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Abstract In this paper, a fractional-order Hantavirus infection model incorporating harvesting is

formulated and investigated. The populations are divided into susceptible mice, infected mice and

alien species. Mathematical analysis and numerical simulations are performed to clarify the charac-

teristics of the proposed fractional-order Hantavirus infection model. The existence, uniqueness,

non-negativity and boundedness of the solutions are examined. The local stability of the equilibrium

points of the fractional-order model is studied. The mathematical proof of the existence of transcrit-

ical bifurcation is given by using Sotomayor’s theorem. The theoretical findings are illustrated by

numerical simulations. The impact of fractional-order, competitive effect of alien species on mice,

competitive effect of mice on alien species, carrying capacity and harvesting efforts on the stability

of the Hantavirus infection model are studied. The basin of attraction regions is also illustrated.
� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Hantavirus infection is a viral disease that is spread from mice
to people. The virus can cause severe infections of the lungs [1].

The dynamics of Hantavirus epidemics involve multiple
phases, including environmental drivers that influence infec-
tious diseases and transmission in the animal reservoir. By fur-
ther studying the transmission dynamics of Hantavirus, critical
insight can be obtained into the ecology of Hantavirus [2].

Hantavirus infection can occur in a system consisting of the
host species and a non-host competitor species which competes
for resources. The competition may lead to a reduction or

complete elimination of the prevalence of Hantavirus infection
[3]. A Hantavirus infection model can be used to make predic-
tions about the behavior of interacting populations. Some

studies about the simulations in the mathematical modeling
of the spread of the Hantavirus include [4–9]. Incorporating
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harvesting to Hantavirus model is expected to provide a more
realistic model since for a number of mice some form of har-
vesting in the ecosystem is known to occur.

A Hantavirus infection model, which employs a three-
species of non-linear ordinary differential equations intro-
duced in [10] is considered in this paper. The dynamics of

the population density of susceptible mice xð Þ, infected mice
yð Þ and alien species zð Þare as follows

dx
dt
¼ b̂ xþ yð Þ � ĉx� b̂x

k̂
xþ yþ âzð Þ � âxy� bHx; x 0ð Þ ¼ x0;

dy
dt
¼ �ĉy� b̂y

k̂
xþ yþ âzð Þ þ âxy� bHy; y 0ð Þ ¼ y0;

dz
dt
¼ b̂� ĉ

� �
z� b̂z

k̂
zþ �̂ xþ yð Þð Þ; z 0ð Þ ¼ z0:

ð1Þ
All the parameters are non-negative for all time t P 0 and are
explained in Table 1. It is assumed that the alien species grow
logistically in the absence of mice. It is also assumed that the

Hantavirus does not harm an infected mouse and the disease
is not transmitted by an infected mouse to a newborn (no ver-
tical transmission).

Fractional-order differential equations as a basis of mathe-
matical models have been applied in ecological models [11–17],
epidemic models [18–28], eco-epidemic models [29,30] and
chaotic models [31] to investigate the underlying dynamics of

the models. The fractional-order derivative is a non-local oper-
ator and related to models with memory. The fractional
derivative of a biological process at a one-point depends on

all of the information and behavior of the model in all previous
moments, while the classical derivative in one point is affected
only from the information in the local neighborhood of that

point [32]. The presence of fractional-order derivative in the
Hantavirus infection models generalizes the results obtained
in case of the standard derivative in that the memory effects
offered by fractional-order derivative can measure the caution

of the populations [33]. These features enables fractional-order
differential equations to model the phenomena having non-
Markovian behavior (where the state of the model at each time

depends on the previous history of the model) [34]. Thus, the
fractional-order derivative may be more suitable for the Han-
tavirus infection model with harvesting that is dependent on

past history [35]. Additionally, the fractional-order model is
more realistic to experimental datasets than its integer-order
counterpart model [36]. Hence, the dynamics of the relations

between susceptible mice, infected mice and alien species incor-
porating harvesting can be more accurately described by
fractional-order models. In addition, the stability region of
the Hantavirus infection model can be extended by the

fractional-order derivative.
Table 1 Biological description of parameters used.

Symbol Description

k̂ Carrying capacity

ĉ Natural death rate of mice

b̂ Birth rate of mice

â Transmission rate of HantavirusbH Harvesting efforts

b̂ Birth rate of alien species

ĉ Death rate of alien species

â Competitive effect of alien species on mice

�̂ Competitive effect of mice on alien species.
In this study, a new model can be constructed by incorpo-
rating the Caputo fractional derivative of order q cDqð Þ into the
counterpart integer order model (1) as follows:

cDqx tð Þ ¼ b̂ xþ yð Þ � ĉx� b̂x

k̂
xþ yþ âzð Þ � âxy� bHx; x 0ð Þ ¼ x0;

cDqy tð Þ ¼ �ĉy� b̂y

k̂
xþ yþ âzð Þ þ âxy� bHy; y 0ð Þ ¼ y0;

cDqz tð Þ ¼ b̂� ĉ
� �

z� b̂z
k̂

zþ �̂ xþ yð Þð Þ; z 0ð Þ ¼ z0;

ð2Þ
where q 2 0; 1ð Þ and cDq denotes Caputo differentiation [37].

