

Abstract—Nowadays, Gene Ontology has been used widely by

many researchers for biological data mining and information
retrieval, integration of biological databases, finding genes, and
incorporating knowledge in the Gene Ontology for gene clustering.
However, the increase in size of the Gene Ontology has caused
problems in maintaining and processing them. One way to obtain
their accessibility is by clustering them into fragmented groups.
Clustering the Gene Ontology is a difficult combinatorial problem
and can be modeled as a graph partitioning problem. Additionally,
deciding the number k of clusters to use is not easily perceived and is
a hard algorithmic problem. Therefore, an approach for solving the
automatic clustering of the Gene Ontology is proposed by
incorporating cohesion-and-coupling metric into a hybrid algorithm
consisting of a genetic algorithm and a split-and-merge algorithm.
Experimental results and an example of modularized Gene Ontology
in RDF/XML format are given to illustrate the effectiveness of the
algorithm.

Keywords—Automatic clustering, Cohesion-and-coupling
metric, Gene Ontology; Genetic algorithm, Split-and-merge
algorithm

I. INTRODUCTION
HE Gene Ontology (GO) [1] is an effort done by The
Gene Ontology Consortium (www.geneontology.org) to

define consistent terminology that describe the attributes of
biological process, cellular component, and molecular
function of a gene product. The intention of GO is to share
common understanding of the meaning of any term used, and
therefore could support the database query tool to find

Manuscript received December 18, 2005. This work is supported by the
Malaysian Ministry of Science, Technology, and Innovation (MOSTI) in part
under Intensification of Research in Priority Areas (IRPA) grant (project no.
04-02-06-0057-EA001) and in part under Short Term Research (STR) grant
(project no. 75162).

Razib M. Othman is with the Faculty of Computer Science and Information
System, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor,
MALAYSIA (corresponding author; phone: 607-5532358; fax: 607-5565044;
e-mail: razib@fsksm.utm.my).

Safaai Deris is with the School of Graduate Studies, Universiti Teknologi
Malaysia, 81310 UTM Skudai, Johor, MALAYSIA (e-mail:
safaai@fsksm.utm.my).

Rosli M. Illias is with the Faculty of Chemical and Natural Resources
Enginneering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor,
MALAYSIA (e-mail: r-rosli@utm.my).

Zalmiyah Zakaria is with the Faculty of Computer Science and Information
System, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor,
MALAYSIA (e-mail: zalmiyah@fsksm.utm.my).

Saberi M. Mohamad is with the Faculty of Computer Science and
Information System, Universiti Teknologi Malaysia, 81310 UTM Skudai,
Johor, MALAYSIA (e-mail: saberi@fsksm.utm.my).

functionally equivalent terms in cross-database search. In
essence, this will improve retrieval consistency across
resources and the recall and precision of the query result
within resources.

In conjunction with rapid progress in bioinformatics field,
an increasing number of terms are being generated in the GO,
see Fig. 1. This is due to the attempt to standardize as many
terms as possible in different repositories for plant, animal,
and microbial genomes such as The Arabidopsis Information
Resource (TAIR)–database for the brassica family plant
Arabidopsis thaliana, Rat Genome Database (RGD)–database
for the rat Rattus norvegicus, and GeneDB protozoa–
databases for Plasmodium falciparum, Leishmania major,
Trypanosoma brucei, and several other protozoan parasites.
At this time, the GO contains about 20,069 terms and 29,102
relationships between the terms (as of November 5, 2005).
These terms are associated with 1.65 million gene products,
0.23 million amino acid sequences, and 0.25 million species.
The high dimension of the GO instances and its monolithic
character has caused its maintenance and processing more
difficult and challenging.

Therefore, in this study, a hybrid approach consisting of the
genetic algorithm and split-and-merge algorithm is applied to
automatically cluster the GO terms into smaller and highly
intra-related clusters. The hybrid genetic algorithm used
software engineering measurements, the cohesion-and-
coupling metric, to quantify the quality of clustering (QOC),
see (6)–(9). The idea of using these metrics are to produce
good clusters by maximizing the degree of interaction
between terms in a cluster (high cohesion) and also

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

Ja
n-

01

Ap
r-

01

Ju
l-0

1

O
ct

-0
1

Ja
n-

02

Ap
r-

02

Ju
l-0

2

O
ct

-0
2

Ja
n-

03

Ap
r-

03

Ju
l-0

3

O
ct

-0
3

Ja
n-

04

Ap
r-

04

Ju
l-0

4

O
ct

-0
4

Ja
n-

05

Ap
r-

05

Ju
l-0

5

O
ct

-0
5

Month

N
o.

 o
f T

er
m

s

Cellular Component

Molecular Function

Biological Process

Total

Fig. 1 Growth of GO terms

(source: http://www.geneontology.org/MonthlyReports/)

Automatic Clustering of Gene Ontology by
Genetic Algorithm

Razib M. Othman, Safaai Deris, Rosli M. Illias, Zalmiyah Zakaria, and Saberi M. Mohamad

T

International Journal of Information Technology Volume 3 Number 1

37

minimizing the degree of interaction between terms in
different clusters (low coupling). The genetic algorithm is
chosen due to its efficient navigation through large search
space and good performance as stochastic search procedure. It
is used to generate potential clusters by applying standard
crossover and mutation operator, together with enforcing the
cohesion-and-coupling metric into fitness function. Then, the
split-and-merge algorithm is implemented to efficiently
estimate the number k of clusters. Learning the k is achieved
by the split-and-merge algorithm based on the cohesion-and-
coupling metric by improving any infeasible clusters.
Furthermore, parallelization of genetic algorithm based on
coarse-grained (island) model [2] is considered to reduce time
complexity.

Recently, there has been an increasing awareness of the
benefits of the GO RDF/XML for biological data mining and
information retrieval, integration of biological databases,
finding genes, and incorporating knowledge in the GO for
gene clustering. But the size and massive nature of the GO
RDF/XML cause problems that affect maintaining,
publishing, validating, and processing the GO instances. This
is due to the fact that the ontology as a whole is too large to
handle. Therefore, the purpose of this study is to partition the
GO RDF/XML into a set of more accessible and
understandable modules. By modularizing this single
monolithic file into smaller files will enable amino acid
sequences and IEA (Inferred from Electronic Annotation)
evidence associations to be included into the GO RDF/XML.
With these additions, it would complete and cohere the GO
RDF/XML file. Thus, the GO RDF/XML will be more
processable and exchangeable by software agent or other
machine-readable meta-data.

