SHORT-TERM AGEING EFFECTS ON ASPHALT BINDERS

TIONG HWA NGUONG

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Civil – Transportation and Highway)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JUNE 2008

To my beloved mother and father and dear family

ACKNOWLEDGMENT

I would like to express my gratefulness to all entities that are involved in my project work. In preparing this thesis, I was in contact with many people, researchers, academicians and technicians. They all have contributed to my understanding and valuable thoughts during my project.

First and foremost, I wish to express my sincere appreciation to both my supervisors, Dr. Mohd Rosli bin Hainin and Dr. Abdul Aziz Chik, for encouragement, guidance and critics. Their kindness and encouragement helped me to persevere along the way. Without their continued support and advices, this thesis would not have been the same.

My fellow postgraduate students should also be recognized for their support. My utmost thanks to Esarwi and Noor Azreena Kamaluddin for their advices and tips all this time. My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Unfortunately, it is not possible to list all of them in this limited space.

Last but not least, I am grateful to all my family members for their moral and financial support and understanding all this time.

ABSTRACT

Asphalts undergo two substantially different ageing processes in their service life. They are subjected to high temperatures and a high degree of air exposure during their relatively short production time (short term ageing) and then to the environment at a relatively lower temperature and air void content for a long duration (long-term ageing). A variety of methods have been proposed and investigated to simulate the aging effects on asphalt during mixing as well as field service. Only short-term ageing was pursuit in this study, where the thin film oven test and rolling thin film oven test will be utilized to simulate the ageing. There is no direct measure for asphalt binder ageing. Rather, ageing effects are accounted for by subjecting asphalt samples to simulated ageing and conducting other standard physical tests (such as viscosity, penetration, and softening point) afterwards. The main purpose of this study was to compare the ageing effects from both ageing methods for three types of asphalt binders. From the t-test analysis, the two ageing methods result in almost similar rheological properties (p > 0.05).

ABSTRAK

Asfalt melalui dua proses penuaan penting yang berbeza sepanjang perkhidmatannya. Ia terdedah kepada suhu yang tinggi dan udara yang terlampau semasa pengaulan (penuaan jangka pendek) dan kemudiannya kepada alam sekitar pada suhu dan kandungan lompang yang lebih rendah secara relatifnya untuk jangka masa panjang (penuaan jangka panjang). Terdapat beberapa kaedah yang telah dicadangkan dan dikaji untuk menyimulasi kesan penuaan semasa proses pengaulan dan perkhidmatannya kepada asfalt. Hanya penuaan jangka pendek yang akan dijalankan dalam kajian ini, di mana kaedah oven filem nipis dan kaedah oven filem nipis berputar akan digunakan untuk menyimulasi proses penuaan. Setakat ini, masih tidak ada kaedah tertentu untuk menyukat langsung kesan penuaan asfalt. Sebaliknya, kesan penuaan asfalt akan diteliti dengan menjalankan ujian- ujian fizikal (contohnya ujian kelikatan, ujian penembusan dan ujian titik lembut) selepas penuaan. Objektif utama kajian ini adalah untuk membandingkan kesan penuaan dari dua kaedah penuaan untuk tiga jenis asfalt. Daripada analisis ujian-t, kedua- dua kaedah penuaan didapati menunjukkan kesan penuaan yang hampir sama (p > 0.05).

TABLE OF CONTENTS

CHAPTER

1

TITLE

PAGE

ii

iii

iv

v

vi

vii

xi

xiii

XV

xvi

1

1

DECLARATION OF THE STATUS OF THESIS SUPERVISOR'S DECLARATION TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF FIGURES LIST OF ABBREVIATIONS LIST OF APPENDICES

		-
1.2	Problem Statement	2
1.3	Aim of Study	3
1.4	Objectives of Study	3
1.5	Significance of Study	4

