ORGANIZATIONAL MEASUREMENT OF DEFECT DENSITY

NURDATILLAH BINTI HASIM

A project report submitted in partial fulfillment of the requirements for the award of the degree for MSc. (Computer Science - Real Time Software Engineering)

Centre for Advanced Software Engineering Faculty of Computer Science and Information Systems Universiti Teknologi Malaysia

APRIL 2009

Special dedication to my beloved mother Che Saerah Rahmani and father Hasim Din.

ACKNOWLEDGEMENT

First and foremost, thank you to Allah the Almighty because finally I managed to complete my industrial attachment and this project report.

Deep appreciation goes to my supervisor, Mr. Mohd Ridzuan Ahmad for all the guidance, support, constructive comments and valuable knowledge and motivations to write this project report.

A million of thank you dedicated to Practices and Compliance Management Department (PCM) in HeiTech Padu Berhad. Thank you very much for all the opportunity given, priceless knowledge and experience especially to my Industrial Mentor Mdm Lenny Ruby Atai, Mdm Yanti Salwani Che Saad as the head of the PCM department and other PCM team members which includes Miss Azreen Diana Abdullah and Miss Siti Fatimah Abu Bakar.

A thousand of thank you to my lovely friends who give a lot of useful opinions and thought also shared every good and bad moment together during these five months attachment period.

Thank you to my family for the continuous encouragement, full support and understanding in order for me to complete my master study in UTM. May Allah bless all of you.

ABSTRACT

Measurement and Analysis Process is one of process areas covered in the Capability Maturity Model Integration (CMMI) Level 2. However, in order to produce the measurement a proper plan and process are required. Organizational Measurement of Defect Density is a measurement conducted in HeiTech Padu Berhad (HeiTech). This project report will be discussing the issue of defect density measurement focusing on defects found during testing phase. Issue raised with defect density measurement is that the result of the measurement tends to be imprecise because of the various ways used to count the line of codes. To this end, this project report presents a method for measurement process in order to calculate defect density which is the HeiTech Measurement and These methods consist of three phases which are Planning, Analysis Process. Implementing and Improving phase. As for the implementation, three projects has been selected which are BHEUU-CSMBBG, BHEUU-SKHD and iProcurement-Vendor Management. Line of code for all three projects has been count using selected code counter which is GeroneSoft Code Counter Pro V1.32. Moreover, along with the defect classification developed it has been useful and effective in turn to detect defect discover in a program. As for defect density measurement output, results has been gathered and presented in the Measurement and Analysis Report.

ABSTRAK

Prosess pengiraan dan analisis adalah salah satu lapangan proses dalam Capability Maturity Model (CMMI) peringkat 2. Namun begitu, perancangan dan proses yang teratur amat penting bagi memastikan keputusan hasil pengiraan adalah seperti yang dijangkakan. Pengiraan Kepadatan Kecacatan Berorganisasi adalah sejenis pengiraan yang dijalankan di HeiTechPadu Berhad (HeiTech). Laporan projek ini akan membincangkan perincian tentang pengiraan kepadatan kecacatan dan penumpuan dilakukan lebih kepada kecacatan yang dijumpai semasa fasa pengujian. Isu yang berbangkit dalam pengiraan kepadatan kecacatan adalah keputusan yang diperolehi hasil daripada pengiraan tersebut adalah tidak tepat kerana wujudnya kepelbagaian dalam mengira baris kod. Selain itu, laporan projek ini juga menunjukkan kaedah bagi proses pengiraan kepadatan kecacatan iaitu Proses Pengiraan dan Analisis HeiTech. Kaedah ini terbahagi kepada tiga fasa iaitu fasa perancangan, fasa perlaksanaan dan fasa pengukuhan. Tiga jenis projek telah dipilih sebagai pembelajaran kes iaitu BHEUU-CSMBBG, BHEUU-SKHD dan iProcurement-Baris kod bagi ketiga-tiga projek tersebut telah dikira Vendor Management. menggunakan satu perisian pengira baris kod iaitu GeroneSoft Code Counter Pro V1.32. Selain itu, klasifikasi kecacatan yang telah diwujudkan juga sangat membantu dalam proses mengenal pasti kecacatan pada satu-satu program dengan lebih efektif. Akhir sekali, hasil pengiraan kepadatan kecacatan dikumpul dan dimasukkan ke dalam Laporan Pengiraan dan Analisis.