This paper is arranged as follows. The second section
begins with the problem description of clustering the GO
terms. The third section discusses related work in the
clustering area. The fourth section explains the flow of the
proposed genetic algorithm. The fifth section details the split-
and-merge algorithm for discovering an appropriate k. The
sixth section describes the parallelization process of the hybrid
genetic algorithm. The seventh section presents the
experimental results of clustering the GO terms and the
modularized semantic web of the GO RDF/XML format.
Some discussions and the conclusion of the paper are included
in the final section.

II. STATEMENT OF THE PROBLEM
Automatic clustering is a process of dividing a set of

objects into unknown groups, where the best number k of
groups is determined by the clustering algorithm. That is,
objects within each group should be highly similar to each
other than to objects in any other group. Finding the k
automatically is a hard algorithmic problem. The automatic
clustering problem can be defined as follows:

Let X = {X1, X2, …, Xn} be a set of n objects. These objects
are clustered into non-overlapping groups C = {C1, C2, …,

Ck}, where C is called a cluster, k is the unknown number of
clusters, Ci ∩ Cj = Ø for i ≠ j, C1 ∪ C2 ∪ … ∪ Ck = X, Ci ⊆ X,
and Ci ≠ Ø.

In the GO context, the GO terms are structured as Directed
Acyclic Graph (DAG). Let GO graph G = {V, E}, where V is
a set of nodes that represent the GO terms and E is a set of
directed edges that represent relationships between the GO
terms. Clustering the GO graph can be considered as a Graph
Partitioning Problem (GPP). The aim of GPP is to cut a vertex
set V into k disjoint and non-empty subsets such that the
number of edges connecting nodes in different subsets is
minimized and the number of edges connecting the nodes in
the same subsets is maximized. GPP is a fundamental
combinatorial optimization problem that has numerous
practical applications in many areas including design of VLSI
circuits [3], mesh partitioning in parallel processing [4], image
segmentation in computer vision [5], and gene expression
analysis in bioinformatics [6].

To partition the GO graph, the following questions need to
be answered:
1) What is the most suitable clustering algorithm to find the

optimal solution of the GPP, and that offers reasonable
amount of execution time to this NP-complete problem?

2) What is the precise criterion for discovering the number k
of clusters and for measuring the goodness of the
clusters?

In this paper, the first question is answered by aggregating
split-and-merge algorithm, which consists of two steps, into
the parallel genetic algorithm. At first, the entire node is
decomposed into a number of clusters using the split
algorithm. These clusters are then automatically combined
using the merge algorithm in several iterations until the
suitable number k of clusters is obtained. On the other hand,
the cohesion-and-coupling metric is used to answer the second
question.

III. RELATED WORK
The clustering problem is omnipresent in many fields of

science and engineering. It has been solved by various
techniques such as k-means [7], genetic algorithm [8], self-
organizing map [9], fuzzy c-means [10], and particle swarm
optimization [11]. Survey of clustering techniques can be
found in [12]–[14]. Recently, the increasing amount of data
has made the number k of clusters difficult to guess, and the
value supplied by the user based on prior knowledge,
presumptions, and practical experiences is often inaccurate.
Therefore, reasonable ways of identifying the number k of
clusters automatically is required to avoid trial-and-error
work. Lately, several techniques have been proposed to
determine the number k of clusters. Most of the techniques are
wrapped around k-means or genetic algorithm. Split and/or
merge rules are the most famous wrapper methods to increase
or decrease the number k of clusters while the algorithm
continues. Among these techniques are:
1) X-means [15]; in this the splitting decision is performed

International Journal of Information Technology Volume 3 Number 1

38

by computing the Bayesian Information Criterion (BIC)
until the upper bound of k is attained.

2) G-means [16]; it starts with small number of k-means
centers and raises the number of centers using Gaussian
distribution.

3) CLUSTERING [17]; it is an automatic clustering based
on heuristic strategy that uses the nearest neighbor to
group those data that are situated close to one and
another. Then, genetic algorithm is used to group the
smaller clusters into larger ones.

4) Genetic Clustering Algorithm (GCA) [18]; it is basically
composed of two steps. First, the data set is divided into a
number of clusters using Cluster Decomposition
Algorithm (DCA) and at the second step, Hierarchical
Cluster Merging Algorithm (HCMA) is used to combine
the clusters automatically.

5) S+G [19]; it is also a two stage method, which in the
beginning uses a self-organizing feature map to determine
the number k of clusters and then employs a genetic
algorithm based clustering to find the final solution.

In the case of the GPP, an extensive study of Kerninghan-
Lin algorithm, simulated annealing, tabu search,
watermarking, and normalized cut have been carried out by
[20]–[23], [5] respectively. Review of the GPP techniques can
be found in [24], [25]. Several studies using genetic algorithm
for the GPP have also been done by:
1) Bui and Moon [26] introduced a schema of preprocessing

phase before the initialization of population to ameliorate
the quality of the chromosome. The different classes of
graphs: random graph, random geometric graph, random
regular graph, and caterpillar graph consisting of 134 to
5,252 nodes, were tested with the algorithm.

2) Kaveh and Bondarabady [27] implemented genetic
algorithm for finite element decomposition of 1,640 to
6,720 elements. Sequences of coarsening and
uncoarsening process are performed to transform the
large scale graph G0 into a smaller size graph Gn and vice
versa such that a suitable size of graph can be partitioned
by genetic algorithm.

3) Kohmoto et al. [28] has incorporated simulated annealing
into genetic algorithm to generate feasible solutions. The
algorithm is then applied to undirected graph with 124 to
250 nodes.

For the ontology clustering or semantic web
modularization, very little effort has been done in this area.
Stuckenschmidt and Klein [29] have proposed a method for
automatic partitioning of large ontologies based on the
structure of the class hierarchy. The method consists of three
steps:
1) In the first step, a dependency graph is created from

ontology source file using PROLOG-based tool that reads
OWL and RDF schema files. It then displays the
dependency graph using networks analysis tool Pajek.

