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Abstract – This paper presents a dual-band slot antenna
using substrate integrated waveguide (SIW) technology
at 26 and 28 GHz. High loss is one of the main chal-
lenges faced by 5G base station network due to the se-
vere path loss at high frequency. Hence, high gain an-
tennas are required for 5G base station applications to
overcome path loss issue. Hence, this work designs a
high gain SIW antenna based on slot technology to excite
dual-bands with high gain capability. The antenna is de-
signed with two slots shaped to resonate at two different
frequencies: 26 and 28 GHz. The antenna is analyzed us-
ing CST software and fabricated on Roger RT5880 sub-
strate with permittivity of 2.2 and lost tangent of 0.0009
with thickness of 0.508 mm. The design operates at 26
and 28 GHz with measured reflection coefficients less
than -10 dB. Measured high gains of 8 and 8.02 dB are
obtained at 26 and 28 GHz, respectively. Overall, the an-
tenna showed good performance that would benefit the
fifth-generation applications.

Index Terms – Millimeter-wave antenna, SIW technol-
ogy, (5G) applications.

I. INTRODUCTION
With the development of wireless communication

technology, the dual-band and multiband antennas have
the tendency for future communications due to the ad-
vantages of compactness, high integration, and low cost.
Recently, several promising millimeter-wave bands have
been released for 5G wireless communication systems.
Therefore, broadband dual-band antennas are in demand
for future millimeter-wave wireless applications. For

the design of dual-band antennas, there are two basic
technical challenges which limit the use of this technol-
ogy. This includes simultaneous operation with a com-
pact configuration and broadband operation in each of
the bands.

Several types of dual-band antenna have been inves-
tigated in literature. Normally, two types of dual-band
solutions, namely hybrid antennas and multimode anten-
nas are used. The hybrid dual-band antenna is the com-
bination of antennas resonating at different frequencies,
respectively, but simultaneously fed by only one port.
Furthermore, these antennas operate at different types
of mode or appear to be arranged in a separated aper-
ture. Different types of antennas have been combined
and different types of resonant mode of antennas have
been employed for the dual-band operation, such as the
slot monopole [1], dielectric resonator antenna (DRA)
slot [2], and slot patch [3]. In addition to that, the same
types of antennas with different shapes or sizes have also
been proposed for dual-band operation by using differ-
ent modes of transmission line and separated placement,
such as the substrate integrated waveguide (SIW) fed
slots [4]. An antenna of a modified cavity with two layers
was proposed to realize resonance and directional radia-
tion patterns over a frequency band at millimeter wave in
[5–7]; however, these papers come with complex design
and bulky size.

This paper introduces SIW antenna with slot. This
antenna was implemented using SIW technology with
roger RT 5880 as substrate with thickness of 0.508 mm.
The design is on a fully ground plane, the reflection coef-
ficient of it is less than −10 dB as the result of reflection
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coefficient were obtained from dual-band. The operat-
ing frequency dual-band resonates at 26 and 28 GHz.
The paper is organized as follows. Section II gives a
brief overview of the methodology for the antenna de-
signed consideration. The simulated and measured re-
sults are summarized in Section III. Finally, Section IV
draws conclusions.

II. ANTENNA DESIGN
Figure 1 shows the general structure of SIW which

consists of a rectangular waveguide, two rows of peri-
odic holes, and a substrate in between metal planes [8].
The proposed SIW antennas are designed using Rogers
RT5880 substrate with dielectric constant of 2.2 and loss
tangent of 0.0009, and thickness of 0.508 mm. The vias
diameter, D, and spacing, S, are calculated using equa-
tions in [9]. Figure 2 shows the dimensions of the pro-
posed antennas at millimeter wave with dual-band per-
formance. This design comes with two different shapes
of slot according to different position at the top of metal.
Since SIW design generally works in TE1, 0 mode, m =
1, n = 0. Therefore, the equation for cutoff frequency is
reduced to

fc =
c

2a
, (1)

where a is the total broad side dimension of the rectan-
gular waveguide. Next, ad is the width of dielectric field
waveguide (DFW)

ad =
a√
εr
. (2)

The design equations for SIW, which are found by Wsiw,
are the separation between via rows (center to center)

Wsiw =ad+
D2

0.95S
. (3)

Then, the equations for the separation distance “S” and
diameter “D” control the radiation loss and return loss
are as follows:

λg=
c

f
√

εr
, (4)

and 28 GHz. The paper is organized as follows.Section 
II gives a brief overview of the methodology for the 
antenna designed consideration. The simulated and 
measured results are summarized in Section III. Finally, 
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Fig. 1.General structure of a substrate integrated 
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Fig. 2. Simulation structure of the SIW antenna.(a) 
Main structure with slots A and B.(b) Design without 
slot.(c) Design with slot A.(d) Design with slot B. 
 
