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Abstract: Dynamic characteristics and control of thin McKibben muscle (TMM) have not yet been
fully investigated, especially on the translational antagonistic pair system. Therefore, the objective
of this study is to propose a Switching Model Predictive Control (SMPC) based on a Piecewise
Affine (PWA) system model to control a translational antagonistic-pair TMM servo actuator. A novel
configuration enables the servo actuator to achieve a position control of 40 mm within a small
footprint. The result shows that the feedback system gives minimal steady-state errors when tracking
staircase and setpoint references ranging from 0 to 3.5 cm. The controller also produces better
transient and steady-state responses than our previously developed Gain-scheduled Proportional–
Integral–Derivative (GSPID) controller. The evidence from this study suggests that a predictive
control for a TMM servo actuator is feasible.

Keywords: nonlinear control system; pneumatic artificial muscle; pneumatic muscle actuator;
predictive control

1. Introduction

Many compliant and soft robotic arms have been developed using pneumatic muscle
actuator (PMA) or also known as McKibben muscle (MM) because of its similarity to
human muscle in terms of compliance characteristics and contraction properties. These
muscles are usually powered by mechanical air compressor, but some researchers have
explored the possibility of using non-mechanical micropumps such as electrohydrodynamic
pumps [1]. Due to its high output force, conventional MM is preferred over thin McKibben
muscle (TMM) in applications needing high force in an unconfined environment. TMM,
on the other hand, is better suited to robotic applications where space is limited due to
its flexibility and small weight. For example, snake-like manipulator has been developed
by Faudzi et al. [2] using TMMs attached to a thin bendable plastic. A more complicated
approach has been taken by Pang et al. [3] where they used springs and flange plates with
TMMs to guide the manipulator. Similar structure has been used by Liu et al. [4] with the
difference being the springs replaced by internal TMMs set. Another recent example of
TMM-based continuum manipulator can be seen in Mohamed et al. [5].

Precise positioning control could expand TMM’s usability, for example into surgical
robots [6]. However, MMs, in general, are known to have nonlinear response and hysteresis.
Therefore, using them for position control is challenging. Nonlinear control methods are
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preferred in applications requiring a large range of operation and high-speed motions.
One of them is sliding mode control [7–10]. It is a type of robust controller that takes the
uncertainty of model parameters and system disturbances into consideration. It is also
based on the assumption that first order system is easier to control than higher order system.
Another one is the adaptive controller [11–13], whose parameters vary throughout the pro-
cess and are used in systems with uncertain parameters. Even though the robust controller
can also be used for such systems, the adaptive controller is better when the unknown
parameters are constant or vary slowly over time. However, its drawback compared to
robust controller is its inability to deal with disturbances and unmodeled dynamics.

Another popular control method is the artificial intelligence (AI)-based control, which
builds the controller’s model using AI such as neural network (NN) and fuzzy logic.
NN is a series of algorithms, modeled roughly after the animal brain, that is designed to
recognize patterns. Among the applications of NN are implementing gain scheduling of the
Proportional–Integral–Derivative (PID) controller [14], determining the model parameters
in the adaptive controller [15,16], and acting as the controller itself through the use of
inverse dynamics [17]. On the other hand, fuzzy logic is a set of degrees of truth, modeled
after the human reasoning, that is designed to represent knowledge [18]. Thus, the use
of fuzzy controllers is achieved through inverse dynamics, as can be seen in works by
Leephakpreeda [19], And and Ahn [20], and Chandrapal et al. [21]. Although these
methods are promising, they require plenty of data gathering and training.

In many robotic applications, MMs and TMMs are used in antagonistic pair configura-
tion [9–13,22–25] whereby at any time, a set contracts and another set relaxes. Compared to
single-acting arrangement [15,26–29], it is more challenging to control because two different
contraction modes need to be handled simultaneously. Switching linear controllers such
as Switching Model Predictive Control (SMPC) [30–32] and Gain-scheduled Proportional–
Integral–Derivative (GSPID) [28] have been used to control such systems. Being basically a
combination of linear controllers, they are simpler to design compared to other nonlinear
controllers. However, the existing literature focuses on conventional MMs, which have
different characteristics than TMM such as the absence of slack and significantly higher
mass. A thorough search of the relevant works of literature yielded no related article
on TMM.