2) In the second step, the strength of the dependencies
between the concepts in the dependency graph is
determined by computing the propositional strength

network.
3) In the third step, an island algorithm is used to determine

the modules existing in the dependency graph.

IV. PROPOSED HYBRID GENETIC ALGORITHM
The hybrid genetic algorithm can be initialized with kmin

minimum number of clusters that needs to be provided by the
user and a DAG graph with i number of nodes and j number
of directed edges, where i, j, kmin ∈ {1, 2, …, n}. Ab initio, the
algorithm starts with initializing few parameters, such as
number of generations tmax, size of population ps, crossover
probability pc, and mutation probability pm which can be
modified by the user. The subsequent steps in the algorithm
can be described as follows:
1) Set iteration t = 0. Encode the DAG G = {V, E} using a

cluster-number (see discussion on the chromosome
representation) schema and generate the initial
chromosomes 0

1x … 0
psx of population P(0) randomly

where the value of genes are between [1…k]. Then,
evaluate the fitness for each chromosome x0 ∈ P(0) using
the fitness function f(x0) based on the cohesion-and-
coupling metric (see discussion on the fitness function).

2) If t > tmax, then terminate the process, decode the best
chromosome xmax ∈ P, and display the clustering C.
Otherwise, go to step 3.

3) Increment t = t + 1. Create a new population by selecting
good chromosomes from old population (iteration t – 1).

4) Perform crossover between two chromosomes t
ax , t

bx ∈
P(t) with probability pc and then mutate each gene in a
single chromosome xt ∈ P(t) with probability pm.

5) Perform split function S(xt) to increase the k and then
decrease the k using merge function M(xt) for each
chromosome xt ∈ P(t) such that cohesion score α is
maximized and coupling score β is minimized (see
discussion on the split-and-merge algorithm).

6) Evaluate the fitness for each chromosome xt ∈ P(t) using
the fitness function f(xt) and go to step 2.

A. Chromosome Representation
A good chromosome representation is crucial to the

convergence velocity of the hybrid genetic algorithm and the
quality of the solution obtained. Therefore, the cluster-number
scheme is used to ensure that the gene values can be simply
assigned and interpreted even for large graphs. In addition, it
makes it more possible to relate each chromosome to a
solution for the GPP. The cluster-number scheme represents a
clustering of n objects as an array of n integers where the
value at ith subscript denotes the cluster number which holds
the ith object.

To partition the DAG graph, the graph is represented by a
single chromosome using 1D array of integers as follows:
1) Genes are integer values that represent the cluster number

that each particular node belongs to.
2) Loci are mapped to the node number.

International Journal of Information Technology Volume 3 Number 1

39

3) Chromosome length is the number of nodes in the graph.
Edges between nodes are input to the algorithm as a n × 2

matrix, with n rows corresponding to number of edges and 2
columns associated with a pair of nodes. Fig. 3 shows a
chromosome representation of the graph G1 (see Fig. 2) with
12 nodes and 3 clusters.

B. Reproduction
During the reproduction phase, two classical and most

often-used genetic operators are employed, i.e., the crossover
and the mutation operators. These operators are chosen due to
their effectiveness with the 1D array of integers representing a
chromosome and the cohesion-and-coupling metric based
fitness function. The crossover operator creates new offspring
by combining features of their parents. In the meantime, the
mutation operator arbitrarily alters one or more genes
produced from the crossover process. The reason for using
these operators in the hybrid genetic algorithm is to generate
new population with higher total fitness in each generation.

Although such operators are effective, the resulting
solutions do not guarantee feasibility. In order to increase the
feasibility and optimality of the solution, the offsprings go
through alteration process by the split function S(x) and then
the merge function M(x) after every reproduction by the
genetic operators. The transformation is based on a cluster-by-
cluster basis by making modification in a single chromosome
(S(x), M(x) : x → x′), which is then evaluated by the fitness
function f(x′). Even though the purpose of these functions are
to determine the best number k of clusters, indirectly the
solutions will be improved and be repaired by shifting to a
better neighbor solution until no improvement can be made.
The split function S(x) and the merge function M(x) are
discussed elaborately in the split-and-merge algorithm section.

C. Fitness Function
The optimization of the GPP can be stated as optimizing a

function f that partitions the graph G into k subgraphs G1, G2,
…, Gk, where k is the best value which generates highly
cohesive clusters. On the dot, the main objective of
partitioning the DAG graph is to find feasible and near-
optimal solution that maximizes the preference for cohesion
between nodes in a cluster and minimizes the preference for
coupling between different clusters.

The cohesion αi of the cluster i of the DAG graph can be
calculated by:

()1
2

i
i

i iN N
µα =

−
 (1)

where Ni is the number of nodes in the cluster i and µi is the
number of its internal edges.

The coupling βi,j between clusters i and j is given by:

0 if
,

ifiji j

i j

i j

i j
N N

εβ
=⎧

⎪= ⎨ ≠⎪
⎩

 (2)

where Ni and Nj are number of nodes in the clusters i and j
respectively and εij is the number of edges from cluster i to
cluster j.

The initial fitness function f 0(x) of the DAG graph
partitioning is measured by constituting a trade-off between
cohesion score α and coupling score β. This trade-off is
computed by subtracting the average cohesion from the
average coupling. The initial fitness function f 0(x) is given as
follows:

,
, 11

0 1() (1)
2

1

kk

i ji
i ji

i

kf x k kk

k

βα

α

==

⎧
⎪
⎪ − ∀ >= −⎨
⎪
⎪

=⎩

∑∑
 (3)

The values of the initial fitness function f 0(x) vary between

[-1…1]. A good quality cluster has a high value of f 0(x).
However, to ensure the algorithm obtains a balanced
clustering, standard deviation of dependency index stdev(γ) is
considered, see (5). Therefore, a feasible and near-optimal
solution is searched by maximizing the result of subtracting
the standard deviation of the dependency index stdev(γ) from
the initial fitness function f 0(x):

0() () () f x f x stdev γ= − (4)

Fig. 2 Example graph G1

Fig. 3 Chromosome representation of the graph G1

C0 = {n0, n1, n3, n6, n7}

C1 = {n2, n4, n5}

C2 = {n8, n9, n10, n11}

International Journal of Information Technology Volume 3 Number 1

40

V. THE SPLIT-AND-MERGE ALGORITHM
By the embedment of the split-and-merge algorithm into the

genetic algorithm, the k value which is held by each gene in
the chromosomes will be refined and fixed. Through this
method, chromosomes with best number k of clusters and high
fitness are reproduced in each generation. Hence, it eliminates
the process of producing solutions with unsuitable number k
of clusters and accelerate the pace for convergence. The
detailed steps of these algorithms are shown in Fig. 4, Fig. 5,
and Fig. 6. After undergoing the repairing process, any illegal
chromosome will be adjusted and then be evaluated by the
fitness function f(x). The illegal chromosome represents a
partition in which some clusters are empty. For example,
given k = 3, the chromosome x = (1 1 3 1 3 3) is illegal
because cluster number two is empty.

