an equal opportunity
to define its maturity /immaturity level. Such content is not removed from the cache space
that is gaining popularity.

4.2. Path Stretch (Hop Count)

Path stretch indicates the distance traveled to the content provider by the consumer’s
interest. The value of the path stretch is low when the consumer’s interest packet is found
from the routing path. Therefore, the better content replacement policy identifies content
that users are interested in and that is mature. Such content should not be evicted from
the cache. If such content is evicted from the cache, the publisher’s load and bandwidth
utilization will be high. Therefore, a better content replacement strategy should be to
minimize the hops between the consumer and the publisher. Path stretch is defined

as follows:
Y | Hop — Traveled

Path Stretch =
* 1 THop — Hop

@)

where Y ! | Hop — Traveled is the number of hops between the consumer and publisher
nodes covered by consumer interest. The value)} ; THop — Hop denotes the total number
of hops between the consumer and the provider. n represent the total number of generated
interests for specific content.

Table 10. IMU cache hit ratio percentage improvement.

« Cache Size Placement FIFO (%) LRU (%) LFU (%) LFRU (%)
0.6 LCE 320.35 133.19 121.34 64.43
0.6 CL4M 64.17 52.41 41.74 20.14
0.6 4% to 20% ProbCache 38.71 35.01 32.35 16.53
0.6 LCD 56.49 31.90 26.71 14.37
0.6 opt-Cache 48.84 40.46 33.82 18.57
0.8 LCE 47.34 36.94 27.08 17.86
0.8 CL4AM 27.84 25.22 18.72 12.93
0.8 4% to 20% ProbCache 17.64 14.11 11.70 6.38
0.8 LCD 20.15 14.08 13.66 6.53
0.8 opt-Cache 22.30 17.98 17.12 9.48
1.0 LCE 25.60 22.04 21.29 14.05
1.0 CL4M 11.47 9.76 9.24 5.35
1.0 4% to 20% ProbCache 7.56 6.21 6.38 1.98
1.0 LCD 7.49 496 6.82 2.59
1.0 opt-Cache 9.02 6.74 7.21 3.46

Figure 3 illustrates that the IMU’s performance in terms of path stretch is better than
other existing replacement policies. The placement strategy chooses the location of the
cache, which may reduce the number of hops. IMU removes content that has been in the
cache for a long time but has not matured. Therefore, when immature content is removed
from the cache and new content is cached so that the consumer’s requested content is
available nearby, the request is not forward to the publisher. However, cached content on
nearby routers is mostly popular or close to being popular.

Appl. Sci. 2022,12, 344

14 of 22

Path Stretch

Path Stretch

0.90

0.88

0.86

0.84

082

0.80

078

076

0.84

0.82

0.80

0.86

0.84 .

Path Stretch

0.80

0.78
T T T T T
0.04 0.08 0.12 0.16 0.20
Cache Size 0.76 T T T T T
—8— FIFO—®— LRU—A— LFU—y— LFRU MU 0.04 0.08 0.12 0.16 0.20
(a) Cache Size
—&— FIFO—®— LRU—A— LFU—y— LFRU MU
=06 0.84 a=06

0.82

s

® 0.80

»

S

&
0.78
0.76
0.74 T T T T T

i ; ’ ; ¢ 0.04 0.08 0.12 0.16 0.20
0.04 0.08 0.12 0.16 0.20 Cache Size
Cache Size —=—FIFO—# LRU—4— LFU—y—LFRU MU

—#— FIFO—®— LRU—4A— LFU—¥— LFRU

082
0.80
0.78
0.76
0.74

0.72

Path Stretch

070

0.68

0.66

0.64

0.62

0.60

IMu (d)

Q
"

o

»

0.04 0.08 0.12 0.16 0.20
Cache Size
—#—FIFO—®— LRU—A— LFU—¥y— LFRU MU

(e)

Figure 3. Path stretch with different cache sizes and «, using different placement policies. (a) Path
stretch with LCE. (b) Path stretch with CL4M. (c) Path stretch with ProbCache. (d) Path stretch with
LCD. (e) Path stretch with opt-Cache.

