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ABSTRACT 

 

 

 

 

The microstructure and fatigue crack growth behavior of various 

compositions of Ti-Al based intermatellics, Ti-48Al (at%), and the ternary alloys, Ti-

48Al-2Cr, Ti-48Al-4Cr and Ti-48Al-8Cr (at%) have been studied.  The fatigue crack 

growth tests were performed on center-cracked-tension M(T) specimens at room 

temperature in laboratory air, subjected to a constant applied stress range 100MPa 

with a load ratio of minimum to maximum level, R = 0.1.  It was found that the 

threshold of stress intensity factor range of Ti-48Al, Ti-48Al-2Cr, Ti-48Al-4Cr and 

Ti-48Al-8Cr are 12.0MPa√ m, 9.0MPa√ m, 8.0MPa√ m and 4.5MPa√ m 

respectively.  The threshold of stress intensity factor range decreased with the 

increasing percentage of chromium added to Ti-48Al.  The results also show that Ti-

48Al-2Cr has the highest fatigue crack resistance followed by Ti-48Al, Ti-48Al-4Cr 

and Ti48Al-8Cr.  Field Emission Scanning Electron Microscopy (FESEM) technique 

was employed to investigate the fractography of each specimen after fatigue crack 

growth test.  Micro-indentation tests results showed increasing hardness value of Ti-

48Al alloys when the chromium content increased.  The microstructures of each type 

of Ti-48Al alloys were examined using optical and Scanning Electron Microscope 

(SEM).  Finer laths of and plates in lamellar structure have been observed when the 

amount of chromium added in Ti-48Al increased.  The effects of microstructure on 

fatigue crack growth of Ti-48Al alloys are discussed. 
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ABSTRAK 

 

 

 

 

Mikrostruktur dan kelakuan perambatan retak lesu sebatian antara logam 

berasaskan Ti-Al, iaitu Ti-48Al, Ti-48Al-2Cr, Ti-48Al-4Cr and Ti-48Al-8Cr (at.%) 

telah dikaji.  Ujian perambatan retak lesu telah dijalankan ke atas spesimen tegangan 

retak tengah M(T) dalam keadaan suhu bilik dan udara makmal, dengan julat 

amplitud tegasan malar sebanyak 100MPa serta nisbah beban tahap minimum kepada 

maksimum malar, R = 0.1 dikenakan.  Didapati bahawa nilai ambang julat keamatan 

tegasan Ti-48Al, Ti-48Al-2Cr, Ti-48Al-4Cr dan Ti-48Al-8Cr ialah 12.0MPa√m, 

9.0MPa√m, 8.0MPa√m and 4.5MPa√m masing-masing.  Nilai ambang julat 

keamatan tegasan menurun dengan peningkatan peratusan kromium yang 

ditambahkan ke dalam Ti-48Al.  Keputusan ujian juga menunjukkan Ti-48Al-2Cr 

mempunyai ketahanan retak lesu yang tertinggi diikuti dengan Ti-48Al, Ti-48Al-4Cr 

dan Ti-48Al-8Cr.  Kaedah mikroskopi elektron imbasan (FESEM) telah digunakan 

untuk mengkaji fraktografi setiap spesimen selepas ujian perambatan retak lesu 

dijalankan.  Keputusan ujian kekerasan berskala mikro menunjukkan nilai kekerasan 

aloi Ti-48Al meningkat apabila kandungan kromium dalamnya meningkat.  

Mikrostruktur setiap jenis aloi Ti-48Al juga dikaji menggunakan kaedah mikroskop 

cahaya dan mikroskop elektron imbasan (SEM).  Plat dan lapisan dalam struktur 

lamellar yang lebih halus diperhatikan apabila kandungan kromium yang ditmbahkan 

dalam Ti-48Al meningkat.  Kesan mikrostruktur ke atas kelakuan perambatan retak 

lesu Ti-48Al telah dibincangkan. 

 

 

 

 



 10 

TABLE OF CONTENTS 

 

 

 

 

CHAPTER    TITLE    PAGE 

 

 TITLE OF THESIS i 

 DECLARATION ii 

 DEDICATION iii 

 ACKNOWLEDGEMENTS  iv 

 ABSTRACT  v 

 ABSTRAK vi 

 TABLE OF CONTENTS  vii 

 LIST OF TABLES  x 

 LIST OF FIGURES  xi 

 LIST OF ABBREVIATIONS / SYMBOLS   xiv 

 LIST OF APPENDICES xvii 

 

1 INTRODUCTION  

1.1 Introduction 1 

1.2 Objective of the Study 3 

1.3 Scope of the Study 3 

 

2 TITANIUM ALUMINIDES  

2.1 Introduction 4 

2.2 Titanium Alloys 5 

2.3 Titanium Aluminides 7 

2.4 Two Phase Gamma Titanium Aluminide 9 

2.4.1 Crystal Structures of Titanium Aluminide 11 

2.4.2 Microstructures of Titanium Aluminide 12 

2.4.3 Mechanical Properties of Titanium Aluminide 14 

2.5 Ternary Gamma Titanium Aluminide  15 

 



 11 

3 FATIGUE CRACK GROWTH 

3.1 Introduction of Fatigue 17 

3.2 Fatigue Crack Growth 18 

3.3 Stages of Fatigue Crack Growth 18 

3.4 Mechanism of Fatigue Crack Growth 19 

3.5 Fracture Mechanic in Fatigue Crack Growth 20 

3.6 Model of Fatigue Crack Growth 22 

3.7 Crack Closure 25 

3.8 Fatigue Load Cyc;es 26 

3.9 Fatigue Crack Behavior of Gamma Titanium 27 

  Aluminides  

 