Figure2(a) refers to main shape structure which consists 
of two columns as vias at both edges of the structureto 
prevent signal from passing through the edges of the 
patch, especially whenmillimeter-wave frequency loss 
becomes higher than lower frequency. The final 
dimensions of the structure designed at 26 GHz are 
shown in Table 1. 
 
Table1: Dimensions of main structure 
Variable Name Size (mm) 
Ws Width of substrate  2.08 λ 
Ls Length of substrate  2.8253 λ 
Wp Width of patch 0.675 λ 
Lp Length of patch 1.54 λ 
Wsiw Width of SIW 0.57 λ 
D Diameter  0.069 λ 
S Space between vias 0.095 λ 
Wf Width of feed line 0.268 λ 
Lf Length of feed line 0.136 λ 
Thickness of the substrate  0.044 λ 

Fig. 1. General structure of a substrate integrated waveg-
uide [10].
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Fig. 2. Simulation structure of the SIW antenna. (a)
Main structure with slots A and B. (b) Design without
slot. (c) Design with slot A. (d) Design with slot B.

D≤
λg

5
, (5)

S≤ 2D, (6)
Figure 2 (a) refers to main shape structure which

consists of two columns as vias at both edges of the struc-
ture to prevent signal from passing through the edges
of the patch, especially when millimeter-wave frequency
loss becomes higher than lower frequency. The final di-
mensions of the structure designed at 26 GHz are shown
in Table 1.

III. DISCUSSION BASED ON PARAMETRIC
STUDY

The distance between vias(s) enables the dual-band
antenna to control losses. Whenever the gap(s) is
smaller, the antenna will achieve less loss because at the
top of vias edges, electric will reflect around vias where
some of them is radiated at the top of patch and the rest
will have pushed downwards to create unwanted feed-
back, which is represented in slot A and slot B, respec-
tively, as can be seen in Figure 2. Slot A creates radiation
at 26 GHz because it depends on the distance between
slots and feed line, slot A has multi-different slots ar-
ranged equally on the middle of antenna to keep angle of
the beam at (0◦) and ensures that it focuses on the target
substrate.
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size and position. Slot B has greater effect on radiation 
because of its positioncloser to the feed line. This 
shows that it is located closer to the main surface 
current (red zone). In addition, slot B proved high 
bandwidth.  

The main parameter of this design study is the 
diameter of vias. When vias is 0.6mm as can be seen in 
Figure3 design has slot A, slot B and without slots the 
reflection coefficient becomes narrow band and itdoes 
not resonate at 26 and 28GHz. As can be seenin Figure 
4, when the diameterof vias is 1mm and it has two slots 
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The antenna has only one port working as a feeder, and
both the simulated and measured results indicate that a
good impedance match is achieved when the dual-band
26 to 28 GHz is under the criteria of −10 dB, for both
selected prototypes.

IV. SIMULATION AND FABRICATION
RESULTS

Figure 7 shows the comparison between the simu-
lated and measured reflection coefficients of the antenna
structure in different forms. Through the different design
of antenna structure, the authors anticipate getting S11
of less than −10 dB over high frequency and suitable
bandwidth. Both results demonstrate that the reflection
coefficient stayed below −10 dB at 26 GHz.

Next, Figure 8 shows the measured efficiency and
gain performance of the front-end module. The mea-
sured gains of the front-end module have frequency de-
pendency from −180◦ to 180◦, when the line is a curve
fitting result. The fitting curve has the center frequency
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RESULTS 

          Figure7 shows the comparison between the 
simulated and measured reflection coefficients of the 
antenna structure in different forms. Through the 
different design of antenna structure, the authors 
anticipate gettingS11 of less than −10 dB over high 
frequency and suitable bandwidth. Both results 
demonstrate that the reflection coefficientstayed below 
−10 dB at 26 GHz. 

 

 
 

Fig. 7.Simulated and measured S11 of the main 
structure which has slot A and B with diameter of vias 
0.8mm. 
 

Next, Figure8 shows the measured efficiency and 
gain performance of the front-end module. The 
measured gains of the front-end module have frequency 
dependency from −180° to 180°, when the line is a 
curve fitting result. The fitting curve has the center 

frequency of about 26 GHz, and the SIW antenna 
achieved gainsof 8 dB at 26 GHz and 8.03dB at 28GHz. 

 

 
 
Fig.8. Gain and efficiency performance. 
 

Normally, the radiation pattern of the antenna will 
take shape from the edges of the patch, but for SIW,the 
majority comes from the slots of the main structure as 
shown in the simulated 3D radiation pattern in Figure9. 
The lengths of all slots were around 4.5mm. The results 
proved that thewidth of the slots is suitable to achieve 
dual-band at millimeter wave and suitable for 5G 
applications. 

 

 
 

Fig. 9. Simulated 3D radiation pattern of the main 
structure. 
 