LITERATURE REVIEW

2.1	Introduction			5
2.2	Types	Types of Asphalt for Commercial Use		
	2.2.1	Natural As	phalts	6
	2.2.2	Petroleum	Asphalts	7
2.3	Asphal	t in Road C	onstruction	7
	2.3.1	Penetration	n Grade	8
	2.3.2	Viscosity C	Grade	9
	2.3.3	Performance	ce Grading	10
2.4	Asphal	t Binder Ag	geing	11
	2.4.1	Asphalt Bi	nder Ageing Mechanisms	11
	2.4.2	Asphalt Bi	nder Ageing Processes	12
		2.4.2.1	Asphalt Binder Ageing Contributing	15
			Factors	
2.5	Rheolo	gical Prope	rties after Ageing	16
	2.5.1	Penetration	1	17
	2.5.2	Viscosity		18
2.6	Marsha	all Mixture	Design Method	19
	2.6.1	Aggregate	Selection	19
	2.6.2	Asphalt Bi	nder Selection	19
	2.6.3	Optimum A	Asphalt Binder Content Determination	19
мел	יחטה	NOCV		21
3 .1		DLOGY		21 21
3.1	Introduction Operational Framework			21
	Materia		ework	
3.3				23
3.4		ilm Oven T	est	24
		Apparatus		24
o -	3.4.2	Procedures		24
3.5 Rolling Thin Film Oven Test			Oven Test	26
	3.5.1	Apparatus		26

	3.5.2	Procedure	28	26
3.6	Consistency Tests			
	3.6.1	Penetratio	n Test	28
		3.6.1.1	Apparatus	30
		3.6.1.2	Procedures	31
	3.6.2	Softening	Point Test	32
		3.6.2.1	Apparatus	33
		3.6.2.2	Procedures	33
	3.6.3	Viscosity	Test	35
		3.6.3.1	Apparatus	36
		3.6.3.2	Procedures	36
3.7	Marsh	all Mixture	Design Method	38
	3.7.1	Aggregate	2	38
	3.7.2	Sieve Ana	lysis for Fine and Coarse Aggregate	39
		3.7.2.1	Apparatus	39
		3.7.2.2	Procedures	39
	3.7.3	Aggregate	e Gradation	40
	3.7.4	Washed S	ieve Analysis of Mineral Filler	42
		3.7.4.1	Apparatus	42
		3.7.4.2	Procedures	43
	3.7.5	Asphalt B	inder Content	43
	3.7.6	Theoretic	al Maximum Density (Loose Mix)	44
		3.7.6.1	Apparatus	45
		3.7.6.2	Procedures	46
	3.7.7	Marshall	Sample Preparation	47
		3.7.7.1	Apparatus	47
		3.7.7.2	Procedures	48
	3.7.8	Flow and	Stability Test	51
		3.7.8.1	Apparatus	53
		3.7.8.2	Procedures	54
3.8	Data A	Analysis		57

		3.8.1	Bulk Specific Gravity	57
		3.8.2	Void in Mineral Aggregate (VMA)	58
		3.8.3	Void in Total Mix (VTM)	58
		3.8.4	Void Filled with Asphalt (VFA)	59
		3.8.5	Determination of Optimum Bitumen Content	60
		3.8.6	T-test	60
4	RES	SULTS	AND DATA ANALYSIS	62
	4.1	Introd	uction	62
	4.2	Data A	Analysis	62
	4.3	Penet	ration Test Results	63
	4.4	Softer	ing Point Test Results	64
	4.5	Visco	sity Test Results	65
		4.5.1	PEN 80-100	65
		4.5.2	PG70	66
		4.5.3	PG76	67
	4.6	Theor	etical Maximum Density	68
	4.7	Optim	um Asphalt Content	69
	4.8	T-test	Analysis	70
5	CONCLUSIONS		72	
	5.1	Introd	uction	72
	5.2	Concl	usion	72
REFEREN	CES			75
APPENDIC	APPENDICES A-G			77

LIST OF TABLES

TABLE NO.	TITLE PA	GE
2.1	Comparison of TFOT and RTFOT methods	14
3.1	Values of penetration and the maximum discrepancy	32
	allowed	
3.2	Total number of ACW14 samples	38
3.3	Gradation Limits for Asphaltic Concrete	41
3.4	Gradation Used for ACW14 Marshall	42
3.5	Asphalt binder content design	43
3.6	Gradation Used for ACW14 TMD	45
4.1	Fresh and TFOT aged asphalt binders penetration	63
	test results	
4.2	Fresh and RTFOT aged asphalt binders penetration	63
	test results	
4.3	Fresh, TFOT and RTFOT aged asphalt binders	64
	softening point test results	
4.4	PEN 80-100 samples' viscosity at respective temperatures	65
4.5	PG70 samples' viscosity at respective temperatures	66
4.6	PG76 samples' viscosity at respective temperatures	67
4.7	TMD at each increment of asphalt content for PEN 80-100	68
4.8	TMD at each increment of asphalt content for PG70	68
4.9	TMD at each increment of asphalt content for PG76	69
4.10	Breakdown of parameters of ACW14 in favour of 75	70

