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Abstract Mobile broadband (MBB) services are rapidly growing, causing a massive increase in

mobile data traffic growth. This surge in data traffic is due to several factors (such as the massive

increase of subscribers, mobile applications, etc.) which have led to the need for more bandwidth.

Mobile service providers are constantly improving their network efficiency by upgrading current

networks and investing in newer mobile network generations. However, these improvements will

not be enough to accommodate the future spectrum demands. This paper proposes a time series

forecasting model to analyze future spectrum demands based on the spectrum efficiency growth

of MBB networks. This model depends on two key input data: the average spectrum efficiency

per site and the number of sites per technology. The model is used to predict the spectrum efficiency

growth of three countries (Turkey, Malaysia, and Oman) from 2015 to 2025. The proposed model is

compared with various traditional statistical models such as the Moving Average (MA), Auto-

Regression (AR), Autoregressive–Moving-Average (ARMA), and Autoregressive Integrated Mov-

ing Average (ARIMA). The forecasted results indicate that the average spectrum efficiency and

growth will continue to rise multiple times by 2025 compared to 2015. The data from this prediction

model can be used as input data to forecast the required spectrum needed in future for any specific

country. This study further contributes to the network planning of future mobile networks for Fifth

Generation (5G) and Sixth Generation (6G) technology. The proposed model obtains higher accu-

racy (by 90%) compared to other models. The proposed model is also applicable to any country,
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especially when new wireless communication technologies emerge in future. It is customizable and

scalable since spectrum regulators can add additional metrics that positively contribute towards

accurately estimating future spectrum efficiency growth.

� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Spectrum efficiency is a significant performance metric that has

been continuously enhanced and upgraded to almost double its
past figure with every new arrival of wireless technology [1–3].
The latest technology usually enhances the Modulation and
Coding Scheme (MCS), increases the Sectors Number (SN),

and employs Multiple-Input and Multiple-Output (MIMO)
techniques [4–7]. To achieve better spectral efficiency, opera-
tors are continuously upgrading current wireless technology

to newer generations. For instance, the Second Generation
(2G) and Third Generation (3G) have been upgraded to the
Fourth Generation (4G) and 5G based on the Long-Term

Evolution (LTE) and LTE-Advanced technology [8,9].
According to several studies [8–11], many operators worldwide
have already upgraded the 2G and 3G sites to LTE and LTE-

Advanced sites. This upgrade is deemed necessary to fulfill the
expected surge in data demands and enhance network cover-
age [12,13]. The innovative solutions and diverse applications
offered by the latest radio technology have been of great

benefit.
Several works [14–16] have presented spectrum sharing

based on licensed and unlicensed spectrums to address the

issue of limited resources. In [17–19], a handoff technique that
utilize licensed and unlicensed spectrums was presented for
cognitive radio networks. Such enhancements will help resolve

the contradiction of providing large data exchanges with
enhanced spectrum efficiency, thus reducing future spectrum
demands. Based on several prediction studies which focused
on network coverage for various technologies (e.g., 2G, 3G,

and 4G+) [3,8,9], the 3G network still proves to be the dom-
inant network while 4G is the less deployed counterpart [120–
22]. In future, the popularity of 4G, 4G+, 5G, and 6G mobile

networks will increase while the utilization of the 2G and 3G
networks will decrease. However, there is a need to formulate
a prediction model to forecast the future spectrum growth of

MBB networks.
From the brief review, it can be concluded that spectrum

efficiency will continue to grow in the near future. Although

it is difficult to determine the growth rate, it can be predicted
using a developed forecasting model. Predicting future spec-
trum efficiency growth which will offer valuable insight
regarding the general trends of MBB development. Forecast-

ing spectrum efficiency growth is a significant tool that can be
directly employed by regulators and mobile operators to help
determine the relevant strategies for tackling future spectrum

demands as well as the deployment of potential mobile net-
works. Spectrum efficiency growth is the main input metric
for predicting future spectrum demands [1,23–25]. Several

developed models consider spectrum efficiency growth as
the main metric for that purpose, such as the United States
regulator, the Federal Communications Commission (FCC)
[23], Pyramid Research [24], and Wireless Communication
Center (WCC) [25]. Although the FCC and Pyramid
Research [23,24] consider spectrum efficiency growth as an

input metric for their forecasting, they have not explained
how the estimation is conducted. Based on our review, it is
difficult to obtain or assess spectrum efficiency. A forecast

is deemed necessary to determine the required enhancements
for predicting the future spectrum needed to fulfill potential
mobile data demands [26]. It is essential to develop a compe-

tent model that can project an accurate spectrum efficiency
measure.

This work proposes a novel model to estimate the forth-
coming spectrum efficiency growth. This model is a function

of the average spectral efficiency for each site per technology
and the number of sites per technology. The average spectrum
efficiency is calculated as the average value over all spectrum

efficiencies for all network types belonging to the same tech-
nology, while the number of sites is assessed as the summation
of all equivalent site numbers over the total network types

belonging to one technology. The developed model is then
used to predict the spectrum efficiency and spectrum efficiency
growth for years 2015 to 2025 in Malaysia, Turkey, and Oman.

Mobile Telecommunication Operators (MTOs) in the consid-
ered countries are labelled with different names for privacy
and confidentiality of the dataset, as shown in Table 1. This
research forecasts the spectrum efficiency growth of each coun-

try, regardless of the MTO names since they are not a neces-
sary benchmark for the analysis. For Malaysia, the
estimation is performed based on the input market data of four

main MTOs: M1, M2, M3, and M4. The results indicate that
by 2025, the average spectrum efficiency growth will increase
by around 2.43 times more as compared to that of 2015. For

Turkey, the estimation is performed based on the input market
data of three main MTOs: T1, T2, and T3. The input data is
analyzed based on the data collected from the operators’
annual reports, Analysys Mason, and other online sources.

For Oman, the estimation is performed based on the input
market data of two main MTOs: O1 and O2. The input data
is assessed based on the data collected from the operators’

annual reports, the Ministry of Technology and Communica-
tions (MTC), and other online sources. However, all input
data for the considered countries do not reflect on the actual

spectrum efficiency growth for any operator since this is an
estimation study. The results indicate that by 2025, the average
spectrum efficiency growth may increase by around 5.5, 2.4,

and 2.9 times more than that of 2015 based on the estimated
input market data in Turkey, Malaysia, and Oman, respec-
tively. This increase will contribute towards forecasting and
fulfilling mobile data demands in future. This paper is a con-

tinuation of our previous works that have been published in
Ref. [1] and [27]. However, this paper only focuses on spectrum
efficiency growth, which is one input metric for forecasting the

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Table 1 National MTOs labeling in Malaysia, Turkey, and Oman.