The right-hand side expressions of the model (2) have a dimen-

sion timeð Þ�1
, whereas the left-hand sides have a dimension

timeð Þ�q
. To have the dimensions match, the model (2) can

be rewritten as follows:

cDqx tð Þ ¼ b̂q xþ yð Þ � ĉqx� b̂qx

k̂
xþ yþ âzð Þ � âqxy� bHqx; x 0ð Þ ¼ x0;

cDqy tð Þ ¼ �ĉqy� b̂qy

k̂
xþ yþ âzð Þ þ âqxy� bHqy; y 0ð Þ ¼ y0;

cDqz tð Þ ¼ b̂q � ĉq
� �

z� b̂qz
k̂

zþ �̂ xþ yð Þð Þ; z 0ð Þ ¼ z0:

ð3Þ
For simplification, the model (3) can be redefined with the fol-
lowing new parameters [38]:

b̂q ¼ b; k̂ ¼ k; ĉq ¼ c; â ¼ a; âq ¼ a; bHq ¼ H;

b̂q ¼ b; �̂ ¼ �; andĉq ¼ c:

Then, the model (3) becomes as follows:

cDqx tð Þ ¼ b xþ yð Þ � cx� bx
k

xþ yþ azð Þ � axy�Hx; x 0ð Þ ¼ x0;

cDqy tð Þ ¼ �cy� by
k

xþ yþ azð Þ þ axy�Hy; y 0ð Þ ¼ y0;

cDqz tð Þ ¼ b� cð Þz� bz
k

zþ � xþ yð Þð Þ; z 0ð Þ ¼ z0:

ð4Þ
So far as we are aware, the dynamics of the proposed
fractional-order Hantavirus infection model (4) has not been
investigated. Therefore, this paper seeks to investigate the

dynamics of the proposed fractional-order Hantavirus infec-
tion model incorporating harvesting. In order to clarify the
characteristics of the proposed fractional-order Hantavirus

infection model, the analysis of existence, uniqueness, non-
negativity and boundedness of the solutions are examined.
The contribution of this paper is to extend the classical model

of the Hantavirus infection model with harvesting to a new
model based on the Caputo fractional derivatives with logistic
growth rate. The paper also investigates the local stability of
the equilibrium points of the proposed fractional-order Han-

tavirus model which can be considered as the main contribu-
tion of this paper. The proof of the existence of transcritical
bifurcation is also given by using Sotomayor’s theorem. Some

threshold parameters are obtained to determine the existence
and stability conditions of equilibrium points. Numerical sim-
ulations are given to illustrate the properties of the proposed

fractional-order Hantavirus model regarding fractional-order
qð Þ, competitive effect of alien species on mice að Þ, competitive
effect of mice on alien species �ð Þ, carrying capacity kð Þand
harvesting efforts Hð Þwhich is in agreement with the theoreti-

cal analysis. The basin of attraction regions is also illustrated.
The outline of this study is as follows. Sections 2–5 present

the mathematical analysis of the proposed fractional-order

Hantavirus model. Section 6 provides the numerical simula-
tions. Section 7 gives the conclusion.
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2. Equilibrium points

Studying equilibrium solutions is important in epidemic mod-
els because it predicts long-term behaviors of a system [39,40].

In this section, we will use the following threshold parameters.

R0 ¼ ak b� fð Þ
b2

;R1 ¼ bb
bdaþ bf

;

R2 ¼ bd

b� b� fð Þ andR3 ¼ bb �abþ akð Þ
ak bdaþ bfð Þ þ b2b

;

where, f ¼ cþH and d ¼ b� c.
The fractional-order Hantavirus infection model (4) has the

following six equilibrium points:

1. E0 ¼ 0; 0; 0ð Þ, which always exists.

2. E1 ¼ k b�fð Þ
b ; 0; 0

� �
, which exists if b > f.

3. E2 ¼ 0; 0; dkb

� �
, which exists if d > 0.

4. E3 ¼ b
a ;

b
a R0 � 1ð Þ; 0� �

, which exists if R0 > 1.

5. E4 ¼ k bdaþbfð Þ
bb �a�1ð Þ 1�R1ð Þ; 0; k b� b�fð Þð Þ

bb �a�1ð Þ 1�R2ð Þ
� �

,

(a) when �a > 1;E4 exists if R1 < 1 and R2 < 1,
(b) when �a < 1;E4 exists if R1 > 1 and R2 > 1.