There are typically two ways that an antagonistic pair configuration is realized: a rota-
tional system and a translational system. Compared to rotational systems [8,16,28,33–37],
translational systems [38–40] of MM, let alone of TMM, have not been studied as much. In
addition, in the works on translational systems, other researchers have only achieved a max-
imum position control of 15 mm and 6.4 mm for a maximum pressure of 0.45 and 0.5 MPa,
respectively, on their translational systems [7,39]. Table 1 summarizes the contributions of
this paper with its main references.

Table 1. Summary of the contributions of this paper.

Contribution Details Main References

Configuration Translational antagonistic-pair thin McKibben muscle
(TMM) servo actuator with maximum control of 40 mm

Shen et al. [7] (conventional McKibben muscle (MM),
max. control 15 mm), Tang et al. [39] (conventional

MM, max. control 6.5 mm)

Control Switching Model Predictive Control (SMPC)
Shen et al. [7] (sliding mode control, conventional
MM), Andrikopoulos et al. [31,32] (single-acting,

conventional MM)

2. Materials and Methods

This section is comprised of five parts. In the first part, the system under study and its
PWA model are explained. Then, in the second part, the SMPC is detailed out. In the third
part, the experiment setup is presented. In the last two parts, the stability of the controller
is discussed.
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2.1. TMM Servo Actuator and Its PWA Model

The prototype’s drawings are shown in Figure 1. It uses commercial TMMs [41] with
an outer-tube diameter of 1.8 mm and operating range of 0–0.5 MPa. The muscle’s spec-
ifications are listed in Table 2 based on [41]. The antagonistic pair muscles are placed in
different elevations. This configuration is necessary to realize a maximum displacement in
the horizontal plane within a small footprint. The actuator uses two valves to control the
top and bottom muscle pairs separately.

Top muscle pair

Top pulleysRod

(a)

Bottom pulleysSide pulleys

Bottom muscle pair

Rod

(b)
Figure 1. The prototype’s drawing in computer-aided design. Reprinted by permission from Springer
Nature: Springer eBook [42], copyright 2022. (a) Isometric view of the top part; (b) Cross-section
view of the bottom part.

Table 2. Specifications of the TMM used.

Pressure (MPa) Maximum Force a (N) Maximum Contraction Ratio a (%)

0.1 1 2.5
0.2 5 15
0.3 10 21
0.4 15 25
0.5 20 28

a Estimated values.

The main difference between the configuration used in this study and that used by
other researchers [7,39] is the use of pulleys and the placement of the antagonistic pair
muscles on different elevations and in parallel. This configuration is necessary to maximize
the rod displacement in the horizontal plane within a small footprint. Other researchers
placed the muscles on the same elevation, to the the left and the right of the load, without
the use of pulley. Such sonfiguration entails that for a position control of 40 mm, the
length of the setup has to be more than 36 cm, as shown in Figure 2. With the use of the
pulley–different elevations–parallel system, the prototype is only about 10 cm.
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Origin

20 cm 
(No contraction)

16 cm 
(20% contraction)

20 
mm

(a)

Origin

18 cm 
(10% contraction)

18 cm 
(10% contraction)

(b)
Origin

16 cm

20 
mm 20 cm

(c)
Figure 2. Illustration of antagonistic translational TMM servoactuator setup for 40 mm position
control with no modification. The length of the setup has to be more than 36 cm. (a) Rightmost
position; (b) center position; (c) leftmost position.

Another difference in this configuration is the use of TMM instead of conventional
PAM. Whereas conventional PAM is rigid, TMM is flexible and has slack. The slackness
causes a passive contraction range whereby its contractile force does not affect the load
displacement, as described in Figures 3 and 4.