Appl. Sci. 2022,12, 344 15 of 22

FIFO, LRU, and LFU represent the high path stretch due to content selection for
eviction based on a single factor. FIFO content is evicted in the order in which it was cached.
However, no matter how many times the content has been accessed, the timeline of popular
and unpopular contents in FIFO will be the same, which increases the path stretch value.
Figure 4 indicates that LRU is better than LFU when the cache size is smaller; however,
as the cache size increases, the performance of LFU improves because LFU considers the
popularity of content. Therefore, as cache size increases, popular content stays longer in
the cache. LRU ignores the popularity of the content and the least recently used content
evicts from the cached. However, content that is not popular, but, over time, their request
keeps coming, are present in the cache space, making the path stretch higher. LFRU divides
the cache space into two parts: LRU used privilege partition and LFU used unprivileged
partition. With the higher request rate, the least recently used content has been evicted
from the privilege partition and that content pushes it to the unprivileged partition. When
unpopular content is pushed into the unprivileged partition, the content stays in the cache
space for a long time. Further, these techniques are not focused on the maturity of the
content. IMU outperformed FIFO, LRU, LFU, and LFRU in terms of path stretch by 11.33%,
6.16%, 5.77%, and 3.82%, respectively.

Table 11 illustrates the improvement of IMU in terms of path stretch using different
content placement strategies with content eviction policies. We have observed IMU perform
better in low to high cache space. In addition, IMU is better in high popularity. When the
cache space is full, IMU selects immature content and evicts it from the cache. Therefore,
popular content and content that may be popular remain in the cache. However, the
consumer’s request for specific content is fulfilled from the nearest node.

=T JE— - a=06__
85 -
80

75 -

Latency (ms)
Latency (ms)

70

65 -

60

0.04 0.08 0.12 0.16 0.2
Cache Size
I FIFO [LRU [LFU [LFRU [IMU

0.08 012

Cache Size
[FIFO [0 LRU [LFU Il LFRU [J MU

(a) (b)

Figure 4. Cont.

Appl. Sci. 2022, 12, 344 16 of 22

75 -

70 -

Latency (ms)
Latency (ms)

65 -

60

55

50

0.08 0.12 0.16 0.2

Cache Size 0.08 012
[FIFO [LRU [l LFU [LFRU [MU Cache Size
(C) [FIFO [LRU [LFU [LFRU [IMU

80

75

-~
=1

Latency (ms)
&

B0 -

55 -

50

0.08 012 0.18
Cache Size
I FiFo [0 LRU [LFU [LFRU [IMU
(e)

Figure 4. Latency with different cache sizes and «, using different placement policies. (a) Latency
with LCE. (b) Latency with CL4M. (c) Latency with ProbCache. (d) Latency with LCD. (e) Latency
with opt-Cache.

Table 11. IMU path stretch percentage improvement.

o Cache Size Placement FIFO (%) LRU (%) LFU (%) LFRU (%)
0.6 LCE 8.76 3.97 2.68 1.26
0.6 CL4M 6.17 2.80 2.20 1.42
0.6 4% to 20% ProbCache 6.38 4.07 3.98 2.95
0.6 LCD 3.84 1.65 1.30 0.94
0.6 opt-Cache 14.02 5.10 4.35 2.51
0.8 LCE 10.32 4.88 4.30 2.44
0.8 CL4M 8.56 5.40 5.34 3.14
0.8 4% to 20% ProbCache 9.43 4.20 3.62 3.05
0.8 LCD 7.42 4.96 4.20 3.16
0.8 opt-Cache 10.14 6.10 5.56 3.18
1.0 LCE 21.51 14.47 14.54 10.00
1.0 CL4AM 20.35 9.04 9.27 6.25
1.0 4% to 20% ProbCache 17.03 8.16 8.30 5.25
1.0 LCD 10.73 8.49 8.69 7.13

1.0 opt-Cache 15.30 9.06 8.17 4.68

Appl. Sci. 2022,12, 344

17 of 22

4.3. Latency

Latency indicates the delay in the delivery of requests and content from consumers.

