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Abstract: The demand for mobile applications in agriculture is increasing as smartphones are contin-
uously developed and used for many purposes; one of them is managing pests and diseases in crops.
Using mobile applications, farmers can detect early infection and improve the specified treatment
and precautions to prevent further infection from occurring. Furthermore, farmers can communicate
with agricultural authorities to manage their farm from home, and efficiently obtain information such
as the spectral signature of crops. Therefore, the spectral signature can be used as a reference to detect
pests and diseases with a hyperspectral sensor more efficiently than the conventional method, which
takes more time to monitor the entire crop field. This review aims to show the current and future
trends of mobile computing based on spectral signature analysis for pest and disease management.
In this review, the use of mobile applications for pest and disease monitoring is evaluated based on
image processing, the systems developed for pest and disease extraction, and the structure of steps
outlined in developing a mobile application. Moreover, a comprehensive literature review on the
utilisation of spectral signature analysis for pest and disease management is discussed. The spectral
reflectance used in monitoring plant health and image processing for pest and disease diagnosis is
mentioned. The review also elaborates on the integration of a spectral signature library within mobile
application devices to obtain information about pests and disease in crop fields by extracting infor-
mation from hyperspectral datasets. This review demonstrates the necessary scientific knowledge
for visualising the spectral signature of pests and diseases using a mobile application, allowing this
technology to be used in real-world agricultural settings.

Keywords: crop; disease; mobile app; pest; spectral signature

1. Introduction

Smartphones are small, lightweight, easy-to-carry devices that can be connected to
the Internet, and they make people’s lives easier because most of their daily activities can
be performed on a smartphone. The price of a smartphone is affordable if an individual
requires only the necessary features, but if users desire additional applications on their
devices, they may be required to pay a higher price for a smartphone that includes advanced
functions. Today, almost everyone has a smartphone. They contain multiple functions that
enable advanced computing capabilities and connectivity compared to a regular phone
that only consists of basic functions such as sending or receiving calls and text messages.
Applications in smartphones can help users fulfil their needs, such as sending emails for
communication, playing games for entertainment, and reading the news for information [1].
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Many sectors have utilized mobile applications, such as business [2], health [3], map
navigation [4], and agricultural [5] industries. Specifically, precision agriculture constitutes
a management practice combined with on-farm technologies employed to decrease the
input of a crop, such as a pesticide and fertilizer, by applying them at the right time,
right place, and in the right amount, resulting in gaining a higher profit [6]. Therefore,
mobile applications are one of the technologies used in this field, used for purposes such
as analysing a crop’s health. A crop’s health could be affected by several factors, two of
which are pests and diseases that can both decrease yield production [7]. Pest and disease
monitoring has often been conducted by a farmer from farmer associations or governmental
agencies when the disease is severe and hard to treat. To be a professional farmer, one
must have knowledge of agriculture or be advised by experts. Therefore, using mobile
applications for pest and disease monitoring could help farmers observe and diagnose
an infestation in its early stages [8]. Furthermore, farmers could use their smartphones
to identify pests and diseases they are unfamiliar with by referring to the information in
the app [9]. The survey results and observations regarding pests and diseases could guide
farmers in managing other crops in the future [10].

Spectral signatures can be applied to identify the pest and disease species with higher
accuracy than image identification [11]. The spectral signature of plants is vital because
it demonstrates the unique values and characteristics of plant species. The same concept
applies to different species of pests and diseases, as each of them has a different graph
curve depending on the individual characteristics. Consequently, a spectral library may be
used to compare the reflectance of pests and diseases with plants in the field and estimate
the extent of the infestation [12]. Moreover, it could be employed in mobile applications
to differentiate and identify the location of the pest and disease in the plant. Thus, pest
and disease mapping is feasible [13]. The spectral signature graph is stored in the spectral
signature library in a digital database to avoid loss of the data and provide easy access to
researchers worldwide [14]. The mobile application can collect information about diseases
and pests in a region and help fight or prevent the spread, helping several farmers.

In South China, a vegetation spectral library was established to record spectral data
for specific growth stages of various crops and provide crop control strategy management
to users [15]. Two spectral libraries have also been developed for selected plants in a
tropical rainforest to store data from vegetation spectra such as leaf condition, vigour, and
other physiological and biological factors [16]. Aside from that, the rubber tree disease
spectral library was created to detect disease spread over a large area [17]. All spectrum
libraries were created in response to particular observations and, for the most part, are
inaccessible to the general public. Mobile applications help monitor pests and diseases
but lack functions measuring the spectral signature between different pests and diseases.
Therefore, a spectral library is an alternative approach to gathering all the spectral data for
pests and diseases.

This study reviews the mobile applications for pest and disease management as a
replacement for the paper-based system. Furthermore, the spectral library in the app is an
alternative approach to storing the spectral signature graph of pests and diseases to be used
by farmers. This review is organised in four main aspects as follows: (i) The use of a mobile
application for pest and disease management, (ii) spectral signature analysis for pest and
disease management, (iii) the linkage between the development of a mobile application for
spectral signature analysis for pest and disease management, and (iv) the architecture of
the development of the mobile application. Therefore, this review aims to show the current
and future trends of mobile computing based on spectral signature analysis for pest and
disease management.

2. Mobile Application for Pest and Disease Management
2.1. Role of Mobile Applications in Monitoring Pest and Disease

Technologies developed in agriculture can help farmers to increase crop yield. How-
ever, damage caused by pests and diseases increases losses in crop production. Farmers
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typically carry out the detection of pests and diseases when the crop is in a severe condi-
tion. The early detection of pests and diseases using mobile applications is an alternative
approach. Farmers can only send a report to the app by providing information that a
particular crop is infected. The area of the infected crop will also be displayed on a map,
and the system will be synchronised to inform all the farmers to observe their crop and
suggest a method of control to prevent the spread to other neighbouring areas.

The developed applications are mostly focused on describing pests and diseases
together with their (i) causal agent, (ii) symptoms, (iii) treatment of the infection and its
results, and (iv) methods to control the infection. Previously, mobile applications developed
for pest and disease management were applied to different crops such as rice [18,19], palm
oil [20], cocoa [21], rubber [22], coffee [23], potato [24], wheat [25], cassava [26], and
barley [27]. Table 1 shows the list of mobile applications that are widely used in pest and
disease management.

Table 1. List of mobile applications and their function in pest and disease management.

Name of
Application Function of Application Country

Accuracy of Pest
and/or Disease
Identification

Reference

PlantifyAI

To diagnose 26 diseases across 14 crop species by
offering treatment methods, common symptoms,
and access to suggested cure treatments for each

disease.