6. E5 ¼ b
a ;

ak bdaþbfð Þþb2b
abb �a�1ð Þ 1�R3ð Þ; k b� b�fð Þð Þ

bb �a�1ð Þ 1�R2ð Þ
� �

,

(a) when �a > 1;E5 exists if R3 < 1 and R2 < 1,

(b) when �a < 1;E5 exists if R3 > 1 and R2 > 1.

3. Existence and uniqueness of the solutions

The existence and uniqueness of the solutions of the fractional-

order Hantavirus infection model (4) in the region X� 0;Tð �
where

X ¼ x; y; zð Þ 2 R3 : max jxj; jyj; jzjð Þ 6 h
� �

;

can be studied as follows.

Theorem 1. For each X0 ¼ x0; y0; z0ð Þ 2 X, there exists a

unique solution X tð Þ 2 X of Hantavirus infection model (4)
with initial condition X0; 8t P 0.

Proof. The mapping

W Xð Þ ¼ W1 Xð Þ;W2 Xð Þ;W3 Xð Þð Þ;
is considered, where

W1 Xð Þ ¼ b xþ yð Þ � fx� bx
k

xþ yþ azð Þ � axy;

W2 Xð Þ ¼ �fy� by
k

xþ yþ azð Þ þ axy;

W3 Xð Þ ¼ dz� bz
k

zþ � xþ yð Þð Þ:
ð5Þ

For any X;X 2 X, it follows from (5) that
W Xð Þ �W X
� ��� �� ¼ W1 Xð Þ �W1 X

� �		 		þ W2 Xð Þ �W2 X
� �		 		þ W3 Xð Þ �W3 X

� �		 		
¼ b xþ yð Þ � fx� bx

k
xþ yþ azð Þ � axy� b �xþ �yð Þ þ f�xþ b�x

k
�xþ �yþ a�zð Þ þ a�x�y

		 		
þ �fy� by

k
xþ yþ azð Þ þ axyþ f�yþ b�y

k
�xþ �yþ a�zð Þ � a�x�y

		 		
þ dz� bz

k
zþ � xþ yð Þð Þ � d�zþ b�z

k
�zþ � �xþ �yð Þð Þ		 		

6 bþ fð Þjx� �xj þ bþ fð Þjy� �yj þ djz� �zj
þ b

k
jx� �xjjxþ �xj þ b

k
jy� �yjjyþ �yj þ b

k
jz� �zjjzþ �zj

þ 2b
k
þ 2a

� �jxy� �xyþ �xy� �x�yj þ baþ�b
k

� �jyz� �yzþ �yz� �y�zj
þ baþ�b

k

� �jxz� �xzþ �xz� �x�zj
6 bþ fð Þjx� �xj þ bþ fð Þjy� �yj þ djz� �zj
þ 2bh

k
jx� �xj þ 2bh

k
jy� �yj þ 2bh

k
jz� �zj

þ2 b
k
þ a

� �
hjx� �xj þ 2 b

k
þ a

� �
hjy� �yj

þ baþ�b
k

� �
hjy� �yj þ baþ�b

k

� �
hjz� �zj

þ baþ�b
k

� �
hjx� �xj þ baþ�b

k

� �
hjz� �zj

6 bþ fþ 2bh
k
þ 2 b

k
þ a

� �
hþ baþ�b

k

� �
h

� �jx� �xj
þ bþ fþ 2bh

k
þ 2 b

k
þ a

� �
hþ baþ�b

k

� �
h

� �jy� �yj
þ dþ 2bh

k
þ 2 baþ�b

k

� �
h

� �jz� �zj
6 U X� X

�� ��;
where

U ¼ max bþ fþ 2bh
k

þ 2
b

k
þ a


 �
hþ baþ �b

k


 �
h; d

�

þ 2bh
k

þ 2
baþ �b

k


 �
h


:

Thus, W Xð Þ satisfies the Lipschitz condition. So there exists a

unique solution X tð Þof the Hantavirus infection model (4) with
initial condition X0 ¼ x0; y0; z0ð Þ. h
4. Non-negativity and boundedness of solutions

The non-negativity of the solutions of the model (4) can be
given as follows From Hantavirus infection model (4), one has

cDqx tð Þjx¼0 ¼ by P 0;
cDqy tð Þjy¼0 ¼ 0;
cDqz tð Þjz¼0 ¼ 0:

Also, the model satisfies the Lipschitz condition as stated in
Theorem 1. According to Theorem 5 and Theorem 6 in [41],

it can deduce that the solutions of the fractional-order Han-
tavirus infection model (4) are non-negative.

The following theorem investigates the boundedness of the

solutions.