Definition 1. Legal and Illegal Chromosome. Given a
chromosome x = g1, g2, …, gn, let e(x) be the number of
nonempty clusters in x divided by k, e(x) is called legality

ratio. The chromosome x is legal if e(x) = 1 and illegal
otherwise.

Unfortunately, in some cases the repairing process can
cause clusters to further split or merge due to strong internal
dependencies. This phenomenon creates unbalanced
subgraphs and reflects the aim of creating modular ontology.
Therefore, dependency index γ is introduced to stabilize the
split-and-merge algorithm and to forbid it from producing
micro or giant clusters during splitting or merging process.
The dependency index γi of the cluster i is given by:

1

1

i
i k

j
j

N k

N
γ

=

−
=

−∑
 (5)

The target value for dependency index γi of a cluster i is 0.

The maximum value is 1 which represents the worst case
where most of the nodes form a large cluster. Meanwhile,
negative value indicates pathological clusters with undersized

Start

Stop

Create Initial
Population

Create New
Population

Perform
Crossover

Perform
Mutation

Perform
Split

Perform
Merge

Evaluate
Solution

Best
Solution

Termination
Condition
Satisfied?

Yes

NoP0

t=t+1

Ptt=0 Pt
Pt Pt Pt

Fig. 4 Flowchart of the proposed hybrid genetic algorithm

Algorithm Split (x);
Input: x (a chromosome)
Output: x′ (a modified chromosome)
begin
 for p := 1 to x.NoOfClusters() do
 xsplit := x;
 for q := 1 to xsplit.Length() do
 if xsplit.Gene(q) > p then xsplit.Gene(q) := xsplit.Gene(q) + 1; end-if
 end-for
 for q := 1 to s do
 xq := xsplit;
 for r := 1 to xq.Length() do
 if xq.Gene(r) = p then xq.Gene(r) := Random(p, p + 1); end-if
 end-for
 if xq.QOC(Cp, Cp+1) > x.QOC(Cp) and xq.DependencyIndex(Cp) >
 Imin and xq.DependencyIndex(Cp+1) > Imin
 then x := xq; p := p + 1; end-if
 end-for
 end-for
end

Fig. 5 Function for splitting clusters

Algorithm Merge (x, kmin);
Input: x (a chromosome), kmin (a minimum number of clusters)
Output: x′ (a modified chromosome)
begin
 n := x.NoOfClusters();
 if n ≠ 1 then
 for p := 1 to n do
 for q := p + 1 to n do
 if x.NoOfClusters() > kmin and x.Coupling(p, q) ≠ 0 then
 xmerge := x;
 for r := 1 to xmerge.Length() do
 if xmerge.Gene(r) = q then xmerge.Gene(r) := p; end-if
 end-for
 if xmerge.QOC(Cp) > x.QOC(Cp, Cq) and
 xmerge.DependencyIndex(Cp) < Imax

 then x := xmerge; end-if
 end-if
 end-for
 end-for
 end-if
end

Fig. 6 Function for merging clusters

International Journal of Information Technology Volume 3 Number 1

41

number of nodes.

A. Dividing of Clusters with Split Algorithm
The main objective of the split function S(x) is to

decompose each cluster in chromosome x into reasonable
fragmented clusters. Detailed split function S(x) is shown in
Fig. 5. This function works by creating clone chromosomes

1
cx … c

nx from the chromosome x ∈ P(t). For each cluster
C1…Cp in the clone chromosome xc, divide the cluster Cp into
two clusters Cp and Cp+1. The chromosome x will be replaced
by the best clone chromosome xc that satisfies the following
criteria:
1) The QOC of the clusters Cp and Cp+1 in the clone

chromosome xc is higher than the QOC of the cluster Cp
in the chromosome x.

2) The dependency index γ of the clusters Cp and Cp+1 in the
clone chromosome xc must be greater than the
dependency index threshold for small cluster Imin.

The QOC of the clusters Cp and Cp+1 in the clone
chromosome xc

 is computed as follows:

1 1,

,
, 1

1. (,)
2 2 3

p p k

i i j
i p i p jc

p px QOC C C
k

α β
+ +

= = =
+ = −

−

∑ ∑
 (6)

The QOC of the cluster Cp in the chromosome x is

calculated with the following equation:

,

,
, 1. ()

1

p k

i j
i p j

p px QOC C
k

β
α = == −

−

∑
 (7)

B. Combining of Clusters with Merge Algorithm
The merge function M(x) is carried out to merge the

isolated clusters by repairing genes in the chromosome x when
necessary. The goal is to guarantee that all the chromosomes
repaired by the split function S(x) are genuinely fit to be
feasible and near optimal solution. As shown in Fig. 6, the
merge function M(x) is invoked to combine clusters Cp and Cq
in the chromosome x ∈ P(t). If the trial consolidation fulfills
the following conditions, then permanently merge clusters Cp
and Cq:
1) The QOC of the merged clusters Cp and Cq is higher than

the QOC of the cluster Cp as alone.
2) The dependency index γ of the merged clusters Cp and Cq

must be less than the dependency index threshold for
large cluster Imax.

The QOC of the cluster Cp in the chromosome x is
computed by (8) as shown below:

,

,
, 1. ()

2

p k

i j
i p j

p px QOC C
k

β
α = == −

−

∑
 (8)

The QOC of the merged clusters Cp and Cq in the
chromosome x is calculated as follows:

, ,

, ,
, 1 , 1. (,)

2 2 3

p k q k

i j i j
p q i p j i q j

p qx QOC C C
k

β β
α α = = = =

+
+

= −
−

∑ ∑
 (9)

VI. THE PARALLELIZATION PROCESS
When the hybrid genetic algorithm is employed to cluster

the GO, it becomes computationally intensive. This is due to
the fact that the GO graph have a large number of nodes and
many directed edges. In addition, it demands a multitude of
chromosomes and many generations of population in order to
obtain good solutions. This scenario becomes deteriorated
when population for each generation is required to go through
the reproduction process on which the crossover, mutation,
split, and merge functions, as shown in Fig. 4, are applied.