Country National MTOs

First Second Third Fourth

Malaysia M1 M2 M3 M4

Turkey T1 T2 T3

Oman O1 O2

Table 2 List of abbreviations.

Abbreviation Definition

2G Second Generation

3G Third Generation

4G Fourth Generation

5G Fifth Generation

6G Sixth Generation

ANNs Artificial Neural Networks

AR Auto-Regression

ARIMA Autoregressive Integrated Moving Average

ARMA Autoregressive–Moving-Average

ASE Average spectrum efficiency

BPNN Back-Propagation Neural Network

DNN Dynamic Neural Network

EDGE Enhanced Data for Global Evolution

FCC Federal Communications Commission

GARCH Generalized Autoregressive Conditional

Heteroskedasticity

GPRS General Packet Radio Service

GRU Gated Recurrent Unit

GSM Global System for Mobile

GSMA GSM Association

HSDPA High Speed Downlink Packet Access

HSPA High-Speed Packet Access

LSTM Long Short-Term Memory

LTE Long-Term Evolution

MA Moving Average

MAE Mean Absolute Error

MBB Mobile Broadband

MCMC Malaysian Communications and Multimedia

Commission

MCS Modulation and Coding Scheme

MIMO Multiple-Input and Multiple-Output

MSE Mean Squared Error

MTC Ministry of Technology and Communications

MTOs Mobile Telecommunication Operators

NMAE Normalized MAE

NRMSE Normalized RMSE

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

SEG Spectrum Efficiency Growth

SN Sectors Number

SVR Support Vector Regression

WCC Wireless Communication Center
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spectrum gap of future mobile networks. Table 2 summarizes
all abbreviations used in this paper.

The rest of this paper is organized as follows: Section 2 pro-
vides a background of the forecasting models. Section 3
explains the details of our proposed model. Section 4 presents
the spectrum efficiency analysis. Section 5 discusses the inter-
connected directions to accommodate high data demands.

Finally, Section 6 concludes this paper.

2. Forecasting models

This section provides several time-series forecasting models
that use past series values to predict current values. Various
statistical models and Artificial Neural Networks (ANNs)

are utilized to forecast future data in many areas including
social, economic, finance, engineering, foreign exchange, busi-
ness, and stocks. The time series statistical forecasting models

such as Moving Average (MA), Auto-Regression (AR),
Autoregressive–Moving-Average (ARMA), Autoregressive
Integrated Moving Average (ARIMA), etc., are very suitable

for time series data with linear processes and they work well
for small or large data. The ANNs or deep learning models
(e.g., Long Short-Term Memory (LSTM) and Gated Recur-
rent Unit (GRU)) are extremely efficient in solving nonlinear

problems in the real world, however, they require sufficient
big data to provide competitive results to various statistical
time series forecasting models. For instance, in [28], the

authors used two deep Recurrent Neural Network (RNN)
variants, (LSTM-RNN) and (GRU), to predict link quality
in wireless community networks with huge data. The results

demonstrated that these models yield higher accuracy com-
pared to other models. Similarly, [29] analyzed univariate
time-series forecasting data using several models such as
Dynamic Neural Network (DNN), Generalized Autoregres-

sive Conditional Heteroskedasticity (GARCH), and ARIMA.
The outcomes revealed that all neural network-based and tra-
ditional statistical models work well if sufficient amounts of

big data are available. However, in some cases, the neural
network-based model has higher accuracy compared to tradi-
tional models. In [30], the authors evaluated the performance

of linear and nonlinear models such as Back-Propagation Neu-
ral Network (BPNN), Support Vector Regression (SVR)
LSTM, GRU, and ARIMA for short-term forecasting of trop-

ical storms. The performance evaluation results indicate that
the ARIMA model provides better forecasting accuracy than
other models. The errors in the ARIMA model are slight,
offering an overall stable forecasting throughout several fore-

casting steps. In contrast, some related works such as [31,32]
used statistical models for forecasting future trends in the
telecommunication industry. From pervious works, it can be

seen that the forecasting accuracy depends on various factors
such as application, size, and pattern of the dataset. It is rec-
ommended to use traditional statistical forecasting models



Table 3 Special cases of the ARIMA model.

ARIMA Case Description

ARIMA(0,0,0) White noise

ARIMA(0,0,q) Case of MA

ARIMA(p,0,0) Case of AR

ARIMA(p,0,q) Case of ARMA

ARIMA(p,1,q) ARIMA with degree of first differencing
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since only small datasets are available in this sector. In our
work, traditional statistical forecasting models (such as MA,
AR, ARMA, and ARIMA) are applied as a benchmark due

to the limited dataset. The mathematical representations of
these forecasting models are discussed as follows:

Moving Average (MA) Model, also known as the moving-

average process, refers to past forecasting errors in a time ser-
ies model. The output variables depend on the current and past
values, given as:

Xt ¼ lþ h1et�1 þ h2et�2 þ � � � þ hqet�q þ et ð1Þ

where l is an expectation of Xt, h1; h2; � � � ; hq are the model

parameters of order MA(q), and et is the white noise error.
The MA assumes that the current value of a random variable

depends on q past errors which depend on the errors
at et�1; et�2; � � � ; et�q. For example, the MA (1) process is given

as Xt ¼ cþ et þ h1et�1, where c is constant. Another MA
model uses the mean of past values to forecast the current
value. This type of model is called Simple MA. The running

or rolling average model calculates the average over a set num-
ber of periods with a sliding window or interval. For instance,
the MA for a series of data d ¼ d1 þ d2; � � � ; dn can have a

sequence of n values given as:

Xt ¼ dn þ dn�1; � � � � � � dS�ðn�1Þ
S

ð2Þ

Xt ¼ 1

S

Xn�1

i¼0

dS�i ð3Þ

where S represents the sliding window or the period of selected
past values. The chosen period of the sliding window depends

on the type of interest movement: short-term, medium-term, or
long-term.