With slack

Without slack

To muscle 
holder Inlet/ outlet

Figure 3. Comparison between a muscle with slack and a muscle without slack.

Top muscle pair, with slack

Potentiometer attached to rod

Figure 4. Top muscle pair with slack and passive contraction.

The servo actuator is modelled as a multiple-input single-output (MISO) system. Its
inputs are air pressure into the top McKibben muscle pair, Pa, and bottom muscle pair, Pb,
whereas its output is the rod displacement, x. The contractile force, F, from a single muscle
acting on the rod can be described using Schulte’s formula [43]

F =
πD2

0P
4

(
3 cos2 θ − 1

)
(1)

where D0, P, and θ are the maximum muscle diameter, applied pressure, and muscle’s
braid angle. Since D0 is a constant, at the same pressure, F depends on θ alone.

Therefore, based on Equation (1), F is maximum at the start of contraction (θ = θ0).
This force moves the rod. As illustrated in Figure 5, as the muscle contracts, θ increases
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and F decreases. When the muscle is fully contracted, F equals to zero and the rod
stops moving.

To muscle 
holder Inlet/outlet

𝜃i 𝜃f Contracted 
muscle

Dilated 
muscle

Figure 5. Comparison of braid angle before and after contraction. Initial braid angle, θi, is smaller
than final braid angle, θ f .

Whereas the previous discussion is on the static model of a TMM, which gives a
good background on its behavior, the dynamic model is more useful in fully explaining
what is happening during transients, such as during the start of a system. The dynamic
model, as illustrated in Figure 6, has been derived and explained in detail in our previous
work [42]. Furthermore, the piecewise affine (PWA) system has been used to represent the
model, which enables a switching controller to be developed for the actuator. Some of the
paper’s important results are republished here to aid in understanding PWA and its role in
the development of the SMPC.

Rod, M (kg)

x (m)

K

D

Fa-Ra (N) Fb-Rb (N)

Figure 6. Dynamic model of the TMM servo actuator. Reprinted by permission from Springer Nature:
Springer eBook [42], copyright 2022.

The state space model of the system for extension operation near the mth operating
point xmop is given by

[
ẋ
ẍ

]
=

[
0 1
−Qm

M −Dm

M

][
x
ẋ

]
+

[
0

Tm

M

]
δPa

+

[
0

Qm

M xmop

]
(2)

and its compact form by

ẋc = Am
c xc + Bm

c δPa + f m
c

yc = Cm
c xc

(3)
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where xc =

[
x1
x2

]
=

[
x
ẋ

]
∈ Xa ⊆ R2, y = x, and δPa ∈ Pa ⊆ R, with Xa and Pa are the

sets of state and input pressure containing the operating points xmop and P
mop
a , respectively,

and Am
c , Bm

c and Cm
c are matrix variables of system, input and output given by

Am
c =

[
0 1

−Km

M −
2αP

mop
a

la M

(
1− xmop

la

)
−Dm

M

]
, (4)

Bm
c =

 0
1
M

[
α
(

1− xmop

la

)2
+ β

] , (5)

Cm
c =

[
1 0
0 1

]
(6)

and f m
c is the affine term given by

f m
c =

[
0

Kmxmop

M + 2αP
mop
a xmop

la M

(
1− xmop

la

) ]. (7)

On the other hand, the state space model of the system for retraction operation near
n-th operating point xnop is given by

[
ẋ
ẍ

]
=

[
0 1
−Qn

M −Dn

M

][
x
ẋ

]
+

[
0
Tn

M

]
δPb

+

[
0

Qn

M xnop − TnP
nop
b

M

]
(8)

and its compact form by

ẋc = An
c xc + Bn

c δPb + f n
c

yc = Cn
c xc

(9)

where

An
c =

 0 1

−Kn

M −
2αP

nop
b

lb M

(
1− (xmax−xnop )

lb

)
−Dn

M

 (10)