United
States of
America

Disease and crop
classification:

95.7%.
Shrimali et al. [28]

Not
mentioned

To identify and classify pests in images, extract
characteristics of pests, and evaluate areas that

prone to pests
Taiwan

Pest identification:
84%, and pest

classification: 86%
Chen et al. [29]

Padi2U To create a database of spectral signatures of weed
species in rice fields Malaysia

Weed separation
species: 710 nm to

750 nm areas
Roslin et al. [30]

Mentha Mitra
To provide information about improved menthol
mint types, nutrient requirements, diseases, and

mechanisms for insect-pest control.
India Not mentioned Singh et al. [31]

Sistem Pakar
Identifikasi
Hama dan

Penyakit Padi

To obtain a response from the user on the signs of
pests and diseases that exist in rice Indonesia Not mentioned Triono and Tristono

[32]

e-RICE
To categorise the symptoms in order to make an
accurate diagnosis of common rice diseases and

problems.
Philippines

4.29 rating by
respondents agree

that the app is
functional in

detecting disease

Morco et al. [33]

Dr Lada
To identify pests and diseases in peppers and
propose appropriate techniques to solve the

problem
Malaysia Pest and disease

diagnosis: 97% Adama et al. [34]

PEST APP To provide an early warning system on the
infestation of the pest at early stages in paddy Malaysia Not mentioned Nasir et al. [35]

Not
mentioned

To identify the extend of cold-induced injuries in
zucchini in real acquisition condition Spain Not mentioned Novas et al. [36]

Leaf Analysis To identify disease in different types of crop Spain Picon et al. [37]

TobaccoApp To detect any damage on tobacco leaf Mexico Damage caused by
fungi: 97%

Valdez-Morones
et al. [38]
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Table 1. Cont.

Name of
Application Function of Application Country

Accuracy of Pest
and/or Disease
Identification

Reference

Not
mentioned

To control irrigation system and identify the images
of plant leaf disease India Not mentioned Ranjith et al. [39]

AuToDiDAC To detect, separate, and assess the disease in cacao
black pod rot Philippines Disease detection Tan et al. [40]

cFertiGUAL

by calculating the amounts of fertiliser and
monitoring irrigation systems, and select the best

amongst the many crop growth systems and
fertigation technologies

Spain Disease detection:
97%

Pérez-Castro et al.
[41]

FarmAR
To provide information about plants to farmers

such as common name, scientific name of the plant,
and plant diseases

Greece Not mentioned Katsaros and
Keramopoulos [42]

Jaguza
Livestock

App

To improve the production and productivity of
livestock by detecting livestock diseases and
dealing with dangerous disease outbreaks.

Uganda Not mentioned Katamba and
Mutebi [43]

BioLeaf To quantify the foliar damage induced by insect
herbivores on leaves Brazil

Regular artificial
damage: 25% and
50% of damaged

area

Machado et al. [44]

Online at
Sawah (OAS)

To detect diseases or pests that affect corn based on
symptoms provided by users Indonesia

Effectiveness:
82.5%, efficiency:

93.12%; learnability:
77.33%, and

satisfaction: 73%

Simorangkir et al.
[45]

Not
mentioned

To identify the disease on wheat crop based on the
detection of early symptom Spain

Colour constancy
algorithm of

disease image: 0.81
Johannes et al. [25]

Plant Disease To diagnose plant disease with extensible set of
diseases Greece

Disease recognition:
Between 80% and

98%
Petrellis [46]

However, not all mobile applications in Table 1 used spectral signatures to detect
pests and diseases. Weed is one of the components of pests and diseases. The specific
characteristics of weeds can be visualized based on different wavelengths through spectral
signature graphs. Hence, Roslin et al. [30] developed a new feature of the spectral signature
library in mobile applications to differentiate and identify the location of weeds in the
paddy field. The NIR reflectance values based on the spectral signature graph in order
of highest to lowest are as follows: Jungle rice (Echinochloa spp.) > flower of jungle rice
(Echinochloa spp.) > weedy rice (Oryza sativa L.) > red sparangletop (Leptochloa chinensis
spp.) > saromacca grass (Ischaemum rugosum) > lesser fimbristylis (Fimbristylis miliacea)
(Figure 1).
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Figure 1. Spectral reflectance graph of different types of weeds in the paddy field.

One of the functionalities of mobile applications for pest and disease management
is detecting early infection by taking photos and/or collecting information. For instance,
PlantifyAI is a novel convolutional neural network-based mobile application that provides
common symptoms, treatment methods, and proposed cure products for 26 crop diseases
across 14 species [28]. On the other hand, Chen et al. [29] combined the current mature
AIoT technology and deep learning YOLOv3 to develop pest identification systems in
mobile applications. This application was combined with an unmanned aerial vehicle
(UAV) to collect the image of Tessaratoma papillosa, which appeared on the back of leaves, to
locate this pest in orchards.

Additionally, Padi2U is another mobile application developed by integrating mul-
tispectral imagery. This application provides a list of pests, photos of the disease and
symptoms, and suggestions on how to control pests and diseases in paddy [30]. The
information is explained in Malay language and is a simple way for farmers to understand
the messages (Figure 2; Table 2). The photos of symptoms could be used as a reference
to diagnose pests and diseases in the field. In another web application, Mentha Mitra,
intended for menthol mint growers, provides information on many diseases and pests
(insect). Using the feedback tool, any disease that has not yet been digitised in the app and
any insect pest that is unable to be identified by the farmers can be reported together with
a photo and remarks for scientific advisories [31].

Figure 2. Example of the mobile application that displayed symptoms of disease infection on the crop.
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Table 2. English translation of sentences in the mobile applications.

Malay Language English Language

Penyakit Bintik Daun Lead spot disease

Simptom penyakit
Bintik-bintik perang pada daun dan biji padi

yang menyebabkan kualiti padi menurun.
Penyakit ini menyerang pada semua peringkat

pertumbuhan padi

Symptoms of the disease
Brown spots on the leaves and seeds of rice

that cause the decline of rice quality.
The disease attacks at all stages of rice growth.