blows

4.11	T-test for PEN 80-100 between TFOT and RTFOT	71
4.12	T-test for PG70 between TFOT and RTFOT	71
4.13	T-test for PG76 between TFOT and RTFOT	71

LIST OF FIGURES

FIGURE NO.	TITLE P	AGE
3.1	The operational framework for the tests and analysis	22
3.2	Flow chart of experimental design procedure for	23
	evaluating the ageing difference between TFOT and	
	RTFOT	
3.3	Thin film oven	25
3.4	Weighing the asphalt binder	25
3.5	Rotating shelf in the oven	25
3.6	Rolling thin film oven	27
3.7	The inside of rolling thin film oven	27
3.8	Preparing the asphalt binder samples for ageing	28
3.9	Penetration test for an asphalt binder sample	29
3.10	Water bath	29
3.11	Ring and Ball apparatus	34
3.12	Thermosel and Viscometer	37
3.13	Sieved aggregates in their respective containers according	g 40
	to size	
3.14	Vacuum pump and vacuum container	46
3.15	Heating samples prior to Marshall design mix	49
3.16	Mixing the aggregates with the asphalt	50
3.17	Compaction hammer	50
3.18	Flow determination for two types of specimen failure	52

LIST OF ABBREVIATIONS

-	American Association of State Highway Officials
-	American Association of State Highway and Transportation
	Officials
-	American Society of Testing and Materials
-	Federal Highway Administration
-	Hot mix asphalt
-	National Asphalt Paving Association
-	Optimum bitumen content
-	Performance Grade
-	Rolling thin film oven test
-	Rotational viscometer
-	Strategic Highway Research Program
-	Thin film oven test
-	Theoretical maximum density
-	Void Filled with Asphalt
-	Void in Mineral Aggregate
-	Void Total in Mix
	-

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	Hydrographs for year 2006 from February to December	77
В	Marshall test result spread sheet for PEN 80-100	78
С	Marshall graphs of ACW14 for PEN 80-100	79
D	Marshall test result spread sheet for PG70	80
E	Marshall graphs of ACW14 for PG70	81
F	Marshall test result spread sheet for PG76	82
G	Marshall graphs of ACW14 for PG76	83

CHAPTER I

INTRODUCTION

1.1 Research Background

Asphalts undergo two substantially different ageing processes in their service life. They are subjected to high temperatures and a high degree of air exposure during their relatively short production time (short term ageing) and then to the environment at a relatively lower temperature and air void content for a long duration (long-term ageing). A variety of methods have been proposed and investigated to simulate the aging effects on asphalt during mixing as well as field service. The purpose of this study was to conduct a laboratory evaluation of different short-term ageing processes' effects on asphalt binders commonly used in Malaysia.

There is no direct measure for asphalt binder ageing. Rather, ageing effects are accounted for by subjecting asphalt samples to simulated ageing and conducting other standard physical tests (such as viscosity, penetration, softening point, dynamic shear rheometer (DSR), bending beam rheometer (BBR) and the direct tension test (DTT)) afterwards (3.3 Materials – Asphalt, 2003). Simulating the effects of ageing is important because an asphalt binder in its virgin state may possess a different set of properties after ageing. Asphalt binder ageing is usually split up into two categories; short-term ageing which occurs when asphalt binder is mixed with hot aggregates in hot mix asphalt

(HMA) mixing facility; and long-term ageing which occurs after HMA pavement construction and is generally due to environmental exposure and loading.

1.2 Problem Statement

Asphalt binder ageing is one of the principal factors causing the deterioration of asphalt pavements (Lu and Isacsson, 2001). As it is, methods to repair and maintain the roads are costly with resurfacing, crack sealing, patching, thin HMA overlay, recycling, and reconstruction may well reach hundred of thousands at times. Thus, it is in the interest of the public to learn the characteristics of ageing asphalt binder so that an effective effort to maintain the roads conditions at the lowest cost can be carried out.