Bn
c =

 0

− 1
M

[
α
(

1− (xmax−xnop )
lb

)2
+ β

] , (11)

Cn
c =

[
1 0
0 1

]
, (12)

f n
c =

 0
Knxnop

M +
2αP

nop
b xnop

lb M

(
1− (xmax−xnop )

lb

) . (13)

2.2. Tracking MPC

The system at the bth mode can be represented by the following discrete-time linear
time invariant function

xck+1 = Ab
c xck + Bb

c uk + f b

yck = Cb
c xck

(14)
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where Ab
c =

[ Ab
c11

Ab
c12

0

Ab
c21

Ab
c22

0
0 0 I

]
, Bb

c =
[ Bn

c11
Bb

c12
Bn

c21
Bb

c22
0 0

]
and uk =

[ Pak
Pbk

]
.

To simplify the notation, the active-mode notation, b will be dropped in the subsequent
discussion. Augmenting the state vector in Equation (14) to include affine term f yields

xk+1 = Axk + Buk
yk = Cxk

(15)

To simplify the discussion to follow, prediction horizon and control horizon is assumed
to be of the same value. The general finite horizon cost function from time instance 0 to
Np that depends on the initial state x0 and input sequence U0→Np = u0, . . . , uNp−1 for an
optimal controller is then given by

J0→I

(
x0, U0→Np

)
= p

(
xNp

)
+

Np−1

∑
i=0

q(xi, ui) (16)

where Np is the prediction horizon, p(xNp) is the terminal cost function, q(xi, ui) is the
stage cost function, and xi is the state vector at time i resulting from the input sequence
U0→Np applied to the system model

xi+1 = Axi + Bui (17)

starting at x0.
Model Predictive Control (MPC) uses the same cost function (Equation (16)) calcula-

tion, but instead of a one-time operation at the initial time, the calculation is repeated at
every time instance k. Since Equation (17) predicts at k = 0 what the future state vector
would be, the future state and output predicted at time k can be written as

xk+i+1|k = Axk+i|k + Buk+i|k

yk+i|k = Cxk+i|k
(18)

where xk+i|k is the ith state predicted at k and uk+i|k is the ith input computed at k. The
finite horizon cost function at time k for MPC can then be defined as

Jk→k+Np |k

(
xk, Uk→k+Np |k

)
= p

(
xk+Np |k

)
+

Np−1

∑
i=0

q
(

xk+i|k, uk+i|k

)
(19)

where Uk→k+Np = uk, . . . , uk+Np−1 is the calculated input sequence. If a quadratic cost
function is used, Equation (19) becomes

Jk→k+Np |k

(
xk, Uk→k+Np |k

)
= x′Np

PxNp

+
Np−1

∑
i=0

(x′iQxi + u′iRui). (20)

where P is the terminal weight, Q is the state weight, and R is the input weight. The MPC
optimization problem at every time instance k is then: given xk, find Uk→k+Np |k, which
minimizes Equation (20) subject to constraints, that is

minUk→k+Np |k
x′Np

PxNp + ∑
Np−1
i=0 (x′iQxi + u′iRui)

subject to xk+i+1|k = Axk+i|k + Buk+i|k
Eus ≤ e.

(21)
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MPC then uses only the first control signal, uk = −Kxk, and resolves the optimization
problem, Equation (21) at the next time instance, k + 1.