Cara penyakit merebak
Angin

Biji benih yang dijangkiti

Methods on the spread of disease
Wind

Infected seeds

Kaedah kawalan
Menggunakan variati yang tahan penyakit

terutama kawasan yang kurang subur.
Menggunakan baja berunsur cancium sillicates

Control methods
Using disease-resistant varieties in less fertile

areas
Using calcium silicates fertilizers

Sistem Pakar Identifikasi Hama dan Penyakit Padi (Paddy Pest and Disease Specialist
Identification System) is another mobile application that identifies pests and diseases
in paddy. The information was displayed in tabular form, including the causal agent,
common and scientific names of the pest, a picture of the pest, symptoms, and the control
method [32]. Firstly, the user needs to enter the consultation menu from the app and select
which types of consultation the user needs, i.e., disease or pest. Secondly, the user needs
to insert their name and answer all the questions generated in the system according to
the symptoms that appear on the rice. Finally, the result of the consultation will appear,
and the user can print or visualise the output through the application. e-RICE is another
mobile application that provides information to farmers about pests and diseases in paddy.
It uses a rule-based algorithm to classify rule generation based on the knowledge and
information provided by experts in paddy to classify the symptoms given by a farmer for
an actual diagnosis. Each evaluation of the disease diagnosis will be reviewed again by the
developers, other farmers and agricultural officers [33].

In Malaysia, researchers from Universiti Kebangsaan Malaysia developed a mobile
application named Dr Lada [34]. This application was used to detect pests and diseases
in pepper. Users could diagnose the pest or disease infection from this application by
answering questions, which minimised farmers’ dependency on an agricultural officer
because they were able to diagnose diseases themselves. Furthermore, a research team
from the International Rice Research Institute at the University of Queensland, Australia,
the Philippine Rice Research Institute in the Philippines, and the Research Institute for
Rice in Indonesia developed a mobile application to diagnose pest and disease infestation
in crops by answering questions based on the symptoms that appeared. This application
was called Rice Doctor and was used to identify the possible ways for the disease to
spread and provide suggestions on how to diagnose/treat and overcome the infection.
Furthermore, researchers from the National Rice Research Institute in India also developed
a mobile application called riceXpert to provide information on the disease, pest, weed,
and other possible causal agents that cause an infestation in paddy fields [47]. Using those
mentioned applications, farmers could transfer the data from the field in a user-friendly
way in a shorter timeframe to conduct decision making for pest and disease prevention.
Therefore, this study contributed to the body of new research in terms of developing mobile
applications in detecting pests and diseases.

2.2. Image Processing for Pest and Disease Monitoring Using the Mobile Application

Mobile applications require the user to capture an image of the infected part of the
plant. Image preprocessing analyses the image with an algorithm built into the system [48].
The preprocessing step ensures that the image captured analyses the infected part only and
excludes the background and healthy part, which is referred to as the separation technique.
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The colour of the image will be corrected based on colour constancy and uniformity [49].
The infected part will then be extracted and checked with the pest and disease image model
to confirm the infection. The user will receive the results with the name of the pest and
disease, the causal agent, a method to control the infection, and prevention guidelines to
overcome the infection [50].

Additionally, the mobile application guides farmers to diagnose the infection and
further process the application [51]. For cassava crops, AdSurv collected the infected crop
images and labelled them on the images as evidence [52]. The disease diagnosis is also used
to detect major diseases based on the symptoms that appear on the leaf, such as Cassava
Mosaic Disease, Cassava Brown Streak Disease, Cassava bacteria blight, and Cassava green
mite. The collection of images is divided into five categories of healthy plants. Another four
types are based on each disease because each disease has distinct symptoms on leaves [53].
Therefore, farmers can use this application to diagnose the infected plant and assess the
severity of the infection. Hence, image processing is one of the most common methods to
visualize the infected plant using mobile applications.

2.3. Systems for Extraction of Disease Using the Mobile Application

A mobile application was developed to identify disease in crops, for example, paddy,
using fuzzy entropy [54]. Fuzzy entropy is a system capable of modelling non-statistical
imprecision and works well for disease extraction. The result showed that fuzzy entropy
has more than 90% accuracy in detecting disease in paddy, except for tungro disease, with
an accuracy of only approximately 70%. There are four diseases in paddy identified in the
study, namely bacterial leaf blight, tungro disease, brown spot, and leaf blast. The camera
captures the infected plant for image preprocessing that involves cropping, converting,
and enhancement. For image extraction, fuzzy entropy is used to extract the disease. After
that, image classification used a Probabilistic Neural Network to classify the disease. The
results are shown in the mobile application. As a consequence, various systems in image
processing could be used to extract pests and diseases on plants.

3. Spectral Signature Analysis for Pest and Disease Management
3.1. Spectral Reflectance in Monitoring Plant Health

Reflectance is a measure of electromagnetic energy that bounces back from the surface
of a material. It is a wavelength-dependent ratio of reflected incident energy. Leaf re-
flectance in the visible (400 to 700 nm), near-infrared (NIR, 700 to 1100 nm), and shortwave
infrared (SWIR, 1100 to 2500 nm) ranges are influenced by a variety of interactions. These
interactions involve radiant energy absorption stimulated by leaf chemistry, light scattering
due to the leaf surface and internal cellular structures, and radiant energy absorption
caused by leaf water content, proteins, or carbon content [55].

Numerical knowledge of the canopy size is important for efficient farm management.
Precision agriculture applications that seek to estimate this commonly use canopy health
maps, i.e., as expressed by leaf area per unit (such as plant or meter of cordon), the leaf area
index, or other canopy parameters (vegetation fraction and biomass) as a proxy. To correctly
map the spatial variability of such farm features, remote sensing data from satellite, aircraft,
or drone platforms is needed [56]. In the case of vertical shoot-positioned canopies, a
substantial proportion of soil (bare or with cover crops) is exposed to nadir-viewing remote
sensing from the inter-row area. Surface reflectance is subject to fluctuations caused by the
canopy structure and its illumination at suggested spatial resolutions, equivalent to plant
or row spacings [57].

Green vegetation of spectral signature feature basins in the visible range of the spec-
trum has shown pigmentation in plant tissues. Chlorophyll is the major photosynthetic
pigment in green vegetation, and it is significantly absorbed in the chlorophyll absorption
spectral bands at red (670 nm) and blue (450 nm). When a plant is pressured to the extent
that chlorophyll growth is decreased, the amount of reflectance in red (670 nm) regions
increases [58]. Water’s spectral response has different substances characteristic of light
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absorption NIR and beyond. The suspended sediments and increase in chlorophyll levels
are two common elements influencing the spectral response of water. In each situation, the
spectral response will change to indicate the presence of suspended sediments or algae in
the water [59].

Detection anomalies in the photosynthetic parameters are crucial in remote sensing
approaches. Changes in pigment, nutrients, cell structure, water intake, chemical concen-
trations, and gas exchange are subsequently displayed in the reflectance characteristics of
the leaf or canopy [60]. The anomalous behaviour is then attributed to abiotic or abiotic
stress. Indirectly, the observed and measured changes in spectral reflectance are related
to plant stressors [61]. The data collected by the sensors are often compared using one of
the various vegetation indices and subjected to extensive data analysis to be categorised as
healthy or unhealthy and between different types of pests and diseases. Every extra step
introduces uncertainty into the technique.