It is a vital metric for evaluating the performance of the CCN cache, and it is defined as
follows:

Latency = Request Travel Delay + Content Travel Delay (©)]

The IMU provides low latency because it evicts the most suitable content from the
cache, based on immaturity. If the cache is full, the IMU jointly considers the frequency
and time and selects the content for potential eviction from the cache. Hence, more popular
and mature content will be in the cache, and content that may be popular. However, most
consumer requests are satisfied along the routing path, which reduces latency. Figure 5 illus-
trates that IMU’s performance is better than other content replacement policies, regarding
latency with different cache sizes and popularity.

Figure 5 illustrates that FIFO represents a high latency because the duration of popular
and unpopular content is the same. However, latency increases when popular content is
evicted from the cache. LRU ignores the popularity of the content. Therefore, requests for
less popular content come before eviction, and the content will remain in the cache, which
causes high latency. LFU considers the frequency of the content, and contents that increase
in frequency over a short period of time but are no longer popular; such contents use cache
space due to their high frequency.

Therefore, fresh contents are reduced in the cache, which increases the latency. LFRU
performs better than the previous two discussed replacement techniques because LRU and
LFU are used together. When the request rate is high, then the required processing should
be high, because the least recently used content is evicted from the privileged partition and
pushed to the unprivileged partition and associated with the access history of content. In
addition, low-frequency content is evicted from unprivileged partition. However, content
with a high access history that is no longer popular will spend more time in the cache space,
reducing the freshness of the content. IMU outperformed FIFO, LRU, LFU, and LFRU in
terms of latency by 12.32%, 9.97%, 9.08%, and 5.91%, respectively.

When the alpha equals 0.8 with cache size is 0.04, IMU is 64.44 ms, which is 9.45%
lower than LFRU (71.16 ms), 13.90% lower than LFU (74.84 ms), 13.34% lower than LRU
(74.35 ms), and 15.60% lower than FIFO (76.34 ms). When the alpha equals 0.8, the cache
size is 0.12, IMU is 61.03 ms, which is 5.40% lower than LFRU (64.51 ms), 9.65% lower than
LFU (67.55 ms), 12.05% lower than LRU (69.39 ms), and 14.50% lower than FIFO (71.38 ms).
When the alpha equals 0.8 with cache size is 0.2, IMU is 60.05 ms, which is 3.71% lower
than LFRU (62.37 ms), 5.58% lower than LFU (63.60 ms), 8.93% lower than LRU (65.94 ms),
and 11.59% lower than FIFO (67.92 ms). Therefore, as the cache size increases, the latency
is reduced because more content in the network can be cached.

The latency improvement performance from IMU is illustrated in Table 12, using
different content placement strategies with low to high popularities and cache sizes. We
have observed that, as the popularity of content increases, so performs IMU. The IMU
evicts content from the cache that has been in the cache for a long time and has few requests.
Furthermore, content that has been in high demand for some time but declined over time
has also been evicted from the cache. Therefore, the cache contains mostly mature content.
However, when a consumer requests specific content, the consumer’s request does not
reach the publisher because the consumer is satisfied along the routing path.

