Universiti Teknologi Malaysia Institutional Repository

Tribological performance of palm olein with additive using linear reciprocating tribotester

Aiman, Y. and Syahrullail, S. and Afify, S. and M. Faizal, H. and Yahya, W. J. (2022) Tribological performance of palm olein with additive using linear reciprocating tribotester. In: Proceedings of the 3rd Malaysian International Tribology Conference. Lecture Notes in Mechanical Engineering, NA (NA). Springer Science and Business Media Deutschland GmbH, Singapore, pp. 113-119. ISBN 978-981169948-1

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1007/978-981-16-9949-8_22

Abstract

As engine oil supplies deplete and prices rise, study on alternative vegetable oil bases is becoming one of the most important studies in applying green technology. However, due to the lack performance of the vegetable oil as lubricant, previous researcher indicates that additives is needed in order to provide excellent lubricity efficiency. This research is aim to use a linear reciprocating tribometer to study the effect of the coefficient of friction (COF) and wear behaviour of Palm Oil with the addition of Molybdenum Disulfide (MoS2). The sample of 2 cm diameter plate material used in this experiment is steel SKD-11, and the material for the ball bearing is tool steel with a diameter of 10 mm. For each load, the tribological properties of PO + 0.05wt% MoS2 will be compared to RBD Palm Olein (PO) and benchmark lubricant Engine Oil SAE10W-30 (EO). According to the findings of this study, the COF for PO + 0.05wt% MoS2 increases from 0.055 to 0.069 at loads ranging from 50 N to 150 N, but decreases marginally to 0.063 at loads above 150 N due to wear debris that serves as a defensive layer on surfaces. At load 200 N, PO + 0.05wt% MoS2 has a 4.5% COF and a 5.5% smaller wear scar diameter than PO.

Item Type:Book Section
Uncontrolled Keywords:biodegradable material, friction, palm oil, tribology, wear
Subjects:T Technology > TJ Mechanical engineering and machinery
Divisions:Mechanical Engineering
ID Code:100891
Deposited By: Yanti Mohd Shah
Deposited On:23 May 2023 10:16
Last Modified:23 May 2023 10:16

Repository Staff Only: item control page