As most of the previous studies are specific to the combination of the crop and a pest
or disease and relate to external factors, the findings in the literature are non-uniform and
it is challenging to compare them quantitatively. As an example, extrinsic factors such as
the leaf internal structure, surface features, and water content could influence the pigment
absorption of plants. Hence, no single wavelength is associated with a single pigment
concentration [62]. Due to the failures of this method, researchers have turned to correlation
analyses to establish unique pathogen-specific spectrum signatures, such as a spectral index
and ratio with discriminant analyses [63,64], but they do not provide conclusive optimal
spectral signatures. However, the same findings indicate that the sensitivity of particular
spectral areas with significant absorption corresponds to abiotic and biotic factors such as
pigmentation [65]. Figure 3 depicts a framework of plant health monitoring employing
spectral signature analysis.

Figure 3. Steps in spectral signature analysis for plant health monitoring.

The use of spectral signatures for pest and plant diseases in the parametric analysis
is limited. Non-parametric techniques such as Principal Component Analysis, Cluster
Analysis, Support Vector Machines, Partial Least-Squares, and Artificial Neural Networks
(ANNs) have been widely adopted by researchers [66–68]. For example, in general terms,
PCA is one kind of feature extraction method that helps to find the highest contribution of
points, and the highest contribution of points can be identified through the highest eigen-
values with principal component during PCA analysis. Therefore, the lowest contributions
amongst those points can be omitted and only the points with the highest contribution
are selected for further processing/analysis. Generally, a comparison between thermal,
fluorescence, and hyperspectral imaging supports a multi-sensor data fusion method to
measure plant health [69]. A comprehensive study [70] on head blight on wheat highlighted
each system’s main benefits and drawbacks and subsequently studied the individual sen-
sor combinations. Using IR in the 7.5–12 m wavelength region, thermography-based
sensors showed temperature differences between crops influenced by biotic and abiotic
stresses. While chlorophyll fluorescence-based approaches in the visible spectrum are
widely utilised, they are inhibited by the need for dark adaptation to minimise the effect
of sunlight on the measurement. Hence, spectral reflectance could be used in monitoring
plant health.
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3.2. Spectral Signature of Pest and Diseases in the Crop Field

Both hyperspectral imaging and non-imaging sensors are effective techniques for
detecting changes in plant health [71]. Changes in reflectance are caused by plant tissue’s
biophysical and biochemical properties. Plant diseases can alter tissue colour and leaf
shape, transpiration rate, crop canopy morphology and density, and the interaction of solar
radiation with plants [72]. They cause changes in the optical characteristics of leaf tissue. As
there are changes in pigmentation, the hypersensitive response, and cell wall deterioration,
leaf reflectance is thus susceptible to plant stress [73]. Pest and disease-specific symptoms,
such as the succession of chlorotic and necrotic tissue with different optical properties and
composition, as well as typical fungal structures such as powdery mildews, rusts, and
downy mildews, may be identifiable.

When plants are subjected to infections that cause chlorotic and necrotic symptoms,
the composition and content of leaf pigments change. The type of host–pathogen inter-
action influences the pattern of responses and the degree of up- and down-regulation of
physiological systems. Necrotrophs rapidly kill plant cells and then feed on the nutrients
generated by the dead tissue, whereas biotroph pathogens create haustoria to take nu-
trients from living cells [74]. Because the characteristics of the symptoms vary, different
wavebands may be appropriate for detecting various diseases. Using sensing techniques,
identifying a disease, its discrimination from other diseases, and abiotic stressors is still a
challenge in vegetation monitoring. The interpretation of spectral reflectance data without
knowledge of the spectral characteristics of leaves and typical symptoms is impossible
at present. The highest findings of disease detection were found in the visible and NIR
ranges of the spectrum. For example, reflectance spectroscopy was employed to identify
the wilt induced by the vascular fungus Fusarium oxysporum from that caused by drought
in tomatoes [75].

Differences in spectra, ratios, or derivations can be used to distinguish changes in
spectral reflection and differences in spectral signatures [76]. This method can compare
the spectra of healthy and unhealthy plants. Meng et al. [77] discovered various important
regions of different spectra between healthy plants and plants infected with Cercospora
leaf spot, powdery mildew, and sugar beet rust. Based on an understanding of reflectance
properties, spectral algorithms for remote sensing of vegetation have been created, which
use specific wavelengths of spectral signatures. They are linked to various biochemical
and biophysical plant factors that indicate plant health. Spectral vegetation indices are
frequently used to monitor, analyse, and map temporal and spatial variation in vegetation.

Disease symptoms can be seen at specific wavelengths and might include any number
of changes in the plant’s colour, shape, or functioning as it responds to disease. The
disease symptoms vary depending on the pathogen and include leaf spots, chlorosis,
necrosis, wilting, or overgrowth. Plant stress other than diseases can activate protective
mechanisms that result in suboptimal development, chlorophyll loss, or changes in surface
temperatures [78]. These changes cause noticeable modifications in the spectral signature
compared to a healthy plant and may be detected using several approaches [79].

Based on Figure 4, visible light can be applied to evaluate variations in the colour and
morphology of infected plant tissue. Changes in water content, leaf thickness, and pho-
tosynthetic efficiency could be detected using infrared and short-wave infrared, whereby
long-wave infrared can be used to monitor plant surface temperatures. Multiple images
are captured using hyperspectral sensors over its wavelength range of 300–2500 nm. Fur-
thermore, imaging devices measure the absorption, transmission, and reflectance of input
electromagnetic radiation interacting with the plant surface. Compared to healthy tissue,
infected plant tissue generally has a lower reflectivity. Image analysis algorithms determine
the contrast between diseased and non-diseased leaf areas [31].



Agronomy 2022, 12, 967 10 of 22

Figure 4. Techniques for high-throughput phenotyping of plants and diseases.

A great deal of research has shown that textural and phrenological differences can
also be considered as a viable technique using hyperspectral data for the remote identi-
fication of invasive plants such as the Nile rose or water hyacinth (Eichhornia crassipes).
In contrast to previous broadband multispectral sensors, new-generation sensors such as
Sentinel 2 and Landsat 8 sensors of invasive plants such as the Nile rose or water hyacinth
(Eichhornia crassipes) with superior sensing properties have presented untapped prospective
options [80]. The spectral reflectance of the Landsat 8 operational land imager OLI was
used to distinguish the water hyacinth’s spectral signature from other plants. These indices
revealed the highest reflection of the water hyacinth plant compared to other plants.