Appl. Sci. 2022,

12,344 18 of 22

Link Load (Bytes/ms)

Link Load (Bytes/ms)

TG oo :

w
E
g
Q
=]
o
-]
)
-
=
-
008 0.12 0.08 0.12 0.18 0.2
Cache Size Cache Size
[FIFO [LRU [0 LFU I LFRU [IMU [FiFO [LRU [LFU [LFRU] MU
(a) (b)
=06 =0.
w
E
é
b=}
L3
-]
-
4
£
-

0.04 0.08 0.12 0.16 0.2
Cache Size
[FIFO [0 LRU [LFU I LFRU [MU

(c)

0.04 0.08 0.12 0.16 0.2
Cache Size
[FIFO [LRU [LFU [LFRU [IMU

(d)

Link Load (Bytes/ms)

0.08 012 0.16
Cache Size
N FIFO (I LRU (B LFU [LFRU [IMU

(e)

Figure 5. Link load with different cache sizes and «, using different placement policies. (a) Link load
with LCE. (b) Link load with CL4M. (c) Link load with ProbCache. (d) Link load with LCD. (e) Link
load with opt-Cache.

Appl. Sci. 2022,12, 344 19 of 22
Table 12. IMU latency percentage improvement.
o Cache Size Placement FIFO (%) LRU (%) LFU (%) LFRU (%)
0.6 LCE 10.37 8.71 7.48 3.45
0.6 CL4M 7.58 6.79 6.17 5.49
0.6 4% to 20% ProbCache 8.13 7.12 6.43 2.10
0.6 LCD 10.00 5.76 4.90 6.55
0.6 opt-Cache 712 5.37 451 2.26
0.8 LCE 14.01 11.55 10.08 6.08
0.8 CL4M 14.32 9.65 8.71 6.30
0.8 4% to 20% ProbCache 7.39 6.12 5.44 1.95
0.8 LCD 10.12 7.01 6.36 4.07
0.8 opt-Cache 9.26 7.18 597 3.38
1.0 LCE 21.37 19.60 18.87 9.98
1.0 CLAM 18.36 15.96 15.24 13.53
1.0 4% to 20% ProbCache 14.55 12.39 12.24 7.51
1.0 LCD 14.61 11.90 11.08 6.89
1.0 opt-Cache 17.67 14.39 12.74 9.05

4.4. Link Load

Link load indicates the total number of bytes (consumer’s request size and content
size) traversed for retrieving the interesting content at the specific time limit. It measures
bandwidth usage in the network and is defined as follows:

(requeStsize X requEStlink_count) + (Contentsize X Contentlink_count)

Link Load =
Hit Loa Duration

(4)

Duration = Content Retrieval Time — Content Request Time (5)

where, request,;,, denotes the request’s size in bytes, requestj;, i count designates the num-
ber of the links traversed that reach the source, contenty;,, is the content size to retrieve,
contentiiyk count is the number of links where the content reaches the request’s originator.

Figure 5 illustrates that IMU performs better than other existing strategies in terms of
link load. IMU does not replace such content from the cache, which has a frequency over
a certain period of time. Therefore, consumer request is mostly satisfied with the routing
path or close to the consumer. Therefore, most of the content in the cache is of interest
to the user. In addition, content that increases in frequency for some time but does not
become popular later also removes such content from the cache. However, IMU maintains
the freshness of the content as well as the mature content in the cache.

FIFO does not compete with the popularity of content because this technique only
considers the order in which the content is cached and evicts the content from the cache in
that order. Therefore, popular content is evicted from the cache. However, most consumer
requests are satisfied with the publisher. Figure 5 demonstrates that LRU is better than
LFU when the cache size is smaller. LFU performance improves as the cache size increases,
as LFU takes into account the popularity of the content. Therefore, popular content stays in
the cache for a long time, and the consumer’s request is found in the cache space and not
forwarded to the publisher. In addition, content that increases in frequency stays in the
cache space, even if it is not popular. However, this is a misuse of cache space and leads
to a higher link load. LRU ignores the popularity of the content as well as the maturity
of the content. Therefore, popular content requested in the past is likely to be used in the
future, but recently requested content may be replaced with less popularity; thus, it does
not adapt to changing workloads. When the request rate is high in LFRU, the least recently
used content is evicted from the privileged partition and pushed towards the unprivileged
partition, with complete access history. However, this content is no longer popular but
has a high access history; this content spends more time in cache space, which causes high

Appl. Sci. 2022,12, 344

20 of 22

link load. IMU outperformed FIFO, LRU, LFU, and LFRU in terms of link load by 18.04%,
13.61%, 12.49%, and 9.53%, respectively.