Theorem 2. The solutions of the fractional-order Hantavirus

infection model (4) starting in R3
þ are bounded.
Proof. Firstly, the following function

M tð Þ ¼ x tð Þ þ y tð Þ;
can be considered to study the boundedness of the first two
equations of model (4), then one has

cDqM tð Þ ¼ cDqxþ cDqy

¼ bM� fx� bx
k

Mþ azð Þ � fy� by
k

Mþ azð Þ
¼ bM� fM� bM2

k
� baMz

k

6 bM� fM� bM2

k
;

thus,
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cDqM tð Þ þ fM tð Þ 6 bM� bM2

k

6 � b
k
M2 � kM
� �

6 � b
k
M� k

2

� �2 þ bk
4

6 bk
4
:

In accordance with Lemma 9 in [42], one has

0 6 M tð Þ 6 M 0ð ÞEq �ftqð Þ þ bk

4
tqEq;qþ1 �ftqð Þ;

By using Lemma 5 and Corollary 6 in [42], it follows that

0 6 M tð Þ 6 bk

4f
; ast ! 1:

Secondly, in order to study the boundedness of the third equa-
tion of Hantavirus infection model (4), one has

cDqz ¼ dz� bz2

k
� b�z xþyð Þ

k

6 dz� bz2

k
;

then,

cDqzþ dz 6 2dz� bz2

k

6 � b
k

z2 � 2dk
b zþ dk

b

� �2

 �

þ d2k
b

6 � b
k

z� dk
b

� �2

þ d2k
b

6 d2k
b :

In accordance with Lemma 9 in [42], one has

0 6 z tð Þ 6 z 0ð ÞEq �dtqð Þ þ d2k

b
tqEq;qþ1 �dtqð Þ:

By using Lemma 5 and Corollary 6 in [42], it follows that

0 6 z tð Þ 6 dk

b
; ast ! 1:

Therefore, the solutions of Hantavirus infection model (4)

starting in R3
þare uniformly bounded in the region M1, where

M1 ¼ x; y; zð Þ 2 R3
þ : xþ y 6 bk

4f
þ mandz 6 dk

b
þ m; m > 0

� 
:

ð6Þ
5. Local stability analysis

The local stability analysis is now studied. The Jacobian
matrix of Hantavirus infection model (4) is as follows:

J x; y; zð Þ ¼
� b 2xþyþaz�kð Þþk ayþfð Þ

k
b� bþakð Þx

k
� abx

k

a� b
k

� �
y ax� f� b xþ2yþazð Þ

k
� aby

k

� �bz
k

� �bz
k

d� b � xþyð Þþ2zð Þ
k

0
BB@

1
CCA:

ð7Þ

Theorem 3. The E0 of Hantavirus infection model (4) is locally
stable if b < c and b < f.

Proof. The Jacobian matrix (7) evaluated at the E0 is the
following
J E0ð Þ ¼
b� f b 0

0 �f 0

0 0 b� c

0
B@

1
CA: ð8Þ

The eigenvalues of matrix (8) are l1 ¼ b� c; l2 ¼ �f and

l3 ¼ b� f. Following the Matignon’s condition [43,40], one
has jarg l2ð Þj ¼ p > qp

2
. If b < c and b < fthen,

jarg l1;3

� �j ¼ p > qp
2
8 q 2 0; 1ð Þ. Thus, E0 is locally stable if

b < c and b < f. h

Theorem 4. The equilibrium point E1 of Hantavirus infection
model (4) is locally stable if R0 < 1 and R2 < 1.

Proof. The J E1ð Þ is as following
J E1ð Þ ¼
f� b fþ ak f

b
� 1

� �
a f� bð Þ

0 b R0 � 1ð Þ 0

0 0 b� f�bð Þ
b

1�R2ð Þ

0
B@

1
CA: ð9Þ

The eigenvalues of matrix (9) are l1 ¼ f� b; l2 ¼ b R0 � 1ð Þ
and l3 ¼ b� f�bð Þ

b
1�R2ð Þ. Following the Matignon’s condition

[43,40], one has jarg l1ð Þj ¼ p > qp
2
. If R0 < 1 and R2 < 1then,

jarg l2;3

� �j ¼ p > qp
2
8 q 2 0; 1ð Þ. Therefore, E1 is locally stable

if R0 < 1 and R2 < 1. h

Theorem 5. The E2 of Hantavirus infection model (4) is locally
stable if R1 < 1.

Proof. The J E2ð Þis as follows
J E2ð Þ ¼
bfþbda

b R1 � 1ð Þ b 0

0 � bdaþbf
b 0

��d ��d �d

0
B@

1
CA: ð10Þ

The eigenvalues of matrix (10) are

l1 ¼ �d; l2 ¼ bfþbda
b R1 � 1ð Þ and l3 ¼ � bdaþbf

b . Following the

Matignon’s condition [43,40], one has jarg l1;3

� �j ¼ p > qp
2
. If

R1 < 1 then, jarg l2ð Þj ¼ p > qp
2
8 q 2 0; 1ð Þ. Therefore, E2 is

locally stable if R1 < 1. h

Theorem 6. The E3 of Hantavirus infection model (4) is locally

stable if R0 > 1and R2 < 1.