As each vegetation species has similar spectral signatures, spectral classification of
vegetation types in complex environments is difficult [81]. However, other researchers
discovered that water hyacinth has a specific spectral or textural signal that allows it to
be distinguished from surrounding native flora [82]. Textural and phonological variations
were efficient approaches for identifying water hyacinth. Another contribution showed
that hyperspectral data constitute an appropriate strategy for detecting invasive plants
based on differences in spectral signatures [83]. Water hyacinth displayed higher NIR
reflectance values than related plant species and water, owing to the high reflectance of
the internal spongy leaf structure (700–1000 nm) [84]. The spectral signatures of hyacinth
detected typical characteristics with low reflectance in the visible part of the spectrum due
to high concentrations of chlorophyll-a, which is an indicator of healthy aquatic vegetation
conditions [85].

Despite the use of non-imaging sensors with a field of view of 10 mm, it was feasible to
detect diseases on the leaves and trace the variations in the spectral signatures of different
diseases as the disease severity increased. Each disease has a specific spectral signature,
allowing for disease differentiation based on spectral vegetation indicators. These findings
are consistent with Cesarano et al. [86], who found that symptoms on sugar beet leaves
caused by Heterodera schachtii and root rot induced by Rhizoctonia could be accurately
detected using several vegetative indicators. Based on training datasets, Di Gennaro
et al. [87] employed vegetative indices and classification via the support vector machine
technique to detect and distinguish three distinct diseases on sugar beets, i.e., Cercospora
leaf spot, sugar beet rust, and powdery mildew. Data from remote sensing and ground
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observations were examined to detect disease in its early stages before visual detection.
This study proposes a novel way of analysing the quantitative and qualitative regional
distribution of symptomatic plants. The technology could also be used to investigate the
physiological basis of grapevine leaf stripe disease and anticipate its development. A broad
scope of research has used spectral signature analysis in pest and disease management
(Table 3). This review found it could be extended into future studies using different
classification techniques and algorithms for spectral signature analysis in pest and detection.

Table 3. Example of applications for spectral signature analysis in pest and disease management.

Previous
Studies Purpose Research Findings

Fanti et al.
[88]

To determine a spectral signature for the Asian soybean
rust (Phakopsora pachyrhizi) and quantify the number of

urediniospores in a water sample.

Phakopsora pachyrhizi’s spectral signature ranged from 1500 cm−1 to
1550 cm−1. The quantification yielded high values for calibration

coefficients (R2 = 0.95), cross-validation coefficients (R2 = 0.93), and
prediction coefficients (R2 = 0.92), demonstrating the accuracy of

estimating the amount of urediniospores.

Wei et al. [89]
To select the optimal wavelengths to be used as disease

spectral signatures in order to distinguish between healthy
and diseased peanut infected with Athelia rolfsii.

Two or more feature selection methods were used to choose
wavelengths of 501–505, 690–694, 763, and 884 nm. These

wavelengths can be used to create optical sensors for automated
stem rot detection in peanut fields.

Soca-Muñoz
et al. [90]

To examine the spectral reflectance signatures of brown
rust (Puccinia melanocephala) and orange rust (Puccinia

ku-ehnii) in surgarcane.

The difference in reflectance among healthy and contaminated
leaves in the red and near-infrared bands of the electromagnetic
spectrum means it is able to determine contamination with both

orange and brown rust by combinations of these bands.

Żelazny et al.
[91]

To investigate the impact of spectrum pre-processing on the
severity of Fusarium spp. head blight infection in winter

wheat.

Milk-ripening phase predictions based on mean-aggregated spectra
obtained at the same crop developmental stage can be beneficial

through standard normal variate pre-processing.

Cordon et al.
[92]

To develop indices based on the reflectance spectral
signature of the plants for detecting tomato plants infected

by bacterial canker before symptoms appear.

Three shortwave-infrared zone indices enabled the detection of
bacterial canker-inoculated plants in a faster and non-destructive

manner, up to one week before symptoms arose: Normalized
Difference Water Index, Simple Ratio of Water Index, and Water

Index 1 180 (WI1180).

Mirandilla
et al. [93]

To differentiate the spectral responses of the three principal
pests and diseases, blast, bacterial leaf blight, and rice

tungro disease.

The three diseases are particularly sensitive to the red and red-edge
ranges. As the disease progressed, NIR wavelengths were reduced.

During the early stages of tungro, the yellow-orange region
(550–620 nm) is highly sensitive.

de Oliveira
et al. [94]

To investigate the spectral signature of rust incidence in the
coffee field.

In the visible, SWIR-1, and SWIR-2 spectral regions, rainfed areas
had higher reflectance values than irrigated areas during wet

seasons.

Furlanetto
et al. [67]

To create a procedure for early and reliable identification
and differentiation of soybean under different levels of

Asian rust disease according to spectral analysis.

The spectral signature of the leaves revealed a significant increase
in reflectance of the vegetation indices region as disease levels

increased, which was associated with a lower pigment
concentration. More than 97.00% of the spectral variance in the first

and second principal components, and the stepwise procedure
selected from 87 spectral bands.

Manganiello
et al. [95]

To detect the spectral signatures of R. solani-assayed wild
rocket including green baby lettuce, red baby lettuce, and R.

rolfsii and S. sclerotiorum.

OSAVI, SAVI, TSAVI, and TVI were found to be highly correlated to
disease severity, are promising for all pathosystems analysed, and

capable of tracking biological control activity against multiple
soil-borne pathogens of baby leaf vegetables, based on significant

changes in spectral signatures between healthy, infected, and
bio-protected plants.

3.3. Image Processing for Pest and Disease Diagnosis Based on Spectral Signature

Pest and disease detection by capturing images of crops with symptoms could be
conducted using a camera in the mobile application. The camera can capture the image
via image processing and detect the condition of the plant containing the pest or disease
based on light reflectance, with certain restrictions [96]. One of the solutions to improve
the restrictions is implementing hyperspectral sensors in mobile applications. A hyper-
spectral sensor measures up to hundreds of electromagnetic spectrum bands in the range
of the sensor. Each of the spectral bands of the hyperspectral sensor measures only a
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few nanometers of the electromagnetic spectrum, resulting in a high-spectral-resolution
wavelength [97]. Therefore, each pixel in a hyperspectral image receives a specific collection
of data regarding the reflectance (or transmittance) of each spectral band [98].