When the alpha equals 0.8, with a cache size of 0.04, IMU is 55.48 bytes/ms, which
is 16.41% lower than LFRU (66.37 ms), 19.60% lower than LFU (69.01 bytes/ms), 17.85%
lower than LRU (67.53 bytes/ms), and 20.57% lower than FIFO (69.85 bytes/ms). When the
alpha equals 0.8, with a cache size is 0.12, IMU is 48.99 bytes/ms, which is 15.25% lower
than LFRU (57.81 bytes/ms), 18.57% lower than LFU (60.16 bytes/ms), 19.21% lower than
LRU (60.64 bytes/ms), and 22.19% lower than FIFO (62.96 bytes/ms). When the alpha
equals 0.8, with cache size is 0.2, IMU is 44.93 bytes/ms, which is 10.40% lower than LFRU
(50.15 bytes/ms), 10.68% lower than LFU (50.30 bytes/ms), 11.51% lower than LRU (50.78
bytes/ms), and 15.37% lower than FIFO (53.09 bytes/ms). As the cache size increases, we
observed that the link load decreases, as the proposed scheme removes immature content
from the cache. Therefore, IMU maintains the data freshness with popularity within the
network. However, none of the previous eviction policies have adopted the concept of
immaturity for content selection.

Table 13 describes the IMU’s improvement in percentage (%) of the link load, which
used different content placement strategies along with content eviction policies. We ob-
served that IMU outperformed the other content eviction policies against low to high
popularity and cache space. It performed better in a fully redundant and low redundancy
environments. IMU contains the most popular and mature content in the cache and makes
better use of cache space. Moreover, the consumer is mostly satisfied along the routing
path when requesting content. Therefore, the link load value is low because the request is
not sent to the publisher.

Table 13. IMU link load percentage improvement.

@ Cache Size Placement FIFO (%) LRU (%) LFU (%) LFRU (%)
0.6 LCE 15.58 12.34 11.49 9.30
0.6 CL4M 14.83 10.52 10.34 8.46
0.6 4% to 20% ProbCache 13.45 10.40 10.30 7.61
0.6 LCD 17.08 13.71 12.93 9.68
0.6 opt-Cache 15.07 10.43 10.27 6.10
0.8 LCE 20.32 17.19 17.19 14.40
0.8 CL4M 21.54 18.04 17.45 15.28
0.8 4% to 20% ProbCache 19.18 16.17 14.95 12.04
0.8 LCD 23.44 18.48 16.51 14.64
0.8 opt-Cache 22.03 11.74 9.19 6.97
1.0 LCE 20.89 17.40 15.27 13.09
1.0 CL4M 16.10 11.15 9.99 5.95
1.0 4% to 20% ProbCache 16.23 12.78 11.73 7.43
1.0 LCD 17.56 11.62 9.37 6.40
1.0 opt-Cache 17.30 12.14 10.35 5.55

5. Conclusions and Future Work

In-network caching is one of the essential features in the CCN architecture network,
allowing content items to be cached in the router nodes for some time, to meet subsequent
consumer requests. Due to the limited cache capacity in the node, any cached content
in the cache needs to be evicted to accommodate new content. Content replacement
policy is responsible for choosing the right content against defined criteria. Existing cache
replacement policies use the concept of popularity or time for content eviction. However,
when content loses its popularity after becoming very popular in a certain period, it
remains in the cache space. Moreover, content is evicted from the cache space before
it becomes popular. Therefore, the proposed policy handles cached items that lose their
popularity over a specific time frame and remain in the cache for a long time. We introduced
the new concept of content maturity and immaturity for content eviction in CCN. The