Auto-Regression (AR) Model is a linear combination of the

variable’s historical values that predicts the variable of interest.
The AR model forms stochastic difference equations where its
output variable is linearly dependent on its own historical val-

ues and stochastic term. The AR model of order p at the cur-
rent value can be defined as follows:

Yt ¼ cþ u1Yt�1 þ u2Yt�2 þ � � � þ upYt�p þ et ð4Þ

Yt ¼ cþ
Xp
i¼1

uiYt�i þ et ð5Þ

where c is constant, u1;u2; � � � ;up are the model parameters,

and et is the white noise. The AR model is flexible since it han-
dles a wide range of various time series patterns depending on
the model parameters. The et only affects the scale of the series

but not the pattern. For instance, the processes of the AR(p)
model are not stationary when p = 1 with u1 > 1. However,
the AR model is normally limited to stationary data with

�1 < u1 < 1 and �1 < u1 < 1;u1 þ u2 < 1;u2 � u1 < 1 for
AR(1) and AR(2), respectively. The restrictions become much
more complicated if p � 3. Simplifying the AR(p) to low order

processes is given as follows:

Yp ¼
u1Y0; ifp ¼ 1

u1Y1 þ u2Y0; ifp ¼ 2

�
ð6Þ
Autoregressive–Moving-Average (ARMA) Model is a com-
bination of MA and AR, represented by a notation ARMA
(p, q). The p and q denote the order of the AR and MA mod-

els, respectively:

Zt ¼ lþ cþ h1et�1 þ h2et�2 þ � � � þ het�q þ u1Yt�1

þ u2Yt�2 þ � � � þ upYt�p þ et ð7Þ

Zt ¼ cþ
Xp
i¼1

uiYt�i þ
Xq
i¼1

hiet�i þ et ð8Þ

where l and c are the expectations of Zt and constant, respec-
tively. The autoregressive integrated moving average
(ARIMA) model is a generalization of the ARMA model, rep-

resented by the notation ARIMA(p,d,q). The only difference
between ARMA and ARIMA is the added parameter d which
refers to the degree of the first differentiation involved. All pre-

viously discussed models are special cases of the ARIMA
model, as summarized in Table 3.

Two types of ARIMA are present: seasonal and nonsea-

sonal. The seasonal ARIMA depends on seasonal lags and dif-
ferences to fit the seasonal pattern, usually represented as
ARIMA(P,D,Q). It requires time series data (i.e., systematic,
calendar-related influences) which consist of a value for each

month of a calendar year. However, nonseasonal ARIMA is
almost similar to a trend pattern which consists of a time series
data without calendar-related influences and irregular effects,

usually represented as ARIMA(p,d,q).

3. Proposed model

A novel mathematical model is proposed to project future
spectrum efficiency as well as spectrum efficiency growth.
The proposed spectrum efficiency model is mainly evaluated

as a function of the average spectrum efficiency per site and
the number of sites per technology, as illustrated in Fig. 1.
The spectrum efficiency growth is computed as a ratio between

the spectrum efficiency of a corresponding year to that of a
random previous year. For instance, the spectrum efficiency

growth nYF

� �
for the future year YF(e.g., the year 2025 Þ can

be evaluated as a ratio between the spectrum efficiency of
the year YF to the spectrum efficiency of the corresponding
year YC (e.g., 2015). This is mathematically expressed in Eq.

(9) as:

nYF
¼ gYF

�

gYC

� ; ð9Þ



Fig. 1 Proposed spectrum efficiency growth model.
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where gYF

�
and gYC

�
represent the average spectrum efficiencies

per site over all technologies for years }YF} (i.e., 2025) and
the current year }YC} (i.e., 2015), respectively.

The average spectrum efficiency per site over all technolo-

gies is mainly determined by knowing MCS [33], SN, and
the MIMO scheme (e.g., 4 � 4, 8 � 8, or other higher-order
combinations) for each individual site. These parameter set-

tings may vary between sites with the same technology and will
definitely vary between different technologies. Since it is diffi-
cult to determine the actual system settings (e.g., MCS, SN,
and MIMO types) for each individual site, a new method

was derived to estimate the average spectrum efficiency per site
over all technologies at any year; }YF} or }YC}. Since the
actual network consists of several site numbers belonging to

various technologies with different spectrum efficiency levels,
the proposed model is mainly calculated as a function of the
average spectrum efficiency per site and the total site numbers
that belong to the same technology. The actual network con-
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sists of several technologies, therefore, 2G, 3G, and 4G are
considered. This is further expressed in the devised formula
of Eq. (10) as:

gY
� ¼

PNG

i¼1 giG
�

NSiG
Y

� �
PNG

i¼1N
SiG
Y

; ð10Þ

where giG
�

is the Average Spectrum Efficiency (ASE) per site

belonging to technology }i}, while NSiG
Y is the number of sites

belonging to technology }i} at year }Y}. NG represents the
total technology number available in the network. Using Eq.

(10) gY
�� �

, this model can be applied to estimate the average

spectrum efficiency per site over all technologies at any year,
whether }YF} or }YC}.

According to the average spectrum efficiency, evaluation
over all network types should belong to the same technology.

This is because each technology consists of different network
types. For instance, the 3G network includes HSDPA,
HSUPA, HSPA, and HSPA + . Accordingly, the average

spectrum efficiency per site that exists with the same technol-
ogy can be mathematically evaluated by the formulated model
in Eq. (11):

giG
� ¼

PNiG
nt

j¼1gjPNiG
nt

j¼1N
SiG
j

; ð11Þ

where giG
�

represents the ASE per site belonging to technology
‘‘i”; i is the technology type which can be 2G, 3G, or 4G; j is

the network type (e.g., in 3G technology, j stands for HSDPA,

HSUPA, HSPA, or HSPA + ); NiG
nt is the total number of net-

work types belonging to one technology (e.g. ‘‘i”); gj is the

spectrum efficiency for network type ‘‘j”; while NSiG
j represents

the site number of network }j} belonging to technology }iG}.
The total number of sites that belongs to each technology

type (such as 2G, 3G, and 4G) can be obtained from different
sources; from the operators’ annual reports, regulators,
OpenSignal, GSMA, and other online resources. It can be esti-

mated based on historical data, similar to what we had accom-
plished in our spectrum gap forecasting study (refer to Ref.

[25]). Consequently, both gYF

�
and gYC

�
can be evaluated by

Eq. (10). However, the input parameters should be for the cor-
responding year. From Eqs. (9) and (10), the spectrum effi-
ciency growth for the year }YF} can be determined as a

function of the average spectrum efficiency,giG
�
, and the sites

number,NS
iG, belonging to the same technology. Thus, the spec-

trum efficiency growth can be evaluated by the simplified
mathematical model in Eq. (12).

nYF
¼

PNG

i¼1 giG
�

NSiG
Y

� �
PNG

i¼1N
SiG
Y

 !
YF

�
PNG

i¼1N
SiG
YPNG

i¼1 giG
�

NSiG
Y

� �
 !