The sum of these data is known as a spectral signature (or spectral profile), and a non-
imaging hyperspectral sensor (i.e., point spectroscopy) captures it without any additional
spatial information [99]. Hyperspectral sensors measure the spectral bands for each pixel
in an image and combine the spectrum and spatial resolutions. Accordingly, each pixel
in the image has its spectral signature, which includes reflectance values for all spectrum
bands measured by the hyperspectral sensor [100]. From another viewpoint, the resulting
image is a hyperspectral data cube with two dimensions of spatial information and one
size considering the spectral information. Generally, hyperspectral sensors can measure
the NIR (700–1000 nm) and SWIR (1000–2500 nm) as parts of the electromagnetic spectrum
(400–700 nm) [101].

The connection between spectral signature information and ground data proved
that the rate of pest and disease infestation can be determined in the crop. At certain
wavelengths, pest and disease variations could be displayed based on spectral reflectance.
Roslin et al. [30] found that in the visible spectrum (450 nm to 700 nm), many weed spectral
signatures were quite similar, and several overlapped. Undoubtedly, not all weeds have a
similar spectral signature on the crop, therefore calibration and validation are still required
to identify weeds in cropland. At the same time, in the infrared region (700 nm to 990 nm),
various species’ spectra are distinguished by their wavelengths. Since each weed is unique,
the significant bands for each plant can be found in the particular area (710 nm to 750 nm).
The affected area could be an indicator of differentiating weed species using spectral
signatures. Hence, there is a need to store the information on the spectral signature of the
weed, as well as other types of pests and diseases, in a user-friendly way.

Red, green, and blue (RGB) will be used for the image data collection, and then by
using image processing, the weeds can be identified based on the shape and colour. Thus,
by using a smartphone, the user can identify the weeds through the apps that will be
connected to the data processing machine in the cloud. The spectroradiometer will collect
the spectral signature (hyperspectral data) that can be used as reference data for weed
classification. Thus, the RGB and spectral and hyperspectral information can be used to
identify and reference data for the hyperspectral data.

Certain mobile applications only record the RGB imagery. However, by using artificial
intelligence (AI) in the cloud server, they can process the RGB information to generate the
results. The spectral signature of plants is already stored in the spectral library that can
be used if the user has the hyperspectral sensor, and they can compare it with the spectral
library in the mobile application. Those spectral signatures are conveniently accessible
via mobile devices that have installed the online datasets. The mobile applications have a
database of the problems encountered, including a spectral signature graph, which differ-
entiates it from other existing mobile applications such as WeedID and Padi2U that simply
provide an image of the pest, a detailed description, and the control method [102,103]. In
the future, mobile applications could be used as a reference for the user to view the spectral
signature for each pest and disease. The mechanism of using spectral signatures in mobile
applications is explained below (Section 4).

4. The Linkage between the Development of the Mobile Application for Spectral
Signature Analysis in Pest and Disease Management

The leaf pigments, water content, and cell structure differ between species. Pest and
disease species can also be identified based on these differences [104]. However, most
farmers cannot identify them in the field due to a lack of access to the most up-to-date data
and information on pest control, particularly weed control. Rahman et al. [105] and Haug
et al. [106] utilized images to identify weeds and make treatment recommendations. These
images are useful for weed control; unfortunately, there is a lack of spectral information
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about weed species. Compared to image identification, the spectral signature can be
employed to determine weed species with high accuracy [11].

Two spectral libraries were developed for a select tropical rainforest to store data from
vegetation spectra, including leaf condition, health, and other physiological and biological
factors [16]. In addition, the rubber tree disease spectral library was created to detect
the disease spread over a vast area [107]. All spectral libraries were compiled based on
particular observations and were mainly inaccessible to the public. However, a spectral
library for various pest and disease species in crop cultivation is a great place to start,
gathering all spectral signatures for current and future usage. Visually detecting pests and
diseases in a wide crop field area is difficult and time-consuming for farmers. As a result, a
mobile application for pest and disease management could replace the paper-based system,
providing a spectral signature database of weed species accessible via mobile application.
Using mobile applications, farmers can take an image of the pest or disease, and through
image processing, the application can measure and store the amount of light that reaches the
sensor. In this approach, mobile application usage helps the user effectively manage weeds.

Integrating the spectral signature library with mobile applications could be a potential
use of modern technology for pest and disease management in the field. The mobile
application can visualise the spectral signature graph of the pest or disease and recommend
chemical control methods. Furthermore, the spectral signature can be used as a reference
to detect pests and diseases with a hyperspectral sensor in a shorter time period than the
traditional method, which takes much longer to comprehensively detect the entire rice
field. Farmers may simply view the pests and diseases that affected their crops with the
information provided in the mobile application. Eventually, a mobile application that
incorporates a spectral signature library can display pest and disease information in a
crop field.

For instance, Roslin et al. [30] created a spectral signature graph of weeds, a common
type of pest in rice fields, and developed a mobile application for the spectral signature
of weeds. Using Master AppsBuilder, all spectral signatures were kept in a spectral
database and displayed on smartphones. Figure 5 shows the website’s main menu, which
includes a list of applications, and Figure 6 demonstrates the content of menus, pictures, a
description, the control method, and a spectral signature graph. The main menu includes
weed information, the spectral signature of weeds, and suggestions for weed control. Users
can install the mobile application on their devices. The mobile application operates by
displaying an image of the weed species, its general name, scientific name, description, a
method of control using a chemical application, and a graph of the weed species’ spectral
signature. This mobile application stores a database of weed information, including spectral
signatures, and provides a spectral signature graph.

Figure 5. The application Editor tool and Feature menu in MasterAppBuilder Application. (PEM-
BEKAL: SUPPLIER, HASIL PADI: RICE YIELD, BERITA: NEWS, LAPORAN: FORM).
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Figure 6. The content of menus, pictures, description, control method, and spectral signature graph.

Many challenges must be addressed, such as the limitations in obtaining raw data of
the spectral signature of the pest and disease in the crop rice field, the differences in control
methods for each type of pest and disease, and the farmers’ ongoing use of traditional
methods in detecting pests and diseases. Mobile phone cameras have a limited range of
spectra, which imposes a limitation on using mobile phones for spectral analysis since
mobile applications only have three bands. However, by using the AI algorithm, we can
process the RGB image using the cloud server and can also retrieve the spectral signature
from the spectral library. In other words, pests and diseases are detected by a sensor
such as RGB and transmitted to a UAV detector based on AI. The expert system uses an
algorithm to recognize the presence of UAVs through spectral signature analysis in which
there are multiple spectral bands and a wide range of the electromagnetic spectrum. The
spectrograms are extracted from the detected reflectance value of the pest or disease, which
are then sent to a specified algorithm that recognizes the patterns by generating an image.