Appl. Sci. 2022,12, 344 21 of 22

proposed content replacement policy (IMU) uses the concept of maturity /immaturity of
the content. This policy finds the content maturity index by using the content arrival time
and its frequency. Also, it determines the maturity level through a maturity classifier.
We have performed extensive simulations to evaluate the proposed content replacement
policy, using the Icarus simulator under different cache sizes and content popularity. The
simulation results indicate that the proposed policy outperformed recent and baseline
content replacement policies (FIFO, LRU, LFU, and LFRU). The results demonstrate that
the proposed policy is better in terms of the cache hit ratio, latency, path stretch, and link
load. In the future, this work can be extended to use the content replacement policy (IMU)
with different constraints in different use cases. Another potential future work is in-depth
investigation of content diversity for the nodes with very high content popularity.

Author Contributions: Conceptualization, S.R., S.A.R. and FA.G.; methodology, S.R.; software, S.R.;
validation, S.R., S.A.R. and F.A.G.; formal analysis, S.R. and FA.G.; investigation, S.R., S.A.R. and
F.A.G.; writing—original draft preparation, S.R.; writing—review and editing, S.R., S.A.R. and FA.G.;
supervision, S.A.R. and FA.G.; funding acquisition, S.A.R. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Universiti Teknologi Malaysia (UTM) under UTM Re-
search University Grant Scheme: (VOT Q.J130000.3613.03M41), Universiti Teknologi Malaysia, Johor
Bahru, Malaysia.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gui, Y,; Chen, Y. A Cache Placement Strategy Based on Compound Popularity in Named Data Networking. IEEE Access 2020, 8,
196002-196012. [CrossRef]

2. Khandaker, E; Oteafy, S.; Hassanein, H.S.; Farahat, H. A functional taxonomy of caching schemes: Towards guided designs in
information-centric networks. Comput. Netw. 2019, 165, 106937. [CrossRef]

3. Noh, H.; Song, H. Progressive Caching System for Video Streaming Services Over Content Centric Network. IEEE Access 2019, 7,
47079-47089. [CrossRef]

4. Zheng, X.; Wang, G.; Zhao, Q. A Cache Placement Strategy with Energy Consumption Optimization in Information-Centric
Networking. Futur. Internet 2019, 11, 64. [CrossRef]

5. loannou, A.; Weber, S. A survey of caching policies and forwarding mechanisms in information-centric networking. IEEE
Commun. Surv. Tutor. 2016, 18, 2847-2886. [CrossRef]

6. Ullah, R.; Rehman, M.A.U.; Naeem, M.A.; Kim, B.-S.; Mastorakis, S. ICN with edge for 5G: Exploiting in-network caching in
ICN-based edge computing for 5G networks. Futur. Gener. Comput. Syst. 2020, 111, 159-174. [CrossRef]

7. Naeem, M.A,; Ali, R.; Alazab, M.; Yhui, M.; Zikria, Y. Bin Enabling the content dissemination through caching in the state-of-the-art
sustainable information and communication technologies. Sustain. Cities Soc. 2020, 61, 102291. [CrossRef]

8. Naeem, M.A.; Rehman, M.A.U; Ullah, R.; Kim, B.-S. A Comparative Performance Analysis of Popularity-Based Caching Strategies
in Named Data Networking. IEEE Access 2020, 8, 50057-50077. [CrossRef]

9. Ji, Y; Zhang, X,; Liu, W,; Zhang, G. Replacement based content popularity and cache gain for 6G content-centric network. Phys.
Commun. 2021, 44, 101238. [CrossRef]

10. Qazi, F; Khalid, O.; Rais, R.N.B,; Khan, L. A. Optimal Content Caching in Content-Centric Networks. Wirel. Commun. Mob. Comput.
2019, 2019, 6373960. [CrossRef]