Proof. The J E3ð Þgiven by
J E3ð Þ ¼
akf
b
þ b� ak� b2

ak
� b2

ak
� ab2

ak

a� b
k

� �
k� b

a
� kf

b

� �
fþ b b

ak
� 1

� �
a fþ b b

ak
� 1

� �� �
0 0 b� b�fð Þ

b
R2 � 1ð Þ

0
BB@

1
CCA: ð11Þ

The eigenvalues of matrix (11) are l1 ¼ f� b;

l2 ¼ b� b�fð Þ
b

R2 � 1ð Þand l3 ¼ akf
b
þ b� ak which is equivalent

to b 1�R0ð Þ. Following the Matignon’s condition [43,40],
one has jarg l1ð Þj ¼ p > qp

2
. If R2 < 1 and R0 > 1 then,

jarg l2;3

� �j ¼ p > qp
2
8 q 2 0; 1ð Þ. Therefore, E3 is locally stable

if R0 > 1and R2 < 1 which implies that the disease will be
an endemic. h
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Theorem 7. The E4 of Hantavirus infection model (4) is locally

stable if f > ax4 � b x4þaz4ð Þ
k

and �a < 1.

Proof. The J E4ð Þgiven by

J E4ð Þ ¼
� bx4

k
b� bþakð Þx4

k
� abx4

k

0 ax4 � f� b x4þaz4ð Þ
k

0

� �bz4
k

� �bz4
k

� bz4
k

0
BB@

1
CCA: ð12Þ

The eigenvalues of matrix (12) are l1 ¼ ax4 � f� b x4þaz4ð Þ
k

and

the other two eigenvalues l2;3are the roots of the following

equation:

l2 þ 1

k
bx4 þ bz4ð Þlþ bbx4z4

k2
1� �að Þ ¼ 0:

If f > ax4 � b x4þaz4ð Þ
k

then jarg l1ð Þj ¼ p > qp
2
. If �a < 1 then

jarg l2;3

� �j ¼ p > qp
2
8 q 2 0; 1ð Þ. Following [43,40], the E4 is

locally stable if f > ax4 � b x4þaz4ð Þ
k

and �a < 1 which implies that

the disease will be eliminated in the mice population. h

Finally, the local stability around the coexistence equilib-

rium point E5 is investigated as follows. The J E5ð Þgiven by

J E5ð Þ ¼
� b x2

5
þky5ð Þ
kx5

b� bþakð Þx5
k

� abx5
k

a� b
k

� �
y5 � by5

k
� aby5

k

� �bz5
k

� �bz5
k

� bz5
k

0
BB@

1
CCA: ð13Þ

The roots of the following equation are the eigenvalues of (13).

V lð Þ ¼ l3 þ A1l
2 þ A2lþ A3 ¼ 0; ð14Þ

where

A1 ¼ by5þbz5
k

þ bx5
k
þ by5

x5
;

A2 ¼ 1
k2x5

ky5 b b� akð Þx5 þ ka2x2
5 þ b2y5

� �þ bb ky5 � �a� 1ð Þx5 x5 þ y5ð Þð Þz5
� �

;

A3 ¼ by5
k2x5

b b� ak� ba�ð Þx5 þ ka2x2
5 þ b2 1� �að Þy5

� �
z5:

Then, the proposition given in [44,45] can be used to determine

the stability conditions of E5.
Now, the proof of the existence of transcritical bifurcation

around equilibrium points E0 E1and E2is given by using Soto-

mayor’s theorem.

Theorem 8 (Transcritical bifurcation around E0). The Han-
tavirus infection model (4) go through a transcritical bifurca-
tion regarding the bifurcation parameter Haround

E0 0; 0; 0ð Þwhen H ¼ H� ¼ b� c.
Proof. The Jacobian matrix of the Hantavirus infection model
(4) around E0 with H ¼ H� ¼ b� c has a zero eigenvalue and
takes the following form

J E0ð Þ ¼
0 b 0

0 �f 0

0 0 b� c

0
B@

1
CA: ð15Þ

Here, l1 ¼ b� c < 0 and l2 ¼ �f < 0. Let

V ¼ m1; m2; m3ð ÞT ¼ m1; 0; 0ð ÞT and W ¼ s1; s2; s3ð ÞT ¼
s1; bf s1; 0

� �T

be the two eigenvectors corresponding to the zero
eigenvalue of the J E0ð Þand J E0ð Þð ÞT, respectively, where m1and
s1are any non zero real numbers.

Therefore,

WT FH E0;H
�ð Þð Þ ¼ 0;

WT DFH E0;H
�ð ÞVð Þ ¼ �m1s1 – 0;

WT D2F E0;H
�ð Þ V;Vð Þ� � ¼ � 2b

k
m21 � 2 b

k
þ a

� �
m1m2 � 2ba

k
m1m3

� �
s1

þ b
f � 2b

k
m22 � 2 b

k
� a

� �
m1m2 � 2ba

k
m2m3

� �
s1 – 0:

By Sotomayor’s theorem for transcritical bifurcation [46], the
Hantavirus infection model (4) has a transcritical bifurcation

around E0when H ¼ H� ¼ b� cas Hpasses through the value
H�, while no saddle-node bifurcation can occur.