Hyperspectral data have the ability to provide adequate spectral information for
discriminating within-class roofing materials and conditions. Accordingly, utilizing field
spectroscopy data as fundamental in analysing the roofing spectral signature is more
efficient compared to using airborne hyperspectral data due to the expensive cost of data
acquisition. Furthermore, handling hyperspectral data requires an effective method to
reduce the redundancy of data yet maintain useful information. Statistical analysis and
vegetation indices for spectral reflectance analysis, such as discriminant analysis, a support
vector machine, a convolutional neural network, and ANN, could improve the classification
results. In summary, the construction of a spectral library in a mobile application can
enhance the visualization of spectral signature graphs of pests and diseases.

5. Structure of Steps in Developing a Mobile Application That Can Incorporate
Spectral Signature Analysis for Pest and Disease Management
5.1. Collection of Hyperspectral Reflectance Data and Spectral Signatures

Initially, hyperspectral reflectance data and spectral signatures of pests and diseases
should be collected. The task of spectrum data collection consists of two major steps,
namely spectral sampling (Figure 7) and spectral library compilation. Throughout the
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spectral range, the white panel diffuses approximately ~99% of the incident light during
the calibration process. Particularly, the white reference panel’s reflectance value is almost
one for each wavelength [108]. Each pest and disease should be selected at random for
10 samples at a distance of 5 cm between the optical sensor and the sample. Hence, this
method is used to avoid inaccuracy and noise when recording data [109].

Figure 7. Configuration of spectral sampling in agriculture.

5.2. Generation of Spectral Signature Graph

Applications for crop species identification or pest and disease detection should be
based on the ability to acquire a spectral signature that is related to tree characteristics
and plant health status. Therefore, a spectral signature graph could be linked to various
parameters including tree characteristics such as age category, varietal difference, density,
and composition of shade. Other parameters include healthy and unhealthy trees, whereby
spectral signature values may differ depending on the plant’s health status. For data
analysis, all raw data were transferred to a computer. The data were saved in a Microsoft
Excel file. Additionally, the data should be binned into 10 nm spectral bands, in comparison
with the original value of 1 nm (Figure 6). The spectral signature could be visualised in the
spectral reflectance graph for each species of pest and disease. The first derivative is able to
be run and visualised based on the techniques outlined below:

(i) Visualization of Spectral Reflectance. Create a graphic representation of the spectral
reflectance for pest and disease species.

(ii) First Derivative Analysis. Calculate the first derivatives using Equation (1) and display
the spectral signature graph and first derivate graph.

FD =
R
R

=
Ry2 − Ry1

λx2 − λx1
(1)

where:

FD = First Derivative.
Ry1, Ry2 = Reflectance of the first and second reflectance pairs n1 and n2.
λx1, λx2 = Wavelength of first and second reflectance pairs n1 and n2.
n = Position of reflectance.
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5.3. Incorporation of Spectral Libraries into the Mobile Application

The purpose of developing a spectral library is to store the spectral data of the pest,
identify the different disease severities in a large area, and provide an action plan for users
to control pests and diseases. The spectral library also includes normatively measured
and processed situation parameters of background information for the specified pest and
disease species. The five components of the spectral library system are (i) a knowledge
database, (ii) a measured spectral library, (iii) an auxiliary library, (iv) spectral analysis, and
(v) an end-user application demonstration (Figure 8). Certain information, i.e., background
knowledge on pest and disease species, could be identified in a knowledge database.
Then, all of the calculated spectra of different species could be saved in the measured
spectral library, and the auxiliary library can store several of the ancillary data of the species
measured. The spectra gathered in the spectrum analysis could be pre-analysed to verify
the accuracy of the library before it is used by end-users in practical tasks. Figure 8 presents
an example of the data model of the Spectral Library System of pest and disease species.

Figure 8. The data model of Spectral Library System of pests and species [16].

Therefore, the spectral signature graph could be stored in the spectral signature library
through a multipurpose database, i.e., mobile applications, that users can interface with, as
well as providing convenient access to researchers [14]. After that, the spectral signature
could be displayed as a spectral reflectance graph for each pest and disease. A spectral
library for pest and disease species in the crop field using mobile applications is an excellent
start to store all spectral signatures for current use and the future.

5.4. Design of Mobile Applications Containing the Spectral Libraries

The design of mobile applications can be divided into two parts, namely the system
architecture (i.e., back-end) and menu design (i.e., the graphical user interface). The system
architecture consists of the presentation layer, logic layer, and data layer. At the presentation
layer, users can view and interact with the mobile application, in which the flow should
allow them to move features intuitively and each menu should have its own target. On
the other hand, the logic layer is the application programme interface (API) through which
farmers receive data from the database layer and send back the request to the user in the
presentation layer. The data are subsequently transferred to the presentation layer. The data
layer is the basis of the mobile application and is where all data are saved and retrieved.
Each request for information in the presentation layer will be directed through the logic
layer and then to the data layer. The information will be passed through the logic layer, and
then displayed to the user in the presentation layer. A list of the main menus in the mobile
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applications is illustrated in Table 4. Figure 9 is the theoretical framework for generating
the spectral signature graph for detecting pests or diseases using mobile applications.

Table 4. List of main menus of the mobile applications.

Menu Details Information

Location Research site, area of crop field, and total plot that being used for the
research

Planting schedule Planting activities
UAV images Hyperspectral images

Field problems Images of condition at the field

Pest and disease List of pest and disease, its spectral signature graph, and suggestion of
methods to control

Weather forecast Weather condition at the field
Yield Amount of harvested yield

Report Farmers can use and send report about pest and disease

Figure 9. Theoretical framework for generating the spectral signature graph for detecting pests or
diseases using mobile applications.

6. Conclusions

The development of mobile applications in agriculture has greatly impacted farming
and aided in the monitoring of crop status by farmers and agricultural officers. It can be
concluded that mobile applications are essential in agriculture due to their specific function
in managing pests and disease, which can help farmers manage their farms effectively
compared to conventional methods. No training is required to use the applications, and
farmers can easily use them. In fact, farmers can diagnose the infection themselves based
on the mobile applications and identify control methods to prevent the infection from
becoming severe or happening again if information about the crop, disease, and precision is
provided in a database of the spectral library. Information on the ecological characteristics
of plant communities also allowed mobile applications with different features to distin-
guish between similar spectral signatures and reduce the commission and omission errors.
However, they may misdiagnose the infection and apply the wrong treatment before using
the application if the symptoms are identified late or the plant is already sick. Therefore,
mobile applications in pest and disease management that function by visualising spectral
signatures are needed for farmers.
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91. Żelazny, W.R.; Chrpová, J.; Hamouz, P. Fusarium head blight detection from spectral measurements in a field phenotyping
setting—A pre-registered study. Biosyst. Eng. 2021, 211, 97–113. [CrossRef]

92. Cordon, G.; Andrade, C.; Barbara, L.; Romero, A.M. Early detection of tomato bacterial canker by reflectance indices. Inf. Process.
Agric. 2021, in press. [CrossRef]

93. Mirandilla, J.R.F.; Paringit, E.C. Detection and differentiation of selected rice diseases using hyperspectral data. In Proceedings
of the 40th Asian Conference on Remote Sensing (ACRS 2019), Daejeon, Korea, 14–18 October 2019; Daejeon Convention
Center(DCC): Daejeon, Korea, 2019.