11. Khattak, H.; Ul Amin, N.; Din, L.U; Insafullah; Igbal, J. LeafPopDown: Leaf Popular Down Caching Strategy for Information-
Centric Networking. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 148-151. [CrossRef]

12. Kumar, S.; Tiwari, R. Dynamic popularity window and distance-based efficient caching for fast content delivery applications in
CCN. Eng. Sci. Technol. Int.]. 2021, 24, 829-837. [CrossRef]

13. Liu, H.; Han, R. A Hierarchical Cache Size Allocation Scheme Based on Content Dissemination in Information-Centric Networks.
Futur. Internet 2021, 13, 131. [CrossRef]

14. Amadeo, M.; Ruggeri, G.; Campolo, C.; Molinaro, A. Diversity-improved caching of popular transient contents in vehicular

named data networking. Comput. Netw. 2021, 184, 107625. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.3034329
http://doi.org/10.1016/j.comnet.2019.106937
http://doi.org/10.1109/ACCESS.2019.2909563
http://doi.org/10.3390/fi11030064
http://doi.org/10.1109/COMST.2016.2565541
http://doi.org/10.1016/j.future.2020.04.033
http://doi.org/10.1016/j.scs.2020.102291
http://doi.org/10.1109/ACCESS.2020.2980385
http://doi.org/10.1016/j.phycom.2020.101238
http://doi.org/10.1155/2019/6373960
http://doi.org/10.14569/IJACSA.2018.090221
http://doi.org/10.1016/j.jestch.2020.12.018
http://doi.org/10.3390/fi13050131
http://doi.org/10.1016/j.comnet.2020.107625

Appl. Sci. 2022,12, 344 22 of 22

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.
34.

Gui, Y,; Chen, Y. A Cache Placement Strategy Based on Entropy Weighting Method and TOPSIS in Named Data Networking.
IEEE Access 2021, 9, 56240-56252. [CrossRef]

Kalghoum, A.; Gammar, S.M.; Saidane, L.A. Towards a novel cache replacement strategy for Named Data Networking based on
Software Defined Networking. Comput. Electr. Eng. 2018, 66, 98-113. [CrossRef]

Seyyed Hashemi, S.N.; Bohlooli, A. Analytical characterization of cache replacement policy impact on content delivery time in
information-centric networks. Int. J. Commun. Syst. 2019, 32, e4154. [CrossRef]

Ai, L.; Deng, Y.; Zhou, Y.; Feng, H. RUE: A caching method for identifying and managing hot data by leveraging resource
utilization efficiency. Softw. Pract. Exp. 2021. [CrossRef]

Saino, L.; Psaras, I.; Pavlou, G. Icarus: A caching simulator for information centric networking (icn). In Proceedings of the
SimuTools, Lisbon, Portugal, 17-19 March 2014; ICST: Ghent, Belgium, 2014; Volume 7, pp. 66-75.

Goian, H.S.; Al-Jarrah, O.Y.; Muhaidat, S.; Al-Hammadi, Y.; Yoo, P; Dianati, M. Popularity-based Video Caching Techniques for
Cache-enabled Networks: A survey. IEEE Access 2019, 7, 27699-27719. [CrossRef]

Pfender, J.; Valera, A.; Seah, WK.G. Performance comparison of caching strategies for information-centric IoT. In Proceedings of
the Proceedings of the 5th ACM Conference on Information-Centric Networking, Boston, MA, USA, 21-23 September 2018; ACM:
New York, NY, USA, 2018; pp. 43-53.