YC

ð12Þ

Since mobile technology is rapidly changing and different
factors may impact the growth of spectral efficiency, an addi-

tional variable is proposed as a multiplier to make the model
more flexible for use in any country or with any technology
in future. This new proposed variable is A: Thus, the spectrum
efficiency growth can finally be evaluated by the simplified
mathematical model in Eq. (13):

nYF
¼

PNG

i¼1 giG
�

NSiG
Y

� �
PNG

i¼1N
SiG
Y

 !
YF

�
PNG

i¼1N
SiG
YPNG

i¼1 giG
�

NSiG
Y

� �
 !

YC

�A ð13Þ
This work employs three performance metrics: the Mean
Absolute Error (MAE), Mean Squared Error (MSE), and
Root-Mean Squared Error (RMSE), given as follows:

MAE ¼ 1

n

Xn
i¼1

Ai � Fij j ð14Þ

where the normalized MAE is given as:

NMAE ¼ MAE
1
n

Pn
i¼1 Fij j ð15Þ

MSE ¼ 1

n

Xn
i¼1

Ai � Fið Þ2 ð16Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

Ai � Fið Þ2
s

ð17Þ

where the normalized RMSE is given as:

NRMSE ¼ RMSE
1
n

Pn
i¼1 Fij j ð18Þ

The A and F are actual and forecasting data, respectively. n
represents the number of test data. The performance of the
proposed model is evaluated by obtaining its accuracy percent-

age and comparing it with several forecasting models (MA,
AR, ARMA, and ARIMA). The accuracy is calculated based
on the available data of all MTOs and technologies.

Fe ¼ A� Fj j
A

X100 ð19Þ

Accuracy ¼ maxð0; 100%� FeÞ ð20Þ
Fe denotes the forecast error where the overall accuracy

represents the model accuracy over all technologies for each

MTO. The ratio of logarithm accuracy is used instead of the
coefficient of determination R2 to verify whether the forecast
value is higher or lower than the actual value. The logarithm

ratio RAF is defined as the ratio of the forecast to the actual
value, expressed as:

RAF ¼ log
F

A

� �
ð21Þ

The positive values of RAF indicate that the forecasted value
is higher than the actual value, while the negative values of RAF

indicate that the forecasted value is higher than the actual

value.

4. Analysis of spectrum efficiency growth

This section presents the forecasted future spectrum efficiency
and spectrum efficiency growth for Turkey, Malaysia, and
Oman by employing the derived models formulated in Eqs.

(10) and (12), respectively. This forecast has been conducted
for multiple years, from 2015 to 2025. This is based on the
input market data of three major MTOs in Turkey: T1, T2,

and T3; four major MTOs in Malaysia: M1, M2, M3, and
M4; and two major MTOs in Oman: O1 and O2. The statisti-
cal data for generating the input metrics have been obtained

from prominent agencies, such as the operators’ annual
reports, regulators, MCMC [34], GSMA [21], Analysys Mason
[22], Huawei [35], MTC [36], and Ooredoo [37]. Predictions
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have been executed for every individual operator. Subse-
quently, the total forecasted spectrum efficiency and spectrum
efficiency growth are combined to present the entire expected

results for the whole of Turkey, Malaysia, and Oman.
The proposed model efficiently forecasts future spectrum

efficiency and spectrum efficiency growth. The model mainly

utilizes the average spectrum efficiency and site number per
technology as input parameters to ensure an accurate predic-
tion. Tables 4, 5, and 6 present these input parameters, the

forecasted future spectrum efficiency, and the spectrum effi-
ciency growth of three, four, and two main MTOs in Turkey,
Malaysia, and Oman, respectively. These input parameters and
forecasted results are only for one year (i.e., 2025). The fore-

casted average spectrum efficiency is calculated for each indi-
vidual MTO in Turkey, Malaysia, and Oman for the year
2025 compared to the year 2015. Similarly, the spectrum effi-

ciency growth represents the average growth ratio for every
individual MTO in 2025 over the year 2015. The results in
Tables 4, 5, and 6 are presented as an indication of the col-

lected input and forecasted data, while further insights are pro-
vided and discussed in the following results with a detailed
comparison between metrics over various years. The existing

2G, 3G, and 4G networks have several versions: (GSM,
GPRS, and EDGE), (HSDPA, HSUPA, HSPA, and
HSPA + ), and (LTE and LTE-A), respectively. The typical
average spectrum efficiency for each technology is given as:

0.17 bps/Hz, 4.87 bps/Hz, and 23.16 bps/Hz for 2G, 3G, and
4G networks, respectively. In this regard, the forecasted aver-
age spectrum efficiency for all sites number is calculated by

multiplying the overall sites number with the typical average
spectrum efficiency for each technology.

Fig. 2 displays the predicted results of the site number and

spectrum efficiency for each MTO in Turkey, Malaysia, and
Oman for year 2025. It can be seen that the site number in
Oman is less compared to Turkey and Malaysia due to popu-

lation and area. The site number in Turkey and Oman will see
an increasing trend compared to Malaysia since it has a strat-
egy to reduce 3G networks from 2021 onwards. All targeted
countries require a spectrum efficiency above 14 bps/Hz. Tur-

key recorded higher spectrum efficiency growth compared to
Malaysia and Oman.

All forecasted results for every individual MTO are pre-

sented in Figs. 3 and 4 from 2015 to 2025. Fig. 3 displays
the forecasted spectrum efficiency, while Fig. 4 displays the
projected spectrum efficiency growth. Fig. 3 (a), 3 (b), and 3

(c) highlight the forecasted spectrum efficiency of three consid-
ered MTOs in Turkey, four MTOs in Malaysia, and two
Table 4 Input parameters and spectrum efficiency results for three

Operator SN/T Ty

2G 3G 4G 2G

T1 5808 83,647 82,932 0.1

T2 0 74,748 76,690 0.1

T3 0 70,263 75,156 0.1

Average 1936 76,220 78,260 0.1

SN/T : Sites number per technology AS

ASE/T : Average spectrum efficiency per technology SE
MTOs in Oman, respectively. The forecasted spectrum effi-
ciency for Malaysia and Oman gradually increases, while it ini-
tially increases in Turkey until 2022 and then slightly decreases

due to the forecast of low site numbers in the last three years.
Fig. 5.