Theorem 9 (Transcritical bifurcation around E1). The Han-
tavirus infection model (4) go through a transcritical bifurca-

tion regarding the bifurcation parameter Haround

E1
k b�fð Þ

b
; 0; 0

� �
when H ¼ Htr1 ¼ b� c� b2

ak
and keeping

R2 < 1.

Proof. The J E1ð Þwith H ¼ Htr1 ¼ b� c� b2

ak
has a zero eigen-

value and takes the following form

J E1ð Þ ¼
f� b fþ ak f

b
� 1

� �
a f� bð Þ

0 0 0

0 0 b� f�bð Þ
b

1�R2ð Þ

0
B@

1
CA: ð16Þ

Here, l1 ¼ f� b < 0 and l3 ¼ b� f�bð Þ
b

1�R2ð Þ < 0 when

R2 < 1. Let V ¼ m1; m2; m3ð ÞT ¼ m1;
f�bð Þm1

fþak f
b
�1ð Þ ; 0


 �T

and

W ¼ s1; s2; s3ð ÞT ¼ 0; s2; 0ð ÞTbe the two eigenvectors corre-

sponding to the zero eigenvalue of the J E1ð Þand J E1ð Þð ÞT,
respectively. Where m1and s2are any non zero real numbers.

Therefore,

WT FH E1;Htr1ð Þð Þ ¼ 0;

WT DFH E1;Htr1ð ÞVð Þ ¼ � f�bð Þm1s2
fþak f

b
�1ð Þ – 0;

WT D2F E1;Htr1ð Þ V;Vð Þ� � ¼ � 2b
k
m22 þ 2 b

k
� a

� �
m1m2 þ 2ba

k
m2m3

� �
s2 – 0:

By Sotomayor’s theorem [46], the Hantavirus infection model
(4) has a transcritical bifurcation around E1when

H ¼ Htr1 ¼ b� c� b2

ak
which is equivalent to k ¼ k� ¼ b2

a b�fð Þ as

Hand kpasses through the values Htr1and k�, respectively.
While no saddle-node bifurcation can occur.

Theorem 10 (Transcritical bifurcation around E2). The Han-

tavirus infection model (4) go through a transcritical bifurca-
tion regarding the bifurcation parameter Haround

E2 0; 0; dkb

� �
when H ¼ Htr2 ¼ b b�dað Þ

b � c.

Proof. The J E2ð Þwith H ¼ Htr2 ¼ b b�dað Þ
b � c has a zero eigen-

value l2 ¼ 0ð Þand takes the following form

J E2ð Þ ¼
0 b 0

0 � bdaþbf
b 0

��d ��d �d

0
B@

1
CA: ð17Þ



Table 2 Hypothetical parameter values of the fractional-order Hantavirus infection model [10].

Case a b k c H b c a � Figure

1 0:1 1 100 0:6 0 1 0:5 – – 2

2 0:1 1 100 0:6 0 1 0:5 1:5 0:5 3

3 0:1 1 100 0:6 0 1 0:5 0:5 1:5 4

4 0:1 1 100 0:6 0 1 0:5 0:7 0:1 5

5 0:1 1 100 0:6 0 1 0:5 0:3 0:5 6

6 0:1 1 100 0:6 0 1 0:5 1:3 1:3 7, 8

7 0:1 1 – 0:6 – 1 0:5 0:4 0:8 9

8 0:1 1 150 0:6 0:4 1 0:5 0:4 0:8 10

9 0:1 1 15 0:6 0:1 1 0:5 0:4 0:8 11

10 0:1 1 200 0:6 0:1 1 0:5 0:4 0:8 12

11 0:1 1 – 0:6 0 1 0:5 0:4 1:3 13, 14

12 0:1 1 100 0:6 – 1 0:9 0:4 1:3 15, 16
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Here, l1 ¼ �d < 0 and l3 ¼ � bdaþbf
b < 0. Let V ¼ m1m2m3ð ÞT

¼ m1 0 � �m1ð ÞT and W ¼ s1s2s3ð ÞT ¼ s1
bbs1

bdaþbf 0
� �T

be the two

eigenvectors corresponding to the zero eigenvalue of the

J E2ð Þand J E2ð Þð ÞT, respectively. Where m1and s1are any non
zero real numbers.

Therefore,
WT FH E2;Htr2ð Þð Þ ¼ 0;

WT DFH E2;Htr2ð ÞVð Þ ¼ �m1s1 – 0;

WT D2F E2;Htr2ð Þ V;Vð Þ� � ¼ � 2b
k
m21 � 2 b

k
þ a

� �
m1m2 � 2ba

k
m1m3

� �
s1

þ bb
bdaþbf � 2b

k
m22 � 2 b

k
� a

� �
m1m2 � 2ba

k
m2m3

� �
s1 – 0:

By Sotomayor’s theorem [46], the Hantavirus infection model

(4) has a transcritical bifurcation around E2when

H ¼ Htr2 ¼ b b�dað Þ
b � c as H passes through the value Htr2.