To resolve this problem, an efficient and affordable parallel
hybrid genetic algorithm is developed by exploiting the
advantages of island model. It is implemented on a low-cost
PC cluster using message passing interface libraries. Island
model is used to dissever the single large population into a
number of subpopulations in order to allow each
subpopulation to evolve their solutions autonomously. This
parallelization model is chosen since it permits each
subpopulation to be assigned to each processor of the low-cost
PC cluster. Therefore, the computation load can be shared
among processors, and it indirectly reduces the computation
time. Moreover, the inter-processor communication between
processors is lessened because the interaction happens when
some chromosomes are migrated from one subpopulation to
another. The migration process is done by moving a number
of emigrants from the source subpopulation to replace the
worst chromosomes in the target subpopulation. The emigrant
is randomly selected among the best chromosomes in the
source subpopulation. The parallelization of the hybrid genetic
algorithm can be explained as follows:
1) Set global iteration t = 0. Encode the DAG G = {V, E}

and generate the initial population P(0) of random
chromosomes 0

1x … 0
psx .

2) Divide the population P(0) into nsp number of
subpopulations SP0(0)…SPnsp-1(0).

3) Distribute the subpopulations SP0(0)…SPnsp-1(0) to nproc
number of processors Proc0…Procnproc-1, one processor is
assigned to one subpopulation. For each processor Procn,
∀n ∈ {0, 1, …, nproc-1), set local iteration t = 0 and
perform local computation (step 4 to 11).

4) Evaluate the fitness for each chromosome x0 ∈ SPn(0)
using the fitness function f (x0).

5) If local t > tmax, then terminate the process on the
processor Procn, decode the best chromosome xmax ∈ SPn,
and display the clustering C of the subpopulation SPn.
Otherwise, go to step 6.

6) Increment local t = t + 1. Create a new subpopulation

International Journal of Information Technology Volume 3 Number 1

42

SPn(t) by selecting good chromosomes from old
subpopulation SPn(t – 1).

7) Perform crossover between two chromosomes t
ax , t

bx ∈
SPn(t) with probability pc and then mutate each gene in a
single chromosome xt ∈ SPn(t) with probability pm.

8) Perform split function S(xt) to increase the k and then
decrease the k using merge function M(xt) for each
chromosome xt ∈ SPn(t).

9) Compute the fitness for each chromosome xt ∈ SPn(t) by
applying the fitness function f(xt).

10) If t = tM, where tM is an isolation time to perform the
migration operation at every M generation, then select a
target subpopulation SPtarget and replace i number of
worst chromosomes in the target subpopulation a1…ai
with j number of best chromosomes from this
subpopulation b1…bj, where a is xmin ∈ SPtarget, b is max

tx

∈ SPn(t), and i = j.
11) Proceed to step 5.

VII. COMPUTATIONAL RESULTS
The parallel hybrid genetic algorithm discussed in the

previous section has been tested using GO data in MySQL
format as released on November 2005 (available online at
www.godatabase.org/dev/database/archive/). The algorithm is
implemented by enhancing the GAlib C++ libraries [30]. The
basic information of the GO graph is shown in Table 1. There
are 20,069 nodes representing the GO terms and 29,102
directed edges corresponding to the relationships between the
terms.

The parameters used to run the parallel hybrid genetic
algorithm are shown in Table 2. The computer used is a low-
cost PC cluster, HP d530 with 25 processors. Each processor
is assigned to one subpopulation consisting of 4
chromosomes. The low-cost PC cluster is implemented using
MPICH libraries [31] developed by Argonne National
Laboratory under Fedora Core 2 running on Pentium 4
processor 2.8 GHz, 512 MB RAM, and 100 Mbps NIC.

The evolution of the 25 subpopulations is shown in Fig. 7.
The stability of the parallel hybrid genetic algorithm can be
seen in Table 3 and Fig. 8, where results of 5 separate runs are
compared by taking the best individual from the 25
subpopulations in each run. The convergence appeared as
early as after 230 generations. The optimal value of the fitness
function is in the interval 130.5 × 10-6 to 135.4 × 10-6. The
time taken varied from 152.8s × 103 to 231.9s × 103. The
clustering utilization is depicted in Fig. 9, where the range of
the dependency index ℜ(γl – γs) is between 0.005 and 0.008.

To test the consistency of the number of clusters found by
the parallel hybrid genetic algorithm, different minimum
numbers of clusters kmin are given to the algorithm as shown in
Table 4. The results show that if the minimum number of
clusters kmin provided by the user is greater than the best
number k of clusters, then the number of clusters found is
bound to it.

In order to assess the performance of the parallel hybrid
genetic algorithm, its behavior is compared with the parallel
standard genetic algorithm. The results are shown in Table 5,
where k = 5 is examined. The integration of the split-and-
merge algorithm into the genetic algorithm produced higher
optimal value and resolved the hard algorithmic problem in
estimating the number k of clusters. Due to additional
processing requirements to filter the chromosomes in the
population in order to find the best number k of clusters, the
results in Table 5 show an increase of CPU time for the
parallel hybrid genetic algorithm. The clustering utilization
between these algorithms can be found in Fig. 10. The results

TABLE II
PARAMETERS OF PARALLEL HYBRID GENETIC ALGORITHM

Items Parameter
Number of population 100
Number of generation 400
Crossover probability 0.8
Mutation probability 0.01
Size of genome 20,069
Replacement percentage 0.5
Type of crossover Partial match crossover
Type of mutation Swap mutation
Type of genetic algorithm Steady-state genetic algorithm
Scaling Sigma truncation scaling
Fitness function Maximizing preferences
Minimum number of clusters 5
Number of clone chromosomes 5
Dependency index threshold for small
cluster 0.1

Dependency index threshold for large
cluster 0.3

Number of subpopulations 25
Isolation time 10 generations
Number of emigrants 1
Type of replacement Bad by best
Type of migration Stepping stone

TABLE I
BASIC INFORMATION OF GO GRAPH

Items Data
Number of nodes 20,069
Number of directed edges 29,102

-150.0

-100.0

-50.0

0.0

50.0

100.0

150.0

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

Generations

Ev
al

ua
tio

n
(1

0-6
)

Fig. 7 Evolution of 25 subpopulations

International Journal of Information Technology Volume 3 Number 1

43

show that the standard deviation of the dependency index
stdv(γ) plays an important part to create a balanced clustering.