Fig. 4 (a), 4 (b), and 4 (c) show the predicted spectrum effi-

ciency growth of three, four, and two considered MTOs in
Turkey, Malaysia, and Oman, respectively. The results repre-
sent the predicted output for the eleven years, from 2015 to

2025. The results in both figures indicate that the spectrum effi-
ciency and growth ratio will radically increase within the com-
ing years. The average predicted spectrum efficiency per site
for all operators in 2025 may reach up to 13.96 bps/Hz,

16.37 bps/Hz, and 15.62 bps/Hz in Turkey, Malaysia, and
Oman, respectively. Compared to 2015, the average predicted
growth ratios for all operators in 2025 may increase up to 5.5,

2.75, and 1.92 times in Turkey, Malaysia, and Oman, respec-
tively. This increase is due to the outcome of continuous
migration and upgrade from old to newer technology for

mobile cellular systems.
The forecasts performed for Turkey, Malaysia, and Oman

are based on the combined input data of all considered MTOs.

Tables 7, 8, and 9 present the combined input parameters as
well as the forecasted future spectrum efficiency and spectrum
efficiency growth of the main MTOs in Turkey, Malaysia, and
Oman, respectively. These input parameters and estimated

future results are for years 2015 to 2025. All forecasted results
are displayed in Figs. 5, 6, and 7.

Fig. 5 exhibits the predicted growth of the number of sites

for all technology types: 2G, 3G, and 4G. In Fig. 5 (a), the
number of forecasted sites is estimated based on the historical
data collected from the operators’ annual reports, Analysys

Mason, and other online sources for each individual technol-
ogy in Turkey. In Fig. 5 (b), the number of forecasted sites
is estimated based on the historical data collected from the

Malaysian Communications and Multimedia Commission
(MCMC), and then distributed among operators based on
their capabilities. Fig. 5 (c) displays the estimated number of
forecasted sites according to several published data in the

annual reports of the Ministry of Technology and Communi-
cation (MTC) in Oman and a published report by Ooredoo.
The capability of each MTO is assessed based on the mobile

connection number reported by GSMA [21] for each individ-
ual technology in Malaysia. The results indicate that the num-
ber of sites will continue to radically increase for 4G

technology and slightly increase for 3G technology. It will
not noticeably grow for the 2G technology. The reason is that
MTOs in Turkey for 2025.

pical ASE/T [bps/Hz] Forecasted ASE [bps/Hz] SEG

3G 4G

7 4.87 23.16 13.51 5.4

7 4.87 23.16 14.13 5.5

7 4.87 23.16 14.32 5.6

7 4.87 23.16 13.96 5.5

E : Average spectrum efficiency

G : Spectrum efficiency growth (2015 – 2025)



Table 5 Input parameters and spectrum efficiency results for four MTOs in Malaysia for 2025.

Operator SN/T Typical ASE/T [bps/Hz] Forecasted ASE [bps/Hz] SEG

2G 3G 4G 2G 3G 4G

M1 16,345 23,985 85,927 0.17 4.87 23.16 16.71 2.34

M2 6306 42,166 121,041 0.17 4.87 23.16 17.755 3.57

M3 14,237 33,337 82,471 0.17 4.87 23.16 15.954 2.64

M4 0 40,798 51,146 0.17 4.87 23.16 15.044 2.66

Average 36,888 140,286 340,585 0.17 4.87 23.16 16.37 2.75

Table 6 Input parameters and spectrum efficiency results for two MTOs in Oman for 2025.

Operator SN/T Typical ASE/T [bps/Hz] Forecasted ASE [bps/Hz] SEG

2G 3G 4G 2G 3G 4G

O1 2488 5371 12,177 0.170 4.870 23.160 15.40 1.80

O2 2626 3503 10,844 0.170 4.870 23.160 15.83 2.04

Average 2557 4437 11,511 0.170 4.870 23.160 15.62 1.92
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Fig. 2 Predicted results in 2025 of (a) site number and (b) spectrum efficiency for the targeted countries.
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operators normally upgrade 2G and 3G networks to newer
technology that continue to enhance coverage and system
capacity, therefore, the preference is to only install more
advanced technology such as the 4G.

From the results in Figs. 5, 3G is the dominant network
while 4G is less deployed in the years 2015 to 2018 in Turkey
and Malaysia, and the years between 2016 and 2020 in Oman.

However, the predicted number of sites for 4G will be expo-
nentially higher by 2025 for all considered countries. Fig. 5
(a) further illustrates that the 2G network will gradually

decrease, while Fig. 5 (b) and 5 (c) recorded no significant
increase or decrease between 2015 and 2025.

The 4G deployment in 2025 will reach up to 64.5% from
the total networks established, while 2G and 3G will reduce

to 7.6% and 27.9%, respectively. The 5G network is not men-
tioned here since the first commercial 5G system has only been
deployed in 2020. In fact, the deployment of 5G networks in
Turkey, Malaysia, and Oman may take another two to three
years after standardization. The first anticipated phase of 5G
deployment will not be broad and thus was not considered
in our prediction. The increase in the predicted number of

4G and 4G + sites will offer additional data exchanges with
enhanced spectrum efficiency, which will further reduce spec-
trum demands. The reasons behind such improvements are

normally due to the increase of sector numbers, the implemen-
tation of massive MIMO, and higher modulation schemes such
as 64-QAM and 254-QAM. These technological solutions are

continuously enhanced to cope with the rapid advancement
of radio MBB technology.

The increase in the number of sites contributes to the future
extension of the 4G network coverage, further leading to spec-

trum efficiency enhancements. Fig. 6 displays the average spec-
trum efficiency from 2015 to 2025 for Turkey, Malaysia, and
Oman. The predicted enhancement in spectrum efficiency,
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Fig. 3 Spectrum efficiency for different MTOs in (a) Turkey, (b) Malaysia, and (c) Oman.

Time series forecasting model of future spectrum 8059
which can be estimated by applying the formulated models in
Eq. (10), is evaluated as a function of the number of sites. The

predicted spectrum efficiency by 2025 is 13.99 bps/Hz, 16.31
bps/Hz, and 15.62 bps/Hz for Turkey, Malaysia, and Oman,
respectively. It can be seen that Turkey’s spectrum efficiency
slightly decreases by 3.92% for the predicted years of 2022

to 2025 due to a significant increase in 3G network utilization
compared to Malaysia and Oman. The difference in the per-
centage of spectrum efficiency from 2015 to 2025 is 138.33%,

83.40%, and 98.23% for Turkey, Malaysia, and Oman, respec-
tively. Turkey’s spectrum efficiency is 2.55 in 2015, which is
half the spectrum efficiency in Malaysia and Oman.