The servo actuator is to track a reference trajectory, r; therefore, an MPC has been
designed with the main objective of minimizing the error, e, between r and the output, y.
The cost of implementing such a controller consists of the performance cost, which depends
on P and Q, and the effort cost, which depends on R, and by tuning the weights, the balance
between the two costs can be specified. In addition, the controller needs to work within
certain constraints, such as the state and input inequality constraints, i.e., xmin ≤ x ≤ xmax
and umin ≤ u ≤ umax. The cost problem of the tracking controller is then defined as [44]

min (y′k+NP |k
− rk+NP |k)P(yk+NP |k − rk+NP |k)+

∑NP−1
i=0 [(y′k+i|k − rk+i|k)Q(yk+i|k − rk+i|k)

+∆u′k+i|kR∆uk+i|k]

s.t. ymin ≤ yk+i|k ≤ ymax, i = 1, . . . , Np
umin ≤ uk+i ≤ umax, i = 0, . . . , Np
∆umin ≤ ∆uk+i ≤ ∆umax, i = 0, . . . , Np
uk+i = 0, i ≥ Np
xk+i+1|k = Axk+i|k + B[uk+i−1|k + ∆uk+i]

yk+i|k = Cxk+i|k

(22)

2.3. Experiment Setup

The prototype fitted with a Gefran® potentiometer is shown in Figure 7, and an
overview of the experiment setup is shown in Figure 8. The detail of the experiment setup
can be referred to [45]. A Gefran PZ-34-A-250 linear potentiometer is used to measure
the rod position, whereas the acceleration is obtained by using a filtered derivative of the
measured position with a time constant of 0.03.

Jig Actuator Gefran potentiometer Inlet/ Outlet

Figure 7. The prototype fitted with a Gefran potentiometer.

Serial connection

Host computer 
running Simulink

Arduino UNO

Pressure source

Servo actuator fitted with 
Gefran potentiometer

CKD MEVT 
electro 

pneumatic 
regulator

Analog control 
voltage (0-5V)

Input pressure

Analog displacement 
data

Figure 8. Overview of the experiment setup. Reprinted by permission from Springer Nature: Springer
eBook [45], copyright 2021, with some modification.
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The overall SMPC control system is shown in Figure 9. The controller was devel-
oped using Hybrid Toolbox [44], Multi-Parametric Toolbox 3.0 [46], YALMIP [47] and
HYSDEL [48]. A feed forward controller was used in addition to the MPC controller to
minimize the settling time. In addition, it ensures that maximum displacement is achieved.
A lookup table, Table 3, is used to determine the value of the feedforward signal. The
mapping of the table depends on reference signal and forward–reverse switch.

[PA PB ]T

[PAff PBff ]
T

Active mode 
lookup tablem

Feedforward 
control

Tracking MPC
+

+
[ΔPA ΔPB]T

Servoactuator

xref

-
+

s

e

x
xref

x

Forward/Reverse 
switch

z-1

Filtered 
derivative

Σ

OFF

ON

Figure 9. Overall SMPC system.

Table 3. Feedforward control lookup table.

Reference Displacement
(cm) Forward-Reverse Switch a Feedforward Control (MPa)

r ≤ 0.5 1 0.175
0.5 < r ≤ 1.0 1 0.18
1.0 < r ≤ 1.5 1 0.21
1.5 < r ≤ 2.0 1 0.218
r > 2.0 1 0.225
r ≤ 0.5 0 0.21
0.5 < r ≤ 1.0 0 0.19
1.0 < r ≤ 1.5 0 0.175
r > 1.5 0 0.165

a 1: Forward, 0: Reverse.

2.4. Stability of Finite Horizon Optimal Controller

The stability of a discrete-time system can be checked using Jury stability criterion.
The system is stable if the eigenvalues of the closed-loop system is inside the unit circle.
Given a plant as in Equation (15) with a state-feedback controller, stability is determined by
solving

det[λI − Acl ] = 0 (23)

for eigenvalues, λ with Acl = A− BK and K being the gain. In MATLAB, Equation (23) is
solved using the command eig(Acl).

For a finite horizon optimal controller such as MPC, the value of K, and hence the
eigenvalues, depend on the prediction horizon, Np. It is well-known that asymptotic
stability of a predictive controller is ensured with an infinite Np. However, instability is not
ensured with small Np. James B. Rawlings et al. [49] shows that a short Np might produce
closed-loop eigenvalues outside of the unit circle. Therefore, in general, MPC stability is
not guaranteed [50].