4 RESEARCH METHODOLOGY  

4.1 Introduction 31 

4.2 Materials 32 

4.3 Microstructural Characterizations 32 

4.3.1 Compositional Analysis 32 

4.3.2 Sample Preparation for Quantitative and 32 

 Qualitative Analysis  

 4.3.2.1 Optical Microscopy with Image  33 

             Analyzer 

 4.3.2.2 Field Emission Scanning Electron 34 

             Microscopy 

 4.3.2.3 X-Ray Diffractometry 34  

4.4 Mechanical Characterizations 35 

4.4.1 Hardness Test 35 

4.4.2 Tensile Test 36 

4.5 Room Temperature Fatigue Crack Growth Test 36 

4.5.1 Sample Preparation for Fatigue Crack Growth 36 

 Test  

4.6 Fractography 42 

 

5 RESULTS AND DISCUSSIONS  

5.1 Introduction 44 



 12 

5.2 Microstructural Characterization 44 

5.2.1 Chemical Composition of Ti-48Al Alloys 44 

5.2.2 Microstructures of Ti-48Al Alloys 45  

5.3 Room Temperature Mechanical Properties 54 

5.3.1 Hardness Value of Ti-48Al Alloys 54 

5.3.2 Tensile Properties Ti-48Al Alloys 56 

5.4 Fatigue Crack Growth Behavior of Ti-48Al Alloys 60 

5.4.1 Fatigue Crack Growth of Ti-48Al Alloys 60 

5.4.2 Crack Morphology 69 

5.4.3 Fractography 71 

 

6 CONCLUSION AND RECOMMENDATIONS FOR   

FUTURE WORK  

6.1 Conclusions 78 

6.2 Recommendations for Future Work 79 

 

REFERENCES 80 

 

APPENDICES  

APPENDIX A  84 

APPENDIX B  88 

APPENDIX C  93 

 

 

 

 

 

 

 

 

 

 

 

 



 21 

 

 

 

 

CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

Since it was first discovered over 200 years ago, major advances have been 

made in the development of titanium, from the understanding of basic metallurgy to 

the continued development of improved alloys.  These developments are more 

related to the increasing demands of the aerospace and automotive engine component 

manufacturing industry. 

 

 

Titanium aluminides are among the most famous titanium alloys that have 

been newly developed over the late few decades.  These are intermetallic compounds 

consisting of Ti3Al (α2) and TiAl (γ) with high strength-to-weight ratio, exceptional 

resistance to corrosion, excellent fatigue crack growth resistance and good creep 

property.  Although the fatigue performance of titanium aluminides is unsatisfactory 

at near ambient temperatures, their enhanced fatigue crack growth behavior at high 

temperature provides the gas turbine designer with an opportunity to exploit the 

strength-to-weight advantages of titanium based systems at temperatures 

approaching 1000oC (Duncan et al., 1989).  The fatigue crack growth resistance of 

titanium aluminides, relative to their tensile strengths, is as good as or better than 
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steels, many showing an endurance ratio above half, is superior to most other 

structural metals (Kim et al., 1991).  It is this high strength-low density 

characteristic, which has made titanium aluminides attractive candidates for 

applications in aerospace engines components.  The future of titanium aluminides is 

bright and influenced by developments in new products which enable the 

optimization of microstructure and mechanical properties in order to meet the 

demands from aerospace and automotive industries (Kim et al., 1991). 

 

 

Fatigue crack growth resistance is one of the most important mechanical 

properties for γ-TiAl applications as structural materials, which have been studied by 

several researchers.  Previous studies have indicated that the mechanical properties of 

gamma titanium aluminides strongly depend on the microstructure of the alloys. 

There are three typical microstructures of gamma titanium aluminides: lamellar 

microstructure, equiaxed γ microstructure and duplex microstructure.  Of these 

microstructures, previous studies reported that lamellar microstructure displayed 

excellent fatigue crack growth resistance (Gnanamoorthy et al., 1996).  The 

microstructures in TiAl can be varied by heat treatment or by addition of β-stabilizing 

elements such as chromium, niobium, and vanadium.  The addition of Cr to the binary 

TiAl has been reported not only to improve the room temperature ductility, but also to 

improve the high temperature oxidation resistance and some mechanical properties of 

the alloys (Takeyama et al., 1998).  These excellent alloying effects make chromium a 

unique element among other β-stabilizing elements. 

 

 

 The objective of present study is to investigate the effects of chromium on the 

microstructures, mechanical characterizations, fatigue crack growth behavior at room 

temperature and fractography of Ti-48Al alloys and to better understand the 

mechanism of fatigue crack growth in the alloys.  Microstructural studies, hardness 

tests, tensile tests and fatigue crack growth tests at room temperature have been 

carried out using as-cast Ti-48Al, Ti-48Al-2Cr, Ti-48Al-4Cr and Ti-48Al-8Cr with 

near fully lamellar microstructure. 
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1.2 Objectives of the Study 

 

 

The objective of this study is to evaluate the effects of chromium additions on 

the fatigue crack growth behavior of as-cast gamma titanium aluminides (Ti-48Al) at 

room temperature (27oC). 

 

 

 

 

1.3 Scope of the Study 

 

 

The scope of this study include the following: 

 

(a) Investigation on the effects of addition of chromium on microstructure, 

mechanical properties and particularly fatigue crack growth behavior of 

as-cast Ti-48Al-xCr alloys (where x = 0, 2, 4, 8 at %). 

(b) Establish the relationship between microstructure and fatigue crack 

growth properties of Ti-48Al-xCr alloys. 

(c) Identify dominant fatigue fracture mechanism of Ti-48Al-xCr alloys. 
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