These enhancements are usually performed by upgrading
current networks (2G and 3G networks) to newer technology
such as the 4G. Based on our forecasts and other predicted
studies, [21,22,25,35], all MTOs in Turkey and Malaysia will

continue to upgrade 2G and 3G networks to 4G sites. More-
over, they will progressively install new 4G and 4G + sites
to fulfill the surge of future data demands. These new upgrades

and installations will offer more data and higher spectrum effi-
ciency, which will contribute to the reduction of the required
spectrum in future. The proposed model’s forecast demon-
strates that spectrum efficiency will slightly grow over time,

as illustrated in Fig. 7. This figure represents the average com-
pound annual growth rate of spectrum efficiency over a time
interval longer than one year (2 to 10 years). The average com-
pound annual growth rate considers the most accurate and

efficient method to calculate and determine the spectrum effi-
ciency growth, which can increase or decrease over time. The
figure displays an approximate compound annual growth rate

of 10%, 5%, and 6% for the interval of two years compared to
14%, 8%, and 10% for the interval of ten years (from 2015 to
2025) for Turkey, Malaysia, and Oman, respectively. Over sev-

eral time intervals, the spectrum efficiency growth in Turkey is
high compared to Malaysia and Oman due to the annual gap
in the number of sites.

Fig. 8 illustrates the average annual spectrum efficiency

growth for all time intervals (2015 to 2025) for Turkey, Malay-
sia, and Oman. The average annual growth rates are deter-
mined by taking the average rate of each annual growth in a

given period for each country. Fig. 8 demonstrates how the
average annual spectrum efficiency in Turkey is higher than
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Fig. 4 Spectrum efficiency growth ratio for MTOs in (a) Turkey, (b) Malaysia, and (c) Oman.
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Malaysia and Oman. The average annual rate of spectrum effi-

ciency acquired by Turkey, Malaysia, and Oman is 24%, 9%,
and 11%, respectively. Fig. 9 displays the spectrum efficiency
growth rate in 2016 (with respect to 2015) and the expected

growth rate in 2025. The expected growth rate in 2025 is
approximately 447.45%, 143.07%, and 193.06% for Turkey,
Malaysia, and Oman, respectively. It can be seen that the
expected growth rate in 2025 increases by 3, 6, and 9 times

compared to the growth rate in 2015 for Turkey, Malaysia,
and Oman, respectively. This increase serves as an indicator
for regulators and mobile operators so as to address the spec-

trum gap that may occur due to limited licensed spectrum
bands.

Table 10 displays the quantified forecasting errors for each

model with respect to country. From the table, it is apparent
that the proposed model achieved lower NMAE and NRMSE
compared to other models in Turkey and Malaysia. For Tur-

key, the MA and ARIMA models obtained higher MAE and
RMSE compared to the AR and ARMA models. For Malay-
sia, the ARIMA model acquired lower NRMSE (0.09) while
MA, AR, and ARMA obtained 0.31, 0.21, and 0.63, respec-

tively. For Oman, the ARIMA model achieved lower NMAE
and NRMSE compared to MA, AR, ARMA and proposed
models. The MA and AR models provided the worst forecast-

ing outcomes among the five models for all three countries.
However, the ARIMA model performed well for Malaysia

and Oman, while the ARMA model outperformed the
ARIMA model for Turkey. It can be seen that the ARMA
and ARIMA models provide the most accurate forecasting

results from a global perspective. The proposed model outper-
formed all other models by obtaining the lowest NRMSE of
0.12, 0.05, and 0.11 for Turkey and Malaysia, respectively.
However, the ARIMA model outperformed all models for

Oman due to smothly growth of sites number. The forecasting
error of traditional statistical models (MA, AR, ARMA, and
ARIMA) is affected by the pattern of time series data, whereas

the proposed model examines the pattern trend, significantly
influencing the prediction of accurate spectral efficiency for
each independent technology.

Fig. 10 demonstrates the logarithmic function of each
model with respect to country. The logarithmic function deter-
mines whether the forecast value is higher or lower than the

actual value, represented by positive or negative values of
the logarithmic ratio. The proposed model can be seen to have
low RAF and positive values for all countries. This signifies that
the proposed model predicted higher values compared to

actual values. The MA and ARMA models have negative
RAF values, indicating that the forecasted values are lower than
the actual values for all three countries. MA and ARMA

recorded negative RAF values in all compared countries, while
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Fig. 5 The combined forecasted sites number growth for MTOs in (a) Turkey, (b) Malaysia, and (c) Oman.

Table 7 The combined input parameters and predicted spectrum efficiency in Turkey.

Year Sites Number Per Technology ASE over all Technology [bps/Hz] SFG Ratio over all Technology

2G 3G 4G

2015 54,939 56,238 0 2.55

2016 46,506 65,044 22,519 6.31 2.5

2017 33,483 73,851 46,103 9.34 3.7

2018 22,676 82,657 69,688 11.54 4.5

2019 16,559 91,464 93,272 12.96 5.1

2020 14,955 100,270 116,857 13.78 5.4

2021 11,755 114,875 140,441 14.28 5.6

2022 9486 133,886 164,025 14.48 5.7

2023 7484 159,803 187,610 14.44 5.7

2024 6717 190,227 211,194 14.26 5.6

2025 5808 228,659 234,779 13.96 5.5

Time series forecasting model of future spectrum 8061
higher RAF values were observed in the AR and ARMA model
for Oman and Malaysia, respectively. This indicates that AR

and ARMA achieved relatively lower forecasting compared
to other models Hence, AR provides the worst forecasting
among all five models for Oman.

Fig. 11 presents the surface plot of the proposed model’s
accuracy percentage in comparison with other models (MA,
AR, ARMA, and ARIMA) for Turkey, Malaysia, and Oman.
Regarding the data for Turkey, the accuracy percentage is

89%, 67%, 69%, 84%, and 77% for the proposed model,
MA, AR, ARMA, and ARIMA models, respectively. Gener-
ally, the proposed model and the ARIMA model both

obtained higher forecasting accuracy compared to other mod-
els (MA, AR, and ARMA models). For Malaysia’s data, the



Table 8 The combined input parameters and predicted spectrum efficiency in Malaysia.

Year Sites Number Per Technology ASE over all Technology [bps/Hz] SEG Ratio over all Technology

2G 3G 4G

2015 17,717 24,107 9753 6.71

2016 18,369 26,021 16,054 8.30 1.24

2017 19,870 30,442 23,362 9.40 1.40

2018 22,175 37,487 33,589 10.34 1.54

2019 23,419 44,522 44,488 11.13 1.66

2020 24,746 53,543 57,676 11.77 1.75

2021 26,464 62,870 82,592 12.93 1.93

2022 28,475 75,014 114,735 13.87 2.07

2023 30,606 89,853 157,872 14.73 2.19

2024 32,645 107,024 215,276 15.53 2.31

2025 34,888 127,548 295,238 16.31 2.43

Table 9 The combined input parameters and predicted spectrum efficiency in Oman.