The simulated E-plane and H-plane patterns 
computed at 26 and 28 GHz are presented in Figures10 
and 11. Figure10shows the comparison between the 
simulated and measured radiation patterninE- and H-
planes which comes from (slot A) radiating at 26 GHz. 
Meanwhile,Figure11 indicates the comparison between 
the simulated and measured radiation pattern coming 
from (slot B) which radiates at 28GHz. From 2D 
radiation (polar), the shape of the main beam can be 

Fig. 9. Simulated 3D radiation pattern of the main struc-
ture.

visualized. This is one of the requirements for 5G 
application. 

 
(a) 

 

 
(b) 

 
Fig. 10.Simulated and measured 2D radiation pattern 
(polar) for (a) E-plane and (b) H-plane at 26 GHz. 
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Fig. 11.Simulated and measured 2D radiation patterns 
(polar) for (a) E-plane and (b) H-plane at 28 GHz. 

Due to the difference in the slot lengths, two 
different resonant modes with perturbed fields are 
excited within the SIW. Slot A, having longer slot 
length, radiated at 26 GHz and slot B at 28 GHz. These 
phenomena can be better understood with the help of 
surface current distribution on the top surface of the 
antenna at two resonant frequencies. Figure12shows 
that the surface current density becomes dominant on 
the lower half of the antenna and is mostly concentrated 
around the boundary of slot B. However, the surface 
current is almost negligible in the vicinity of slot A. It 
can be explained in a similar fashion, where surface 
current is mostly concentrated along the boundary of 
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Fig. 12.Simulated current distributions on the SIW 
surface of the surface current when (a) design with 
slotsA and B, (b) design without slots, (c) design with 
slot A, and (d) design with slot B. 
 

A comparison between the proposed design 
andprevious works on dual frequency band millimeter-
wave antennas iscarried out in Table 2.       
 

Fig. 10. Simulated and measured 2D radiation pattern
(polar) for (a) E-plane and (b) H-plane at 26 GHz.
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of about 26 GHz, and the SIW antenna achieved gains of
8 dB at 26 GHz and 8.03 dB at 28 GHz.

Normally, the radiation pattern of the antenna will
take shape from the edges of the patch, but for SIW, the
majority comes from the slots of the main structure as
shown in the simulated 3D radiation pattern in Figure 9.
The lengths of all slots were around 4.5 mm. The results
proved that the width of the slots is suitable to achieve
dual-band at millimeter wave and suitable for 5G appli-
cations.

The simulated E-plane and H-plane patterns com-
puted at 26 and 28 GHz are presented in Figures 10
and 11. Figure 10 shows the comparison between the
simulated and measured radiation pattern in E- and H-
planes which comes from (slot A) radiating at 26 GHz.
Meanwhile, Figure 11 indicates the comparison between
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A comparison between the proposed design 
andprevious works on dual frequency band millimeter-
wave antennas iscarried out in Table 2.       
 

Fig. 12. Simulated current distributions on the SIW sur-
face of the surface current when (a) design with slots A
and B, (b) design without slots, (c) design with slot A,
and (d) design with slot B.

the simulated and measured radiation pattern coming
from (slot B) which radiates at 28 GHz. From 2D
radiation (polar), the shape of the main beam can be
visualized. This is one of the requirements for 5G
application.

Due to the difference in the slot lengths, two dif-
ferent resonant modes with perturbed fields are excited
within the SIW. Slot A, having longer slot length, radi-
ated at 26 GHz and slot B at 28 GHz. These phenomena
can be better understood with the help of surface current
distribution on the top surface of the antenna at two res-
onant frequencies. Figure 12 shows that the surface cur-
rent density becomes dominant on the lower half of the
antenna and is mostly concentrated around the boundary
of slot B. However, the surface current is almost negli-
gible in the vicinity of slot A. It can be explained in a
similar fashion, where surface current is mostly concen-
trated along the boundary of slot B.
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Table 2: Comparison between this work and some previ-
ous dual-frequency/-band millimeter-wave
Ref. Center

freq. (GHz)
BW
(GHz)

Gain (dB) No.
element

11 28/38 20.4/2.64 13.2/14.6 2 × 2
12 37.5/47 1.1/1.4 5.0/5.7 1
13 2.45/5.19 0.2/0.5 5.02/4.09 1
14 21/26 0.7/0.8 16/17.4 3 × 1
This
work

26/28 2.8/0. 6 8/8.03 1

A comparison between the proposed design and pre-
vious works on dual frequency band millimeter-wave an-
tennas is carried out in Table 2.

V. CONCLUSION
SIW antenna with slots is presented in this work.

The antenna is meant to prove the concept of SIW anten-
nas performance to be followed for millimeter-wave ap-
plications. Roger RT 5880 substrate is suitable for higher
frequency because of the loss. Suitable width of slots and
patch were identified to achieve better results of the 5G
application with high gain and directivity with dual-band
frequency. Gain that was achieved at 26-28 GHz are 8-
8.03 dB, the directivity of dual-band is 8.18-8.22 dB, and
also design provides sufficient impedance bandwidths at
2.8-0.6 GHz.
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