TABLE OF CONTENTS

CHAPTER	TITLE PA	AGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xii
	LIST OF FIGURES	xiv
	LIST OF ABBREVIATIONS	XV
	LIST OF APPENDICES	xvi
1	INTRODUCTION	17
	1.1 Organizational Background	17
	1.2 Core Business	17
	1.3 Practices & Compliance Management Department	18
	Background	
	1.3.1 Practices & Compliance Management Structure	18
	1.3.2 Practices & Compliance Management Scope of Work	20
	1.4 Project Background	21
	1.4.1 Organizational Measurement Analysis of Defect	21
	Density	

2	SCC)PE &	OBJECT	TIVES	23
	2.1	Vision	n Stateme	nt	23
	2.2	Projec	t Objecti	ves	23
	2.3	Projec	t Scopes		24
	2.4	Projec	t Deliver	ables	24
	2.5	Projec	t Plan		25
3	LIT	ERAT	URE STI	U DY	26
	3.1	Defec	t Density	Calculation	26
	3.2	Defini	itions and	Classifications	26
		3.2.1	Defect l	Definitions	26
		3.2.2	Defect (Classifications	27
			3.2.2.1	HeiTech Classifications	27
			3.2.2.2	Amendments on HeiTech Classifications	28
			3.2.2.3	Defect Log	29
	3.3	Syster	n Size		30
		3.3.1	Type of	Calculation for System Size	30
			3.3.1.1	Counting Source Line of Code	30
			3.3.1.2	Counting Token	31
			3.3.1.3	Counting Modules	34
			3.3.1.4	Counting Functions	34
	3.4	HeiTe	ch Defec	t Density Calculation	34
		3.4.1	HeiTecl	h Defect Density	35
			3.4.1.1	Advantages Using Metrics Line of Code	37
			3.4.1.2	Disadvantages Using Metrics Line of Code	38
		3.4.2	Propose	ed Tools	39
			3.4.2.1	GeroneSoft Code Counter Pro V1.32	40
			3.4.2.2	LOC Counter	41
			3.4.2.3	LocMetrics	44
			3.4.2.4	Krakatau Essential Project Management	44
			3.4.2.5	Code Counter 3	45
		3.4.3	Tools C	omparison	46
	3.5	HeiTe	ch Measu	rement and Analysis Plan	46

viii

	3.5.1	Function	nal Correctness	47
		3.5.1.1	Code and Testing Defects	47
		3.5.1.2	Review Defects	48
	3.5.2	General	Analysis Concept	48
		3.5.2.1	Quantitative Analysis	52
		3.5.2.2	Structure Analysis Model	59
		3.5.2.3	Performance Analysis Procedure	62
3.6	Analy	sis of Oth	er Related Measurement Plan	63
	3.6.1	Using Ir	n-Process Metrics to Predict Defect Density in	63
		Haskell	Programs	
	3.6.2	STREW	/-Н	64
	3.6.3	Initial S	et of Metrics for STREW-H Version 0.1	64
	3.6.4	Feasibil	ity Study on STREW-H	65
	3.6.5	Upcomi	ng work	67
3.7	Comp	arison bet	tween Any Related Measurement Plan	67
	3.7.1	Advanta	ages of the Measurement Plan	67
	3.7.2	Disadva	ntages of the Measurement Plan	67
	3.7.3	Rework	on HeiTech Measurement Plan	68
PRO	OJECT	метнс	DDOLOGY	69
4.1	Projec	t Manage	ment Information System (PROMISE)	69
	4.1.1	Quality	Management	69
4.2	Meası	irement a	nd Analysis Process	71
4.3	Planni	ing Phase		71
	4.3.1	Identify	Scope	72
	4.3.2	Define l	Procedure	73
		4.3.2.1	Define the Measures	74
		4.3.2.2	Define the Counting Procedure	74
		4.3.2.3	Assemble Forms or Procedure to Record the	75
			Measures	
		4.3.2.4	Select and Design Database or Spreadsheet	75
			for Storage	
		4.3.2.5	Define Analysis Method	75

			4.3.2.6	Define Potential Relationship among the	76
				Measures and Construct Measurement	
				Reporting Format	
			4.3.2.7	Define Mechanism for Feedback	76
	4.4	Imple	menting F	Phase	76
		4.4.1	Data Co	ollection	77
		4.4.2	Data Ar	nalyzing	78
		4.4.3	Result (Communicating	80
	4.5	Impro	ving Phas	se	80
		4.5.1	Process	Evolving	80
	4.6	Measu	urement T	ools	81
		4.6.1	Classes	of Tools and its Support Functions	81
		4.6.2	Guideli	ne for Measurement Support Tools	82
5	PRO	DJECT	DISCUS	SIONS	83
	5.1	Defec	t Log Doo	cumentation	83
	5.2	Establ	lishing Me	easurement and Analysis	84
		5.2.1	Planning	g Phase	84
		5.2.2	Implem	enting Phase	85
			5.2.2.1	Defect Density Data Collection	85
			5.2.2.2	Defect Density Data Analyzing	86
			5.2.2.3	Defect Density Result Communicating	87
		5.2.3	Project	Constraints	88
6	CO	NCLUS	SION		89
	6.1	Towa	rds Capab	ility Maturity Model Integration Level 5 in	89
		HeiTe	ech		
	6.2	Traini	ing Exper	ience	89
	6.3	Recor	nmendati	ons	90
	6.4	Concl	usion		91