94. de Oliveira Pires, M.S.; de Carvalho Alves, M.; Pozza, E.A. Multispectral radiometric characterization of coffee rust epidemic in
different irrigation management systems. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 102016. [CrossRef]

95. Manganiello, G.; Nicastro, N.; Caputo, M.; Zaccardelli, M.; Cardi, T.; Pane, C. Functional hyperspectral imaging by high-related
vegetation indices to track the wide-spectrum Trichoderma biocontrol activity against soil-borne diseases of baby-leaf vegetables.
Front. Plant Sci. 2021, 12, 630059. [CrossRef]

96. Areni, I.S. Mobile image processing application for CACAO’S fruits pest and disease attack using deep learning algorithm. ICIC
Express Lett. 2020, 14, 1025–1032.

97. Ko, C.H.; Ren, H.; Tsai, J.R.; Wang, B.J.; Lin, S.F.; Huang, C.H.; Hong, C.T.; Chiu, W.H. Agriculture Application with Airborne
Hyperspectral Images from Two-Dimensional Concave Grating System. In Proceedings of the AIAA Scitech 2019 Forum, San
Diego, CA, USA, 7–11 January 2019; Volume 1542.

98. Che’Ya, N.; Gupta, M.; Doug, G.; Lisle, A.; Basnet, B.; Campbell, G. Spectral discrimination of weeds using hyperspectral
radiometry. In Proceedings of the 5th Asian Conference on Precision Agriculture (ACPA), Jeju, Korea, 25–28 June 2013.

99. Park, Y.; Jin, S.; Noda, I.; Jung, Y.M. Emerging developments in two-dimensional correlation spectroscopy (2D-COS). J. Mol.
Struct. 2020, 1217, 128405. [CrossRef]

100. Hassanzadeh, A.; Murphy, S.P.; Pethybridge, S.J.; van Aardt, J. Growth Stage Classification and Harvest Scheduling of Snap Bean
Using Hyperspectral Sensing: A Greenhouse Study. Remote Sens. 2020, 12, 3809. [CrossRef]

101. Contreras, I.C.; Khodadadzadeh, M.; Gloaguen, R. Multi-Label Classification for Drill-Core Hyperspectral Mineral Mapping.
ISPRS Arch. Int. Arch. 2020, 43, 383–388. [CrossRef]

102. Henson, Y.; Martin, R.; Quinnell, R.; Van Ogtrop, F.; Try, Y.; Tan, D. Development of a weed identifier mobile application for
Cambodian rice farmers. In Proceedings of the 18th Australian Society of Agronomy Conference, Ballarat, Australia, 24–28
September 2017; pp. 1–4.

103. Roslin, N.A.; Che’Ya, N.N.; Rosle, R.; Ismail, M.R. Smartphone Application Development for Rice Field Management through
Aerial Imagery and Normalised Difference Vegetation Index (NDVI) Analysis. Pertanika J. Sci. Technol. 2021, 29, 809–836.
[CrossRef]

104. Abdulridha, J.; Ehsani, R.; De Castro, A. Detection and differentiation between laurel wilt disease, phytophthora disease, and
salinity damage using a hyperspectral sensing technique. Agriculture 2016, 6, 56. [CrossRef]

105. Rahman, M.; Blackwell, B.; Banerjee, N.; Saraswat, D. Smartphone-based hierarchical crowdsourcing for weed identification.
Comput. Electron. Agric. 2015, 113, 14–23. [CrossRef]

106. Haug, S.; Michaels, A.; Biber, P.; Ostermann, J. Plant classification system for crop/weed discrimination without segmentation. In
Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Steamboat Springs, CO, USA, 24–26 March 2014;
pp. 1142–1149.

107. Liu, H.; Shen, X.; Cao, L.; Yun, T.; Zhang, Z.; Fu, X.; Chen, X.; Liu, F. Deep Learning in Forest Structural Parameter Estimation
Using Airborne LiDAR Data. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2020, 14, 1603–1618. [CrossRef]

108. Buddenbaum, H.; Watt, M.S.; Scholten, R.C.; Hill, J. Preprocessing ground-based visible/near infrared imaging spectroscopy data
affected by smile effects. Sensors 2019, 19, 1543. [CrossRef]

109. Che’Ya, N.N. Site-Specific Weed Management Using Remote Sensing. Ph.D. Thesis, The University of Queensland, St Lucia,
Australia, 2016.

http://doi.org/10.1016/j.biosystemseng.2021.08.019
http://doi.org/10.1016/j.inpa.2021.06.004
http://doi.org/10.1016/j.jag.2019.102016
http://doi.org/10.3389/fpls.2021.630059
http://doi.org/10.1016/j.molstruc.2020.128405
http://doi.org/10.3390/rs12223809
http://doi.org/10.5194/isprs-archives-XLIII-B3-2020-383-2020
http://doi.org/10.47836/pjst.29.2.07
http://doi.org/10.3390/agriculture6040056
http://doi.org/10.1016/j.compag.2014.12.012
http://doi.org/10.1109/JSTARS.2020.3046053
http://doi.org/10.3390/s19071543

	Introduction 
	Mobile Application for Pest and Disease Management 
	Role of Mobile Applications in Monitoring Pest and Disease 
	Image Processing for Pest and Disease Monitoring Using the Mobile Application 
	Systems for Extraction of Disease Using the Mobile Application 

	Spectral Signature Analysis for Pest and Disease Management 
	Spectral Reflectance in Monitoring Plant Health 
	Spectral Signature of Pest and Diseases in the Crop Field 
	Image Processing for Pest and Disease Diagnosis Based on Spectral Signature 

	The Linkage between the Development of the Mobile Application for Spectral Signature Analysis in Pest and Disease Management 
	Structure of Steps in Developing a Mobile Application That Can Incorporate Spectral Signature Analysis for Pest and Disease Management 
	Collection of Hyperspectral Reflectance Data and Spectral Signatures 
	Generation of Spectral Signature Graph 
	Incorporation of Spectral Libraries into the Mobile Application 
	Design of Mobile Applications Containing the Spectral Libraries 

	Conclusions 
	References