Fig. 11 shows an example of GO:0006631 that includes
GO:0019752 from the cluster C0 (line 8) and GO:0044255
from the cluster C1 (line 9). The figure also depicts the
encompassment of amino acid sequence (line 13-27) of
IPR006180 from the InterPro database and IEA evidence
association (line 30-39) with gene BC4V2_0_00031. The
example shows that by modularizing the monolithic GO

RDF/XML file, the smaller GO RDF/XML files can be easily
maintained and made more thoroughgoing.

VIII. CONCLUSION
The aim of this work is to automatically partition the

humongous GO RDF/XML file into smaller files in order to

-150.0

-100.0

-50.0

0.0

50.0

100.0

150.0

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

Generations

Ev
al

ua
tio

n
(1

0-6
)

run 1
run 2
run 3
run 4
run 5

Fig. 8 Evolution of 5 runs

3500

3550

3600

3650

3700

3750

1 2 3 4 5
Clusters

N
o.

 o
f t

er
m

s

run 1

run 2

run 3

run 4

run 5

Fig. 9 Clustering utilization of 5 runs

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5
Clusters

N
o.

 o
f t

er
m

s

Parallel Hybrid
Genetic Algorithm

Parallel Standard
Genetic Algorithm
(max{fº(x)})

Parallel Standard
Genetic Algorithm
(max{f(x)})

Fig. 10 Clustering utilization of parallel hybrid genetic algorithm and
parallel standard genetic algorithm

TABLE III
RESULTS OF FIVE RUNS

Items Run 1 Run 2 Run 3 Run 4 Run 5
CPU time
(seconds 103) 199.9 231.9 215.1 188.7 152.8

Number of generation
to converge 280 320 310 270 230

Number of clusters
found 5 5 5 5 5

Maximum value of
fitness function (10-6) 135.4 133.9 134.5 134.3 130.5

Dependency index for
the largest cluster γl

0.202 0.201 0.202 0.203 0.201

Dependency index for
the smallest cluster γs

0.196 0.196 0.197 0.195 0.196

Range ℜ(γl – γs) 0.006 0.005 0.005 0.008 0.005

TABLE IV
NUMBER OF CLUSTERS FOUND BY PARALLEL HYBRID GENETIC ALGORITHM

Minimum
number of

clusters

CPU time
(seconds 103)

Number of
generation
to converge

Number of
clusters
found

Maximum
value of
fitness

function (10-6)
1 210.4 310 5 130.9
2 203.6 310 5 131.6
3 202.5 300 5 131.8
4 197.9 280 5 133.1
5 199.9 280 5 135.4
6 200.7 270 6 138.4
7 205.8 280 7 161.0
8 298.0 320 8 185.2
9 331.5 320 9 190.8

10 353.2 330 10 217.4

TABLE V
COMPARISON OF PARALLEL HYBRID GENETIC ALGORITHM WITH PARALLEL

STANDARD GENETIC ALGORITHM

Items

Parallel
Hybrid
Genetic

Algorithm
(kmin = 5)

Parallel
Standard
Genetic

Algorithm
(k = 5 and

max{f 0(x)})

Parallel
Standard
Genetic

Algorithm
(k = 5 and
max{f(x)})

CPU time (seconds 103) 199.9 106.2 125.2
Number of generation to
converge 280 340 340

Number of clusters
found 5 - -

Maximum value of
fitness function (10-6) 135.4 4048.5 98.1

Dependency index for
the largest cluster γl

0.202 0.793 0.202

Dependency index for
the smallest cluster γs

0.196 0.014 0.196

Range ℜ(γl – γs) 0.006 0.779 0.006

International Journal of Information Technology Volume 3 Number 1

44

reduce difficulties in maintaining, publishing, validating, and
processing them. This study has shown that clustering the GO
can be modeled as the GPP. The model is then solved by a
parallel hybrid of the genetic algorithm and the split-and-
merge algorithm. The genetic algorithm is used to find a
combination of node-cluster and the split-and-merge
algorithm is applied to build a feasible clustering and also to
automatically search for the most suitable number k of
clusters. During the clustering process, the algorithm has
employed cohesion-and-coupling metric as criterion to
discover the best number k of clusters and to measure the
quality of the clusters. The dependency index γ is then
introduced to prevent the algorithm from producing
problematic clusters with either undersized or oversized
number of nodes. Since clustering the GO involves large
graph and demands high computing resources, the island
model is incorporated into the algorithm. The message passing
interface libraries are used as the parallel programming
interface and the algorithm is executed on a low-cost PC
cluster.

Unlike any other graph partitioning algorithms, the
proposed algorithm with the split-and-merge strategy can
automatically find the appropriate number k of clusters.
Moreover, compared to other automatic clustering algorithms,
the proposed algorithm is capable of generating balanced
subgraphs and does not rely on distance calculations to

measure the strength between cluster centroid to each object.
Furthermore, users are allowed to set the minimum number of
clusters they wish to maintain and supply the dependency
index threshold in order to control the size of the clusters. In
fact, the algorithm does not require modifications to the
components of the genetic algorithm and the split-and-merge
algorithm procedures. Thus, its design is generic and domain
independent. Consequently, the algorithm can be fitted to
different sorts of problems with minimum changes as long as
the problems can be modeled as the GPP.

The experimental results show that the algorithm is
effective, stable, and thus, it requires reasonable amount of
execution time. In fact, the parallelization process can be
implemented with minimum hardware specifications. The
proposed algorithm is also capable of finding near-optimal
solution among the feasible solutions. Possible directions for
further research would be on including the functional
interactions between GO terms and on developing a
component-based GO. At present, we may be able to get more
meaningful and reusable clusters. In future, the clustering
results will be applied for predicting protein functions
according to the GO information. Moreover, the research will
be continued on developing techniques for retrieval and
classification of the GO.