Paschos, G.S.; Iosifidis, G.; Tao, M.; Towsley, D.; Caire, G. The role of caching in future communication systems and networks.
IEEE]. Sel. Areas Commun. 2018, 36, 1111-1125. [CrossRef]

Chen, L.; Song, L.; Chakareski, J.; Xu, J. Collaborative Content Placement among Wireless Edge Caching Stations with Time-to-Live
Cache. IEEE Trans. Multimed. 2019, 22, 432—-444. [CrossRef]

Karakostas, G.; Serpanos, D.N. Exploitation of different types of locality for web caches. In Proceedings of the ISCC 2002 Seventh
International Symposium on Computers and Communications, Taormina-Giardini Naxos, Italy, 1-4 July 2002; IEEE: Piscataway,
NJ, USA, 2002; pp. 207-212.

Bilal, M.; Kang, S.-G. A cache management scheme for efficient content eviction and replication in cache networks. IEEE Access
2017, 5, 1692-1701. [CrossRef]

Zhang, Y.; Tan, X.; Li, W. PPC: Popularity prediction caching in ICN. IEEE Commun. Lett. 2017, 22, 5-8. [CrossRef]

Meddeb, M.; Dhraief, A.; Belghith, A.; Monteil, T.; Drira, K.; Mathkour, H. Least fresh first cache replacement policy for
NDN-based IoT networks. Pervasive Mob. Comput. 2019, 52, 60-70. [CrossRef]

Khan, J.; Westphal, C.; Garcia-Luna-Aceves, J.; Ghamri-Doudane, Y. Nice: Network-oriented information-centric centrality for
efficiency in cache management. In Proceedings of the 5th ACM Conference on Information-Centric Networking, Boston, MA,
USA, 21-23 September 2018; ACM: New York, NY, USA, 2018; pp. 31-42.

Lal, K.N.; Kumar, A. A popularity based content eviction scheme via betweenness-centrality caching approach for content-centric
networking (CCN). Wirel. Netw. 2019, 25, 585-596. [CrossRef]

Kumar, S.; Tiwari, R. An efficient content placement scheme based on normalized node degree in content centric networking.
Cluster Comput. 2021, 24, 1277-1291. [CrossRef]

Chai, WK.; He, D.; Psaras, I.; Pavlou, G. Cache “less for more” in information-centric networks. In Proceedings of the International
Conference on Research in Networking, Prague, Czech Republic, 21-25 May 2012; Springer: Berlin/Heidelberg, Germany, 2012;
pp- 27-40.

Naeem, M.A_; Nor, S.A.; Hassan, S.; Kim, B.-S. Compound Popular Content Caching Strategy in Named Data Networking.
Electronics 2019, 8, 771. [CrossRef]

Seetharam, A. On caching and routing in information-centric networks. IEEE Commun. Mag. 2017, 56, 204-209. [CrossRef]

Ren, J.; Qi, W,; Westphal, C.; Wang, J.; Lu, K,; Liu, S.; Wang, S. MAGIC: A distributed MAx-gain in-network caching strategy in
information-centric networks. In Proceedings of the 2014 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), Toronto, ON, Canada, 27 April-2 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 470-475.

http://doi.org/10.1109/ACCESS.2021.3071427
http://doi.org/10.1016/j.compeleceng.2017.12.025
http://doi.org/10.1002/dac.4154
http://doi.org/10.1002/spe.2963
http://doi.org/10.1109/ACCESS.2019.2898734
http://doi.org/10.1109/JSAC.2018.2844939
http://doi.org/10.1109/TMM.2019.2929004
http://doi.org/10.1109/ACCESS.2017.2669344
http://doi.org/10.1109/LCOMM.2017.2731312
http://doi.org/10.1016/j.pmcj.2018.12.002
http://doi.org/10.1007/s11276-017-1577-z
http://doi.org/10.1007/s10586-020-03185-0
http://doi.org/10.3390/electronics8070771
http://doi.org/10.1109/MCOM.2017.1700184

	Introduction
	Related Work
	Proposed Content Replacement Policy
	Performance Evaluation
	Cache Hit Ratio
	Path Stretch (Hop Count)
	Latency
	Link Load

	Conclusions and Future Work
	References