REFERENCES	92
Appendices A-D	95-98

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1.1	PCM Units	19
2.1	Project Deliverables	24
3.1	Details on the GeroneSoft Code Counter Pro V1.32	40
3.2	Default Counting Rules	42
3.3	Objects Detail Description	42
3.4	Line of Code Counter Tools Comparison	46
3.5	Code and Testing Defects	48
3.6	Review Defects	49
3.7	Parts of indicator	51
3.8	Requirement Data Type Descriptions	56
3.9	Requirement Peer Review Defects	56
3.10	Calculation Data Type Descriptions	57
3.11	Calculation for Requirements Peer Review Defects	57
3.12	Data from seven version of GHC	66
4.1	Identify Scope Activity	72
4.2	Type of Tools and its Support Functions	81
5.1	Defect Density Objectives	84
5.2	Defect Density Data Collection	86

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Organizational Structure of Practices & Compliance	19
	Management Department	
1.2	Defect Density Calculation	22
3.1	Defect Density Calculation	26
3.2	Fault, Defect and Error Relationship	27
3.3	Equation 1 (E1)	32
3.4	Equation 2 (E2)	32
3.5	Equation 3 (E3)	32
3.6	Equation 4 (E4)	33
3.7	Screenshot on the code counted using GeroneSoft	40
	Code Counter Pro V1.32	
3.8	LOC Counter Report Result	43
3.9	LocMetrics Code Counting Results	44
3.10	CodeCounter Counting Result	45
3.11	Example of an Indicator	52
3.12	Software Quality Management and Quantitative	53
	Process Management Flow	
3.13	Defect Prevention Flow	54
3.14	Control Chart	55
3.15	Control Chart for Requirements Peer Review Defects	58
3.16	Control Chart for Requirements Peer Review Defects	58
	without HMI	
3.17	Issue Analysis Model Showing the Relationship	59
	among Common Issue Areas	

3.18	Model of Common Software Issue Relationships	60
3.19	Analysis Steps	62
3.20	Defect Density (Defects/KLOC)	65
3.21	Multiple Regression Analysis	66
4.1	Quality Control Process Summary	70
4.2	HeiTech Measurement and Analysis Process	72
4.3	Individual Chart	79
4.4	Moving Range Chart	79
4.5	C _{pk} Analysis Distribution Curve	79
5.1	Summary of Activities Perform During Implementing	85
	Phase	
5.2	Defect Density during UAT	87

LIST OF ABBREVIATIONS

BHEUU	-	Bahagian Hal Ehwal Undang-undang
CAR	-	Causal Analysis & Resolution
CMMI	-	Capability Maturity Model Integration
CMVC	-	Configuration Management and Version Configuration
COBOL	-	Common Business-Oriented Language
СОСОМО	-	Cost Constructive Model
EPG	-	Engineering Process Group
FP	-	Function Point
GHC	-	Glasgow Haskell Computer
HMI	-	Human Machine Interface
IEEE	-	Institute of Electrical and Engineering Institute
KLOC	-	Kilo Line of Code
LOC	-	Line of Code
PCM	-	Practices and Compliance Management
PSC	-	Project Steering Committee
SEI	-	Software Engineering Institute
SLOC	-	Source Line of Code
SPC	-	Statistical Process Control
SRS	-	System Requirement Specification
STREW-H	-	Software Testing and Reliability Early Warning for Haskell
STREW-J	-	Software Testing and Reliability Early Warning for Java System
UAT	-	User Acceptance Test

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Project Planning	95
В	Defect Calssifications	96
С	Progress Report	97
D	User Manual – GeroneSoft Code Counter Pro V1.32	98

CHAPTER 1

INTRODUCTION

1.1 Organizational Background

A public listed company on the main board of the Bursa Malaysia, HeiTech Padu Berhad is Malaysia's leading ICT solution s and services provider. With more than 10 years at the forefront of the ICT industry, HeiTech's local testimonies include the delivery of mission critical projects for Malaysian Government agencies such as the National Registration Department, Immigration Department and Road Transport Department.