Several methods have been proposed to guarantee the stability of MPC, as discussed
in [51]. In this study, a terminal-equality constraint whereby the terminal cost F(.) and
terminal constraint x(N) ∈ X f satisfy F(x) ≡ 0 and X f = {ysp} was adopted to guarantee
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the MPC’s stability. In Hybrid Toolbox, this is achieved by setting Q.xN to zero, and
limits.Sx and limits.Tx to [1 0;−1 0] and zeros (2,1), respectively.

2.5. Stability of SMPC

Because of the one-way motion of McKibben muscles, two or more controllers need
to be used to enable extension and retraction actions. At any time, only one controller
is active, which means that the controller switches from one to another. This switching
configuration might affect the stability of the system. To prove the stability of this kind of
system, multiple Lyapunov functions can be used. Liberzon [52] suggested that as long as
the Lyapunov function of the active controller decreases over time, the switching system is
stable. For switching MPC, if the MPC’s cost function is taken as its Lyapunov function [53],
its stability is guaranteed because MPC performs online minimization of cost function;
therefore, its Lyapunov function decreases over time [31].

2.6. Gain-Scheduled Proportional-Integral-Derivative

The developed SMPC has been compared to our previously developed Gain-scheduled
Proportional–Integral–Derivative (GSPID) controller [45], as shown in Figure 10. Even though
both controllers are based on linear models, MPC, in general, has the advantage of more
readily able to handle constraints.

Servoactuator

xref

-
+e

xGain selection
u

z-1
Reverse PID

Forward PID

-ve error selection

Error hysteresis

xref

e

OFF

ON

Figure 10. Schematic of the Gain-scheduled Proportional-Integral-Derivative (GSPID) controller.

3. Results

Figure 11 shows the results of set point experiments to compare the performance of
the developed SMPC with the GSPID controller. The SMPC performs well to follow the
set point with average rise time, Tr, settling time, Ts, overshoot, OS, and steady-state error,
Ess of 1.49 s, 3.69 s, 0.62%, and 0.51%, respectively, as shown in Table 4. Compared to
the GSPID controller, the SMPC has smaller average values for all the parameters. This
is because the GSPID controller is based on a single-input single-output (SISO) system
that is not able to achieve a fine displacement control. Therefore, it is not able to produce
a good set point regulation once overshoot occurs. Therefore, it is tuned to get the best
steady-state response, i.e., minimal overshoot and steady-state error at the expense of the
transient response, i.e., rise time and settling time.
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0 2 4 6 8 10 12 14

Time (s)

0

0.5

1

1.5

2

2.5

3

D
is

p
la

c
e
m

e
n
t 
(c

m
)

Reference signal

y MPC

y PI

Figure 11. Result of SMPC versus GSPID setpoint tracking experiments.

Table 4. Comparison between SMPC and GSPID setpoint tracking performances.

Tr (s) Ts (s) OS (%) Ess (%)

Step (cm) MPC PID MPC PID MPC PID MPC PID

0.5 2.25 3.10 4.53 9.60 2.00 1.40 2.00 1.40
1.0 1.51 3.80 3.68 6.40 1.00 1.00 1.00 1.00
1.5 0.03 4.40 5.45 8.20 0.00 1.33 −0.67 1.33
2.0 1.71 4.60 2.58 11.30 0.00 1.50 0.00 1.50
2.5 1.10 5.40 3.15 10.80 0.40 0.40 0.40 0.40
3.0 2.32 6.40 2.72 12.60 0.33 0.33 0.33 0.33

Average 1.49 4.62 3.69 9.82 0.62 0.99 0.51 0.99

Figure 12 shows the tracking performance of the SMPC controller to a staircase signal.
The output displacement, Dout (yellow) shows good tracking to reference displacement,
Dre f (purple). The average rise time, settling time, overshoot, and steady-state error
are 2.16 s, 3.47 s, 1.25%, and 1.25% for increasing staircase tracking and 1.26 s, 2.27 s,
1.13%, and −0.07% for decreasing staircase tracking, as shown in Table 5. To calculate rise
time or fall time for each step change, the response is normalized to be in the range of
[0, |yss − yre f ,initial |] where yss is the steady-state response value and yre f ,initial is the initial
reference value. For example, for a reference change from 1.5 to 2 with steady-state response
of 2.01, the range would be [0, 2.01− 1.5 = 0.51].
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Figure 12. Graph of SMPC staircase tracking.