While no saddle-node bifurcation can occur. h
0 20 40 60 80 100 120 140 160 180 200

t

28

30

32

34

36

38

40

42

z

q=1
q=0.95
q=0.85

Fig. 1 State trajectories of Hantavirus infection model (4) with

different values of fractional.-order qð Þ.
6. Numerical simulations

In this section, the numerical simulations using the numerical
method proposed in [47,48] are given to illustrate the proper-

ties of the fractional-order Hantavirus model (4) with respect
to fractional-order qð Þ, competitive effect of alien species on
mice að Þ, competitive effect of mice on alien species �ð Þ, carry-
ing capacity kð Þand harvesting efforts Hð Þ. The basin of attrac-
tion regions is also illustrated. The hypothetical parameter
values of the model (4) are provided in Table 2 which were also

used for the integer-order model [10].
From Fig. 1, it can be observed that the fractional-order is

important in that it affects the convergence speed of the solu-
tions of the fractional-order Hantavirus model (4). One can

observe that the convergence speed decrease with decreasing
the value of fractional-order qð Þ. Fig. 1 also shows that the
Fig. 2 Local stability regions for the equilibrium points of the

fractional-order Hantavirus infection model (4) in a; �ð Þ-plane.
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Fig. 4 Local stability of the E3 when q ¼ 0:98; a ¼ 0:5and

� ¼ 1:5.
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Fig. 5 Local stability of the E4 when q ¼ 0:98; a ¼ 0:7and

� ¼ 0:1.
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Fig. 3 Local stability of the E2 when q ¼ 0:98; a ¼ 1:5and

� ¼ 0:5.
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Fig. 6 Local stability of the E5 when q ¼ 0:98; a ¼ 0:3and

� ¼ 0:5.
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alien species zð Þ remain stable for different values of fractional-

order qð Þthough solutions reach to E5 10; 7:647; 41:176ð Þ more
slowly for a smaller value of fractional-order qð Þ.

Fig. 2 is deduced by the previous local stability theorems

which represents the regions of local stability for the
E2;E3;E4 and E5 of the fractional-order Hantavirus infection
model (4) in the a; �ð Þ-plane. The region is divided into five dif-
ferent coloured parts: in the red region, R1 < 1 which means

that the E2 is locally stable as proved in Theorem 5 and occur
with Fig. 3 (when q ¼ 0:98; a ¼ 1:5and � ¼ 0:5); the grey
region is for local stability of E3, in this case R0 > 1and

R2 < 1 which coincide with Theorem 6 and concur with
Fig. 4 (when q ¼ 0:98; a ¼ 0:5and � ¼ 1:5); the yellow region

is for local stability of E4, in this case f > ax4 � b x4þaz4ð Þ
k

and

�a < 1 which coincide with Theorem 7 and concur with
Fig. 5 (when q ¼ 0:98; a ¼ 0:7and � ¼ 0:1); the blue region is

for local stability of E5 as indicated in Fig. 6 (when
q ¼ 0:98; a ¼ 0:3and � ¼ 0:5); and the green region shows
bistability phenomena for E3 with initial condition

I0 ¼ 8; 9; 1ð Þand E2 with initial condition I0 ¼ 8; 5; 1ð Þ as
shown in Figs. 7(a) and 7(b), respectively (when
q ¼ 0:98; a ¼ 1:3and � ¼ 1:3).

The basin of attraction regions in the x0; y0ð Þ-plane are

illustrated in Fig. 8. It is observed that if the initial conditions
are chosen from the green region the fractional-order Han-
tavirus infection model (4) will be closer to the E3 as indicated

in Fig. 8 and coincide with Fig. 7(a) (when x0 ¼ 8; y0 ¼ 9and
z0 ¼ 1); for initial conditions within the red region the model
(4) will be closer to the E2 as shown in Fig. 8 and occur with

Fig. 7(b) (when x0 ¼ 8; y0 ¼ 5and z0 ¼ 1).
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Fig. 7 Local stability of the E3 and E2 with different initial

conditions and q ¼ 0:98; a ¼ 1:3and � ¼ 1:3.

Fig. 8 Basin of attraction in the (initial susceptible mice

population (x0), initial infected mice population (y0))-plane.