In addition, HeiTech also one of the key player in driving the public sector leveraging on systems integration strength and capabilities. Consequently, HeiTech has further transformed itself, becoming one of the key managed services providers in Malaysia whose products include Padu*Net (Managed Network Services) and Padu*Center (Managed Data Center Services). HeiTech's portfolio of customers has expanded to the private sector customer base mainly from the financial services industry.

1.2 Core Business

After going through strategies changes, HeiTech business pursuit are focused towards the financial sector, health sector, defense sector, education sector as well as the manufacturing, oil and gas and utilities industries. The following areas are the products and services offered in HeiTech Padu Berhad:

- i. Managed Data Center Services
- ii. Managed Network & Communication Services
- iii. System Integration Services
- iv. Solution & Consultancy Offerings

The following business entities listed below have been established to develop, promote and deliver the respective core business of the company under the flagship of HeiTech Padu Berhad:

- i. HeiTech *e**Business Solution Sdn Bhd
- ii. HeiTech i-Solutions Sdn Bhd
- iii. HeiTech Managed Services Sdn Bhd

1.3 Practices & Compliance Management Department Background

1.3.1 Practices & Compliance Management Structure

Basically as shown in Figure 1.1, Practices & Compliance Management Department (PCM) Consist of three main units which are Practices Development & Consultation, Compliance Management and Internal SOP & Knowledge Management. Table 1.1 shows the key function for each unit in PCM.

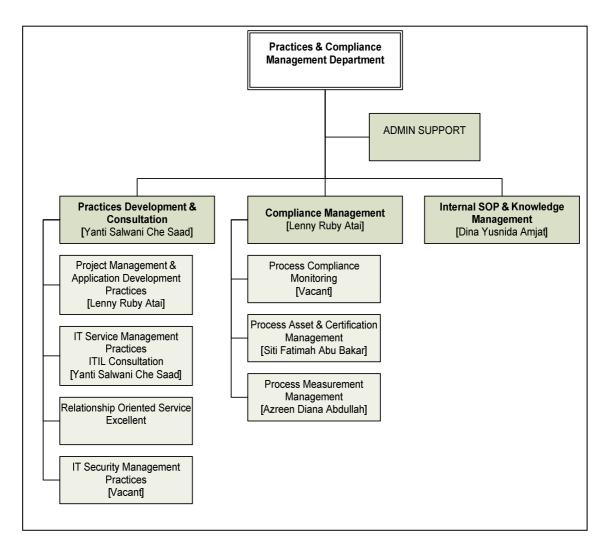


Figure 1.1: Organizational Structure of Practices & Compliance Management Department

Table 1.1:	PCM Units
-------------------	-----------

Unit	Key Functions
Practices Development & Consultation	 Plan and development of best practices for core business. Promote HeiWay program for work and culture focus in quality and professionalism. Work on certification CMMI Level 5 Evaluate and promote quality tool.
Compliance Management	 Coverage for compliance for application development and project

Unit	Key Functions
	management.
	 Assessment on the degree of
	compliance to the agreed standard.
Internal SOP & Knowledge	 Administration of scope.
Management	 Review and enhance of SOP to be
	effective.
	 Reorganization of knowledge
	management.
	• Establishment of SIS portal.

1.3.2 Practices & Compliance Management Scope of Work

Basically the scope of the implementation of best practices and compliance would only cover the HeiTech Business Solution (HBS). There are nine major scope of work concern:

- i. Formulate and continuously improve in-house best practices based on the industry best practices for the following core business disciplines of HBS.
- Facilitate or provide consultation on HeiTech Defined Best Practices and related industry best practices in Project Management and Software Engineering (Application Development) disciplines.
- Provide training on HeiTech Defined Best Practices, related industries best practices in the Project Management and Software Engineering (Application Development) disciplines and Relationship Oriented Service Excellence (ROSE) practices as per Customer Services Initiative Program.

- iv. Provide quality control through compliance assessment and monitoring of HeiTech Define Best Practices (process) implementation.
- v. Measure and analyze organizational process performance of Project Management and Application Development related processes.
- vi. Strategize and manage HBS quality roadmap, quality initiatives & quality certification. (e.g. ISO and CMMI)
- vii. Facilitate the establishment and continuous improvement of HBS inter and intra standard operating procedure.
- viii. Monitor Knowledge Management and play a role as the library of critical knowledge needed by the user.
- ix. IT Security Management Practices (focused in application related to the security).