Fresh asphalt binders are tested for their rheological properties and then undergo ageing tests to simulate the short-term ageing. The aged asphalt binders are tested for their rheological properties again to evaluate the difference against the fresh material. Two ageing processes, namely thin film oven test and rolling thin film oven test are chosen to simulate the ageing environment. After-ageing tests on the asphalt binders from both methods are then compared to see the similarity of ageing effects between the two.

To date, there has been a limited research conducted to investigate rheological properties of ageing asphalt binders. Thus, there is a need to conduct an experiment to evaluate the effects of ageing (either short-term or long-term ageing) to asphalt binders. Only short-term ageing is pursuit in this study.

1.3 Aim of Study

The aim of this study is to conduct a laboratory evaluation of two ageing processes, namely thin film oven test (TFOT) and rolling thin film oven test (RTFOT) on asphalt binders commonly used in Malaysia. Both tests simulate the short-term ageing of the asphalt binder during the mixing and production in hot mix asphalt facility. Although the tests might not represent the same environment in which the asphalt binders go through during the production in hot mix asphalt facility for them to showcase the actual properties of the asphalt mixture, it is still a good and easy way to get a rough measure of ageing effects on asphalt binders. The ageing effects are observed in three tests, namely the penetration test, the viscosity test and the softening point test.

1.4 Objectives of Study

This study focuses on the following objectives to achieve the above aim.

- 1. To evaluate the effects of ageing on asphalt binders and to compare the rheological properties between the virgin and aged asphalt binders.
- 2. To compare the two different ageing methods, TFOT and RTFOT.

REFERENCES

- 3.3 Materials Asphalt (2003) website. Viewed on March 2008, http://training.ce.washington.edu/wsdot/modules/03 materials/03-3 body.htm>
- Asphalt Institute (1990). "Introduction to Asphalt." Lexington, Kentucky, United States of America: Asphalt Institute, Research Park Drive.
- Asphalt Pavement Interactive (2008) website. Viewed on March 2008, ">http://pavementinteractive.org/index.php?title=Asphalt>
- Chiu, C.T., Tia, M., Ruth, B.E., and Page, G.C. (1994). "Investigation of Laboratory Aging Processes of Asphalt Binders Used in Florida." *Transportation Research Record 1436 Materials and Construction*. Washington, D.C.: Transportation Research Board.
- Freepatentsonline Patent 6203606 (2008) website. Viewed on March 2008, http://www.freepatentsonline.com/6203606.html
- Graniterock (2008) website. Viewed on March 2008, http://www.graniterock.com/tnconstructionupdatespggrade.html
- Lee, S.J., Amirkhanian, S.N., Shatanawi, K., and Kim, K.W. (2007). "Short-term aging characterization of asphalt binders using gel permeation chromatography and selected Superpave binder tests." *Construction and Building Materials*. xxx (2007) xxx-xxx
- Lu, X., and Isacsson, U. (1999). "Artificial Aging of Polymer Modified Bitumens." Journal of Applied Polymer Science. Vol. 76, 1811–1824 (2000)

- Lu, X., and Isacsson, U. (2001). "Effect of ageing on bitumen chemistry and rheology." *Construction and Building Materials.* 16 (2002) 12-22
- Nur, S. (2006). "Permeability in Malaysia Hot Mix Asphalt Mixtures." Universiti Teknologi Malaysia: Thesis PSM.
- Roberts, F.L., Kandhal, P.S., Brown, E.R., Lee, D.Y., and Kennedy, T.W.(1996). "Hot Mix Asphalt Materials, Mixture Design, and Construction." Lanham, Maryland: NAPA Research and Education Foundation.
- Shalaby, A. (2001). "Modelling short-term aging of asphalt binders using the rolling thin film oven test." Department of Civil Engineering, The University of Manitoba, Winnipeg, Canada.
- Zupanick, M. (1994). "Comparison of the thin film oven test and the rolling thin film oven test." *Journal of the Association of Asphalt Paving Technologists*. 63: 346– 372.