Fig. 9 Local stability regions for the equilibrium points of the

fractional-order Hantavirus infection model (4) in : H; kð Þ-plane.
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Fig. 10 Local stability of the E2 when q ¼ 0:98;H ¼ 0:4and

k ¼ 150.
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Fig. 9 is deduced by the previous local stability theorems
which represents the regions of local stability for the E2;E4

and E5 of model (4) in the H; kð Þ-plane. The region is divided
into three different coloured parts: in the red region, R1 < 1
which means that the E2 is locally stable as proved in Theo-

rem 5 and occur with Fig. 10 (when q ¼ 0:98;H ¼ 0:4and
k ¼ 150); the yellow region is for local stability of E4, in this

case f > ax4 � b x4þaz4ð Þ
k

and �a < 1 which coincide with Theo-

rem 7 and concur with Fig. 11 (when q ¼ 0:98;H ¼ 0:1and
k ¼ 15); the blue region is for local stability of E5 as indicated
in Fig. 12 (when q ¼ 0:98;H ¼ 0:1and k ¼ 200).

In order to show the effect of the carrying capacity kð Þ, one
can draw the bifurcation diagram with respect to kas a bifur-
cation parameter. It can be observed that the transcritical

bifurcation value is centralized at k� ¼ b2

a b�fð Þ ¼ 25 which is
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Fig. 11 Local stability of the E4 when q ¼ 0:98;H ¼ 0:1and

k ¼ 15.
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Fig. 12 Local stability of the E5 when q ¼ 0:98;H ¼ 0:1and

k ¼ 200.
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Fig. 13 Bifurcation diagram of the fractional-order Hantavirus

infection model (4) regarding carrying ca.pacity kð Þ.
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Fig. 14 Time series of the fractional-order Hantavirus infection

model (4) with different values of carrying ca.pacity kð Þ.

Fig. 15 Bifurcation diagram of the fractional-order Hantavirus

infection model (4) regarding harv.esting Hð Þ.
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coincide with Theorem 9 and indicated in Fig. 13 (in this case

R2 ¼ 0:961538 < 1). It can also be observed that when k < k�

the susceptible mice population exist and the infection dies
away as indicated in Fig. 13 and coincide with Fig. 14(a) (when

k ¼ 15). For k > k� the susceptible and infected mice co-exist

and the infection thrives since there is an increase in edible
resources as indicated in Fig. 13 and occur with Fig. 14(b)
(when k ¼ 40). Fig. 14 indicates that both susceptible and

infected populations will eventually reach steady states with
the values for the susceptible population being higher com-
pared to the infected case.

In order to show the effect of harvesting Hð Þon the dynam-

ics of the fractional-order model (4), one can draw the bifurca-
tion diagram with respect to H as a bifurcation parameter. It
can be observed that the transcritical bifurcation values are

centralized at Htr1 ¼ b� c� b2

ak
¼ 0:3;Htr4 ¼ b� c� bda

b þ



Fig. 16 Time series and phase diagram of the fractional-order Hantavirus infection model (4) with different values of har.vesting Hð Þ.
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b2 a��1ð Þ
ak

¼ 0:312and Htr2 ¼ b b�dað Þ
b � c ¼ 0:36 which is coincide

with the theoretical results and indicated in Fig. 15. It can also
be observed that when H < Htr1 the susceptible and infected
mice populations coexist as shown in Fig. 15 and coincide with

Fig. 16(a) (when H ¼ 0:1). For H 2 Htr1;Htr4ð Þthe susceptible
mice population only exist as shown in Fig. 15 and concur with
Fig. 16(b) (when H ¼ 0:311). For H 2 Htr4;Htr2ð Þthe suscepti-

ble mice and alien species coexist and the infection dies away as
indicated in Fig. 15 and coincide with Fig. 16(c) (when
H ¼ 0:35). For H > Htr2 the alien species only exist as shown

in Fig. 15 and concur with Fig. 16(d) (when H ¼ 0:4).
7. Conclusion

A fractional-order Hantavirus infection model incorporating
harvesting has been formulated and analyzed in this paper.
The fractional-order model describes the spread of Hantavirus

infection in a system consisting of populations of susceptible
mice, infected mice and alien species. A sufficient condition
for the existence and uniqueness of the fractional-order Han-
tavirus infection model (4) has been obtained. It has been

proved that the solution of the fractional order system of dif-
ferential equations (4) are uniformly bounded and non-
negative. The proposed fractional-order Hantavirus infection

model has six non-negative equilibrium points. The threshold
parameters R0; R1; R2andR3ð Þhave been used to determine
the existence and stability conditions of the equilibrium points.

The local stability of the equilibrium points of the fractional-
order Hantavirus infection model (4) has been investigated
which can be considered as the main contribution of this
paper. The mathematical proof of the existence of transcritical

bifurcation has been given by using Sotomayor’s theorem.
Numerical simulations have been conducted to illustrate the
properties of the proposed fractional-order Hantavirus infec-

tion model with respect to fractional-order qð Þ, competitive
effect of alien species on mice að Þ, competitive effect of mice

on alien species �ð Þ, carrying capacity kð Þand harvesting efforts
Hð Þ. The basin of attraction regions has been also illustrated.
Future research will focus on the incorporation of time delay

in the system and the resulting consequences.
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