REFERENCES
[1] The Gene Ontology Consortium, “Gene ontology: tool for the

unification of biology,” Nat. Genet., vol. 25, no. 1, pp. 25-29, May 2000.
[2] M. Kaneko, M. Miki, and T. Hiroyasu, “A parallel genetic algorithm

with distributed environment scheme,” in Proc. 4th. Int. Conf. Parallel
& Distributed Processing Techniques & Applications, Las Vegas, NV,
2000, pp. 619-625.

[3] S. Dutt and W. Deng, “Probability-based approaches to VLSI circuit
partitioning,” IEEE Trans. Computer-Aided Design of Integrated
Circuits & Systems, vol. 19, no. 5, pp. 534-549, May 2000.

[4] C. Walshaw and M. Cross, “Parallel optimisation algorithms for
multilevel mesh partitioning,” Parallel Computing, vol. 26, no. 12, pp.
1635-1660, Nov. 2000.

[5] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Trans. Pattern Analysis & Machine Intelligence, vol. 22, no. 8, pp. 888-
905, Aug. 2000.

[6] G. Getz, H. Gal, I. Kela, D.A. Notterman, and E. Domany, “Coupled
two-way clustering analysis of breast cancer and colon cancer gene
expression data,” Bioinformatics, vol. 19, no. 9, pp. 1079-1089, Jun.
2003.

[7] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman,
and A.Y. Wu, “An efficient k-means clustering algorithm: analysis and
implementation,” IEEE Trans. Pattern Analysis & Machine Intelligence,
vol. 24, no. 7, pp. 881-892, Jul. 2002.

[8] C.H. Cheng, W.K. Lee, and K.F. Wong, “A genetic algorithm-based
clustering approach for database partitioning,” IEEE Trans. Systems,
Man, & Cybernetics, vol. 32, no. 3, pp. 215-230, Aug. 2002.

[9] S. Günter and H. Bunke, “Self-organizing map for clustering in the
graph domain,” Pattern Recognition Letters, vol. 23, no. 4, pp. 405-417,
Feb. 2002.

[10] R.J. Hathaway and J.C. Bezdek, “Fuzzy c-means clustering of
incomplete data,” IEEE Trans. Systems, Man, & Cybernetics, vol. 31, no.
5, pp. 735-744, Oct. 2001.

[11] C.Y. Chen and F. Ye, “Particle swarm optimization algorithm and its
application to clustering analysis,” in Proc. 1st. Int. Conf. Networking,
Sensing, & Control, Taipei, Taiwan, 2004, pp. 789-794.

[12] A.K. Jain, M.N. Murty, and P.J. Flynn, “Data clustering: a review,” ACM
Computing Surveys, vol. 31, no. 3, pp. 264-323, Sep. 1999.

[13] P. Berkhin, Survey of Clustering Data Mining Techniques, Accrue
Software Inc., San Jose, CA, 2002.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

<go:term rdf:about="http://www.geneontology.org/go#GO:0006631"
n_associations="0">
 <go:accession>GO:0006631</go:accession>
 <go:name>fatty acid metabolism</go:name>
 <go:definition>The chemical reactions involving fatty acids, aliphatic
 monocarboxylic acids liberated from naturally occurring fats and oils by
 hydrolysis.</go:definition>
 <go:is_a rdf:resource="&cluster0;http://www.geneontology.org/go#GO:0019752"
/>
 <go:is_a rdf:resource="&cluster1;http://www.geneontology.org/go#GO:0044255"
/>
 <go:dbxref rdf:parseType="Resource">
 <go:database_symbol>InterPro</go:database_symbol>
 <go:reference>IPR006180</go:reference>

<go:sequence>AEYLRLPHSLAMIRLCNPPVNAISPTVITEVRNGLQKASL
DHTVRAIVICGANDNFCAGADIHGFKSPTGLTLGSLVDEIQRYQKPVVA
AIQGVALGGGLELALGCHYRIANAKARVGFPEVMLGILPGARGTQLLP
RVVGVPVALDLITSGRHISTDEALKLGILDVVVKSDPVEEAIKFAQTVIG
KPIEPRRILNKPVPSLPNMDSVFAEAIAKVRKQYPGRLAPETCVRSVQA
SVKHPYEVAIKEEAKLFMYLRGSGQARALQYAFFAEKSANKWSTPSG
ASWKTASAQPVSSVGVLGLGTMGRGIAISFARVGIPVVAVESDPKQLD
TAKKIITSTLEKEASKSGQASAKPNLRFSSSTKELSSVDLVIEAVFEDMN
LKKKVFAELSALCKPGAFLCTNTSALDVDDIASSTDRPQLVIGTHFFSP
AHIMRLLEVIPSRYSSPTTIATVMSLSKRIGKIGVVVGNCYGFVGNRML
APYYNQGYFLIEEGSKPEGVDGVLEEFGFRMGPFRVSDLAGLDVGWK
VRKGQGLTGPSLPPGTPTRKRGNTRYSPIADMLCEAGRFGQKTGKGW
YQYDKPLGRIHKPDPWLSEFLSQYRETHHIKQRSISKEEILERCLYSLINE
AFRILEEGMAASPEHIDVIYLHGYGWPRHVGGPMYYAASVGLPTVLEK
LQKYYRQNPDIPQLEPSDYLRRLVAQGSPPLKEWQSLAGPHSSKL</go:s
equence>

 </go:dbxref>
 <!-- more dbxref -->
 <go:association rdf:parseType="Resource">
 <go:gene_symbol>BC4V2_0_00031</go:gene_symbol>
 <go:type>gene</go:type>
 <go:datasource>DDB</go:datasource>
 <go:evidence>IEA</go:evidence>

<go:full_name>P45954 Acyl-CoA dehydrogenase, short/branched chain
specific, mitochondrial precursor (EC 1.3.99.-) (SBCAD) (2-methyl branched
chain acyl-CoA dehydrogenase) (2-MEBCAD) (2-methylbutyryl-coenzyme A
dehydrogenase) (2-methylbutyryl-CoA dehydrogenase).</go:full_name>

 </go:association>
 <!-- more association -->
</go:term>

International Journal of Information Technology Volume 3 Number 1

45

[14] S. Kotsiantis and P. Pintelas, “Recent advances in clustering: a brief
survey,” WSEAS Trans. Information Science & Applications, vol. 1, no.
1, pp. 73-81, Jul. 2004.