Year Sites Number Per Technology ASE over all Technology [bps/Hz] SEG Ratio over all Technology

2G 3G 4G

2015 4083 3745 1285 5.33

2016 4279 4403 2008 6.41 1.20

2017 4396 4805 3086 7.78 1.46

2018 4426 5226 3881 8.58 1.61

2019 4498 5399 4270 8.89 1.67

2020 4609 5923 5826 10.06 1.89

2021 4722 6498 7949 11.31 2.12

2022 4816 7025 10,530 12.48 2.34

2023 4904 7581 13,502 13.5 2.53

2024 5006 8169 17,380 14.52 2.72

2025 5114 8874 23,021 15.62 2.93
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Fig. 6 Average spectrum efficiency for 2015–2025.
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proposed model outperformed the other models with an accu-

racy of 94% compared to 78%, 71%, 70%, and 90% for MA,
AR, ARMA, and ARIMA, respectively. For Oman, however,
the proposed model and the MA model both obtained a simi-
lar accuracy value of 88% and 87%, receptively, while the

accuracy of AR and ARMA remained below 70%. In addi-
tion, the ARIMA model achieved the highest accuracy of
95% compared to other models.
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Table 11 presents a comparison of the accuracy percentage
for all forecasting models. Fig. 12 displays the overall accuracy

of the forecasting models. The overall accuracy of the pro-
posed model, MA, AR, ARMA, and ARIMA is 90%, 77%,
68%, 74%, and 87%, respectively. ARIMA model achieved
higher overall accuracy because it only performed well for
Oman while the proposed obtained higher accuracy for Turkey
and Malaysia. It can be concluded that the proposed model
achieved remarkable accuracy compared to the other models.

This is due to the considered parameters of the proposed
model as well as the method of forecasting. The considered
input parameters have a direct impact on the forecasted spec-

tral efficiency. Hence, the number of sites from different tech-
nologies have a significant impact on independently estimating
accurate spectral efficiency for each technology. The clear

growth of the number of sites every year also significantly con-
tributes to the estimation of more accurate results. Lower
accuracy of traditional statistical models is probably due to

the fact that these models are based on accumulated historical
data which primarily capture the trend of the time-series but
cannot properly characterize the different data patterns. The
performance of all models also depends on the application,

size, and pattern of the dataset.
Based on the above discussion, it can be concluded that the

proposed model outperforms other models and has the least

forecasting errors. However, the ARMA and ARIMA models
provide better forecasting compared to the MA and AR mod-
els. The proposed model achieves a remarkable overall accu-

racy of 90% compared to the other models.

5. Recommended directions and limitations

5.1. Recommended directions

5.1.1. Current directions

The current MBB operators require to increase network capac-
ity since mobile data traffic is dramatically increasing. Four

interconnected directions are present to enhance network
capacity and support the high demands of data-hungry ser-
vices [38,39].

� Network densification: is a process of deploying more base
stations to increase congested network capacity. It also

helps improve mobile network coverage and availability.
From the perspective of mobile operators, however, deploy-



Table 10 Comparison of accuracy percentage of forecasting models.

Turkey Malaysia Oman

NMAE NRMSE RAF NMAE NRMSE RAF NMAE NRMSE RAF

MA 0.335583 0.345319 �0.02427 0.306823 0.307865 �0.1132 0.158739 0.187462 �0.0626

AR 0.260691 0.26233 0.015991 0.20918 0.210305 0.105436 1.209841 1.081874 �0.27293

ARMA 0.183129 0.2002 �0.03722 0.589037 0.627341 �0.17969 0.097596 0.041546 �0.03706

ARIMA 0.329464 0.380633 �0.08776 0.084673 0.091381 0.038309 0.055140 0.059572 0.00499

Proposed 0.109328 0.12665 0.002193 0.054829 0.055234 0.017244 0.098989 0.109674 0.046922

Fig. 10 Logarithmic ratio with respect to all forecasting models.
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ing new base stations will lead to several drawbacks: it is a
time-consuming process, it is likely to increase backhauls,
and it requires significant capital expenditure. This will lead

to suboptimal spending for mobile networks, which will
affect the price paid by end-users.
Table 11 Comparison of the accuracy percentage for all forecastin

Proposed MA

Turkey 89% 67%

Malaysia 94% 78%

Oman 88% 87%

Overall 90% 77%
� Offloading traffic: is the process of offloading traffic data
from mobile networks to complementary access network
technology such as Wi-Fi and fixed networks. In this case,

the load will be transferred to existing base stations. Mobile
operators can provide their users with access to Wi-Fi and
fixed networks and encourage them to connect to Wi-Fi

hotspots available at indoor environments such as hotels,
restaurants, coffee shops, and transport terminals. A related
study in Malaysia [1] had stated that mobile data traffic of

cellular networks does reduce by 68.47% (from 2364.47
Petabytes to 745.44 Petabytes) when mobile data traffic is
off-loaded onto femtocell and Wi-Fi networks. This conse-
quently reduces the required spectrum gap by half for 2020

relative to 2015. Although offloading to Wi-Fi hotspots
which use unlicensed spectrum provides high-speed internet
connection, these networks do not offer secure communica-

tion. Wi-Fi hotspots can also be very congested and may
interfere with each other.

� Improving spectral efficiency: The spectral efficiency of

mobile services increases with new mobile technology. It
can be improved by increasing the number of antenna ele-
ments, radio resource management techniques, or spatial

diversity multiple access. Refarming the spectrum can be
applied to repurpose existing bands (i.e., 2G bands) to sup-
g models.

AR ARMA ARIMA

69% 84% 77%

71% 70% 90%

64% 69% 95%

68% 74% 87%



Fig. 12 Overall accuracy percentage of forecasting models.
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port newer bandwidth-hungry applications. However, not

all spectrums can be refarmed. Mobile operators must still
continue to support some 2G connections.

� Acquiring additional mobile spectrums: Wireless networks

face greater spectrum scarcity due to the high amounts of
spectrum required. This is generated from the increasing
demands for mobile internet access. Spectrum regulators

must open new spectrum bands for mobile operators to
accommodate the increase in network capacity. The
required spectrum for each national market depends on

the data population distribution, demand forecasts, and
other national circumstances. According to a study [39],
mobile data traffic in Malaysia will hit 2364.47 Petabytes
per year from 2020, which is a significant increase from

295.72 Petabytes in 2015. Mobile data traffic is almost eight
times the amount of 2015. The expected average site num-
ber and spectrum efficiency growth rates from 2015 to

2020 would be 167% and 264%, respectively. Thus, the rate
of spectrum efficiency growth will increase from 264% to
417% by the year 2025. Acquiring an additional spectrum

is key for fulfilling the potential data demands in future.