1.4 Project Background

1.4.1 Organizational Measurement Analysis of Defect Density

Measurements infuses everyday life and is an important part in every scientific and engineering discipline. Software measurement may serve several purposes, depending on the level of knowledge about a process of product. The very nature of software engineering makes measurement a necessity, because more rigorous methods for product planning, monitoring and control are needed. Otherwise the amount of risk software projects may become extreme, and software product may easily get out of industrial control [3,10,16]. One type of software measurement that is going to be discussed in this project report is defect density.

In Organizational Measurement Analysis of Defect Density, the focus will be on measuring the solid value for defect density. In order to perform this measurement, a metric has been proposed which is known as the indirect measurement. Figure 1.2 shows the calculation formula for this measurement.

 $DefectDensity = \frac{DefectsFound}{SystemSize}$

Figure 1.2: Defect Density Calculation

Total size of product is a normalizer that allows comparisons between different software entities examples modules, releases and products. Size is typically counted either in Line of Code (LOC) or Function Points (FP).

Essentially total size of product will be measure base on the LOC. Metric LOC is used because it is one of the most widely used techniques in cost estimation. It is known as basic metric underlying several cost estimation models by Boehm. Due to the common use, it allows a simple comparison to data from many other projects. [16]

A capable practice will be applied in turn to gain the precise result. Measurement and analysis process and procedure will be done base on the HeiTech Measurement and Analysis process that has been define in the HeiTech Measurement and Analysis Plan V-4.0. Three HeiTech project has been selected as case study for implementation purposes. Projects involved are BHEUU-CSMBBG, BHEUU-SKHD and iProcurement-Vendor Management. As for the size of the product, several LOC counter tools will be introduce and the finest tool will be selected to be utilize.

REFERENCES

- William A. Florac, Robert E. Park, Anta D. Carleton. *Practical Software Measurement: Measuring for Process Management and Improvement*. Software Engineering Institute. April 1997
- Stevenson, T.C.: Software Engineering Productivity. London, etc.: Chapman & Hall. 1997
- HeiTech Measurement and Analysis Plan V-4.0. HeiTech Padu Berhad. December 2008
- 4. Behrooz Parhami. *Defect, Fault, Error,...,or Failure?*. IEEE Transaction on Reliability, Vol 46, No 4. December 1997
- Dave Zubrow. Measurement with a Focus: Goal-Driven Software Measurement. Software Engineering Institute. September 1998
- 6. Project Management Information System (PROMISE) http://www.ipractices.heitech.com.my/promise
- 7. Nachiappan Nagappan, Thomas Ball. Use of Relative Code Churn Measures to Predict System Defect Density. St Louis, Mo, USA. May 2005
- 8. Les Hatton. *Estimating source lines of code from object code: Windows and Embedded Control Systems*. University of Kingston. August 2005

- 9. Yashwant K. Malaiya, Jason Denton. *Estimating Defect Density Using Test Coverage*. Colorado State University, Fort Collins. 2005
- 10. Sandro Mrasca. Software Measurement. Università dell'Insubria, Coma Italy. 1995
- Nachiappan Nagappan, Thomas Ball. Static Analysis Tools as Early Indicators of Pre-Release Defect Density. St Louis, MO, USA. 2005
- 12. Brad Clark, Dave Zubrow. *How Good is the Software: A Review of Defect Prediction Techniques.* Carnegie Mellon University. 2001
- CMM Level 4 Quantitative Analysis and Defect Prevention With Project Examples http://www.mitre.org/work/tech_papers/tech_papers_00/florence_cmm_level/flore nce_cmm_level4.pdf
- 14. Cem Kaner, Walter P. Bond. Software Engineering Metrics: What Do They Measure and How Do We Know?. 10th International Software Metrics Symposium. 2004
- 15. Quantitative Quality Management through Defect Prediction and Statistical Process Control http://www.cse.iitk.ac.in/jalote/papers/2WCSQPaper.pdf
- 16. Practical Software Measurement: Measuring for Process Management and Improvement http://www.sei.cmu.edu/pub/documents/97.reports/pdf/97hb003.pdf
- 17. 12 Steps to Useful Software Metrics
 http://www.westfallteam.com/software_metrics,_measurement_&_analytical_meth
 ods.htm

- Requirements Volatility and Defect Density http://www.cs.colostate.edu/~malaiya/reqvol.pdf
- 19. "Why is the defect density curve U-shaped with component size?" http://www.leshatton.org/Documents/Ubend_IS697.pdf
- 20. William A. Florac. Software Quality Measurement: A Framework for Counting Problems and Defects. Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania. September 1992
- 21. Defect Density Estimation Through Verification and Validation http://agile.csc.ncsu.edu/devcop/papers/Sherriff_HCSS.pdf