[15] D. Pelleg and A. Moore, “X-means: extending k-means with efficient
estimation of the number of clusters,” in Proc. 17th. Int. Conf. Machine
Learning, Stanford, CA, 2000, pp. 727-734.

[16] G. Hamerly and C. Elkan. (2003, Dec.). Learning the k in k-means. in
Proc. 17th. Conf. Neural Information Processing Systems. Vancouver,
Canada. Available: http://books.nips.cc/nips16.html.

[17] L.Y. Tseng and S.B. Yang, “A genetic approach to the automatic
clustering problem,” Pattern Recognition, vol. 34, no. 2, pp. 415-424,
Feb. 2001.

[18] G. Garai and B.B. Chaudhuri, “A novel genetic algorithm for automatic
clustering,” Pattern Recognition Letters, vol. 25, no. 2, pp. 173-187, Jan.
2004.

[19] R.J. Kuo, K. Chang, and S.Y. Chien, “Integration of self-organizing
feature maps and genetic-algorithm-based clustering method for market
segmentation,” J. Organizational Computing & Electronic Commerce,
vol. 14, no. 1, pp. 43-60, Jan. 2004.

[20] C. Walshaw and M. Cross, “Mesh partitioning: a multilevel balancing
and refinement algorithm,” SIAM J. Scientific Computing, vol. 22, no. 1,
pp. 63-80, Jan. 2000.

[21] S.J. D’Amico, S.J. Wang, R. Batta, and C.M. Rump, “A simulated
annealing approach to police district design,” Computers & Operations
Research, vol. 29, no. 6, pp. 667-684, May 2002.

[22] Y.G. Saab, “An effective multilevel algorithm for bisecting graphs and
hypergraphs,” IEEE Trans. Computers, vol. 53, no. 6, pp. 641-652, Jun.
2004.

[23] G. Wolfe, J.L. Wong, and M. Potkonjak, “Watermarking graph
partitioning solutions,” IEEE Trans. Computer-Aided Design of
Integrated Circuits & Systems, vol. 21, no. 10, pp. 1196-1204, Oct.
2002.

[24] U. Elsner, “Graph partitioning: a survey,” Technische Universitat
Chemnitz, Chemnitz, Germany, Tech. Rep. 393, Dec. 1997.

[25] P.O. Fjällström. (1998, Sep.). Algorithms for graph partitioning: a
survey. Linköping Electronic Articles Computer & Information Science.
3(10). Available: http://www. ep.liu.se/ea/cis/1998/010.

[26] T.N. Bui and B.R. Moon, “Genetic algorithm and graph partitioning,”
IEEE Trans. Computers, vol. 45, no. 7, pp. 841-855, Jul. 1996.

[27] A. Kaveh and H.A.R. Bondarabady, “A hybrid graph-genetic method for
domain decomposition,” Finite Elements in Analysis & Design, vol. 39,
no. 13, pp. 1237-1247, Oct. 2003.

[28] K. Kohmoto, K. Katayama, and H. Narihisa, “Performance of a genetic
algorithm for the graph partitioning problem,” Mathematical &
Computer Modelling, vol. 38, no. 11-13, pp. 1325-1332, Dec. 2003.

[29] H. Stuckenschmidt and M. Klein, “Structure-based partitioning of large
concept hierarchies,” in Proc. 3rd. Int. Conf. Semantic Web, Hiroshima,
Japan, 2004, pp. 289-303.

[30] M. Wall. (1996, Aug.). GAlib: a C++ library of genetic algorithm
components. Available: http://lancet.mit.edu/ga/dist/galibdoc.pdf.

[31] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the MPI message-passing interface
standard,” Parallel Computing, vol. 22, no. 6, pp. 789-828, Sep. 1996.

Razib M. Othman is a doctoral candidate at the Faculty of Computer Science
and Information System, the Universiti Teknologi Malaysia. He received the
BSc and MSc degrees in Computer Science both from the Universiti
Teknologi Malaysia, in 1999 and 2003 respectively. Currently, he is working
for his PhD in Computational Biology. He also has interests in artificial
intelligence, software agent, parallel computing, and web semantics. In March
2005 he was awarded the Young Researcher award by the Malaysian
Association of Research Scientists (MARS). One of his inventions, a software
product named 2D Engineering Drawing Extractor, has recently won 5
awards including the Best Invention of the Pacific Rim at the 21st Invention
and New Product Exposition (INPEX) held in Pittsburgh, USA.

Safaai Deris is a Professor of Artificial Intelligence and Software Engineering
at the Faculty of Computer Science and Information System, Deputy Dean at
the School of Graduate Studies, and Director of Laboratory of Artificial
Intelligence and Bioinformatics at the Universiti Teknologi Malaysia. He

received the MEng degree in Industrial Engineering, and the DEng degree in
Computer and System Sciences, both from the Osaka Prefecture University,
Japan, in 1989 and 1997 respectively. His recent academic interests include
the application and development of intelligent techniques in planning,
scheduling, and bioinformatics.

Rosli M. Illias is an Associate Professor at the Faculty of Chemical and
Natural Resources Engineering at the Universiti Teknologi Malaysia. Rosli
received the PhD degree in Molecular Biology from the Edinburgh University,
UK in 1997, and the BSc degree in Microbiology from the Universiti
Kebangsaan Malaysia in 1992. His research interests are in the areas of
microbial technology, molecular enzymology, and molecular genetics.

Zalmiyah Zakaria is a lecturer at the Faculty of Computer Science and
Information System, the Universiti Teknologi Malaysia. She received the BSc
and MSc degrees in Computer Science both from the Universiti Teknologi
Malaysia, in 1999 and 2001 respectively. Her research interests focus on
artificial intelligence, web-based software engineering, and bioinformatics.

Saberi M. Mohamad is a lecturer at the Faculty of Computer Science and
Information System, the Universiti Teknologi Malaysia. He received the BSc
and MSc degrees in Computer Science both from the Universiti Teknologi
Malaysia, in 2002 and 2005 respectively. His expertise includes gene
expression analysis, parallel computing, and computational methods such as
genetic algorithms and support vector machines.

International Journal of Information Technology Volume 3 Number 1

46