5.1.2. Future direction

In the 5G network, spectrum efficiency allows network opera-
tors to utilize small cells to densify their networks and reuse the
spectrum more than once. This technique is becoming a com-

mon practice since it enhances capacity and allows the smooth
transition from 4G to 5G. Thus, spectrum efficiency plays a
crucial role in 5G network deployment due to increasing
demands in data generation and processing. Several 5G trends

can be summarized as follows:

� Spectrum bands: The spectrum bands in the new 5G radio

network for MBB are divided into two categories: low
bands (450 GHz to 6 GHz (sub 6 GHz)) and high bands
(24.25 to 52.6 GHz millimeter wave). Both categories offer

different capabilities. The low band exists in the new spec-
trum licensed for mobile services and 3G and 4G bands.
This type of spectrum provides higher 5G network coverage

with moderate capacity. The high bands support ultra-high
broadband speeds envisioned for 5G, which offer higher

capacity with low network coverage. The ITU-R
M.2412–0 report stated that the deployment of the 5G net-
work promises considerable increase in spectral efficiency,

enabling downlink and uplink peak speeds of more than
30 bps/Hz and 15 bit/s/Hz, respectively. The recommended
data rates for user experience in dense urban areas are 100

Mbit/s and 50 Mbit/s for downlink and uplink,
respectively.

� Massive MIMO and Beamforming: The 5G network aims to

improve spectral efficiency by using massive MIMO sys-
tems based on beamforming techniques. The beamforming
technique is critical to 5G networks as it helps direct and
adjust radio waves to target a specific receiver. Beamform-

ing is a technique that manages radio frequencies. An access
point sends out the same signal via multiple antennas to
increase system capacity and performance. The serving

beamforming antenna elements are installed at base stations
with detector processing and coherent precoding. However,
the massive beamforming systems require the use of

advanced processing and complex hardware.
� Network deployment: The massive deployment of small cells
in next-generation networks is expected to boost the overall
network performance. Deploying small cells can also

increase capacity and coverage, two important concerns
for telecommunication operators. However, heterogeneous
networks have become complex owing to the deployment

of massive, small cells within macrocells. The deployment
of a large number of small cells in the 5G network is
expected to boost the overall system performance by

enhancing coverage and improving user experience. The
use of several remote radio heads and wireless relays in
heterogeneous networks are needed to further boost net-

work performance.

5.2. Study limitations

This study encountered several limitations that must be consid-
ered in future to further develop this model and acquire more
accurate results. These limitations are listed as follows:
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� This study forecasts future spectrum efficiency growth for

MBB networks depending on the input data of existing
mobile cellular networks (2G, 3G, and 4G). Emerging tech-
nology and industry trends such as the internet of things,

augmented reality, artificial intelligence, drones, robotics,
etc., are not considered in this study. However, forecasting
future spectrum demands for these upcoming trends can be
considered in future works.

� This study is limited to three countries (Malaysia, Turkey,
and Oman) where the 5G MBB network is still under trial
stages. The commercial 5G rollout is only expected in the

next coming years. No commercial 5G base station has been
deployed or opened for public use. Thus, the proposed
model for forecasting spectral efficiency is applicable once

the 5G data of implemented base stations are available.
Accurate forecasting results depend on the size of the time
series data, with long time series data providing more accu-
rate outcomes. Hence, to forecast 5G spectrum efficiency

growth, sufficient historical data is required. For our future
study, 5G technology will be considered to forecast the
required spectrum efficiency growth for 2030.

� Each operator/mobile service provider has a different strat-
egy for future mobile network deployment and develop-
ment. This plan is usually confidential and cannot be

publicly shared, therefore, any related data cannot be easily
obtained. This makes it more difficult to obtain 100% fore-
casting accuracy in any country. It will be challenging to

acquire real data from operator/mobile service providers
regarding the strategic plan for the future deployment of
5G and other mobile networks, leading to limited input
data for forecasting. This subsequently leads to reduced

accuracy of forecasted results.
� The deployment of the 5G mobile network has relatively
begun in these three countries, with different deployment

levels between them. It is certain that the 5G mobile net-
work deployment will further increase in future. In the next
five years, the 5G network is expected to become a major

mobile network, contributing to further enhancements of
spectrum efficiency for mobile networks. Unfortunately,
we were unable to acquire data from a reliable source to
implement in the 5G mobile network. The aim is to solve

this issue in our future study to commence with the second
phase of our forecasting.

6. Conclusion

This study proposed a new model to forecast spectrum effi-

ciency and its growth for future mobile celluler communica-
tion networks. The model perform the forecasting based on
the average spectrum efficiency per site and the number of

sites per mobile communication technology. The model is
applied to estimate and analyze spectrum efficiency growth
in Turkey, Malaysia, and Oman according to the input data

of their respective major MTOs. Major parts of the input
data were collected from different sources, while other parts
of the input data were estimated based on other related data
collected from different sources. The spectrum efficiency and

spectrum efficiency growth were presented and discussed to
illustrate the radical growth between the years 2015 and
2025. Based on this study, it can be concluded that by
2025, the spectrum efficiency growth will rise up to
447.45% in Turkey, 143.07% in Malaysia, and 193.06% in
Oman as compared to that of 2016. The findings will con-

tribute to the fulfillment of future data demands and the
reduction of spectrum gaps. These outcomes can be used
for future spectrum planning by regulators and operators to

address future spectrum gaps using one of the suggested
strategies: increasing the sites number, utilizing unlicensed
bands, enhancing spectrum efficiency or discovering a poten-

tial spectrum band. However, mobile network operators must
also consider the cost of implementing one of the suggested
strategies as well as the available resources provided by reg-
ulators in each country. The accuracy of the proposed model

was compared with other forecasting models based on the
input sources. The proposed model outperformed the tradi-
tional statistical models with an accuracy of 90%. The main

limitation of this work is collecting data from each operator
using various accurate resources. Some operators and devel-
opers are unwilling to share this type of data due to privacy

and confidentiality. Forecasting spectrum efficiency growth
for 5G mobile network requires sufficient historical data for
at least the previous five years. For our future study, 5G

technology will be considered to forecast the needed spectrum
efficiency growth for 2030.
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