Table 5. SMPC staircase tracking performances.

Actuation x0 (cm) x f (cm) Tr (s) Ts (s) OS (%) Ess (%)

Forward 0.0 0.5 0.90 4.55 2.00 2.00
0.5 1.0 2.31 4.16 1.00 1.00
1.0 1.5 2.06 3.04 1.33 1.33
1.5 2.0 3.14 3.15 1.50 1.50
2.0 2.5 2.39 2.47 0.40 0.40

Average 2.16 3.47 1.25 1.25

Reverse 2.5 2.0 0.72 0.95 0.00 0.00
2.0 1.5 1.16 1.30 0.67 0.67
1.5 1.0 1.28 1.98 1.00 1.00
1.0 0.5 1.29 3.83 4.00 −2.00
0.5 0.0 1.86 3.31 0.00 0.00

Average 1.26 2.27 1.13 −0.07

The SMPC tracking performance is also compared with the result from GSPID con-
troller, as shown in Figure 13 and Table 6. The result shows that the SMPC, in general, has
lower average values of transient and steady-state responses with average Tr, Ts, OS, and
Ess of 2.96 s, 3.67 s, 1.24%, and 0.74% for forward actuation, and 1.53 s, 2.31 s, 1.27%, and
0.20% for reverse actuation, compared to the GSPID’s values of 4.28 s, 6.06 s, 0.01% and
0.01% for forward actuation, and 7.46 s, 8.63 s, −2.29% and −2.29% for reverse actuation.
Even though GSPID performs better than SMPC in OS and Ess for forward actuation, the
values of SMPC are still low and acceptable. Taken together, these results suggest that the
SMPC has a better tracking performance than the GSPID.
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Figure 13. Comparison between SMPC and GSPID staircase tracking.

Table 6. Comparison between SMPC and GSPID staircase tracking performances.

Actuation x0 x f Tr (s) Ts (s) OS (%) Ess (%)

(cm) (cm) MPC PID MPC PID MPC PID MPC PID

Forward 0.0 1.2 2.85 3.70 3.82 5.60 2.50 0.00 0.00 0.00
0.0 3.0 2.32 5.90 2.72 12.38 0.33 −0.33 0.33 −0.33
1.2 1.6 2.91 3.10 4.30 3.20 1.88 0.00 1.88 0.00
1.6 2.0 3.86 3.80 3.99 3.90 1.50 0.00 1.50 0.00
2.0 2.5 2.86 4.90 3.50 5.20 0.00 0.40 0.00 0.40

Average 2.96 4.28 3.67 6.06 1.24 0.01 0.74 0.01

Reverse 2.5 1.3 1.01 8.60 1.19 10.10 1.54 0.77 −1.54 0.77
1.3 0.9 0.75 3.80 1.73 3.90 5.56 −2.22 −2.22 −2.22
0.9 0.5 1.64 11.80 2.05 14.30 −2.00 −10.00 2.00 −10.00
0.5 0.0 1.30 8.80 2.93 8.80 0.00 0.00 0.00 0.00

Average 1.53 7.46 2.31 8.63 1.27 −2.29 −0.20 −2.29

4. Conclusions

In this study, we set out to determine the feasibility of position control using switching
MPC for a translational antagonistic-pair TMM servo actuator. It was found that the con-
troller was able to track setpoint and staircase signals in the actual system. Its performance
was also compared to our previously developed GSPID controller. It was shown that the
SMPC is better than the GSPID controller in both transient and steady-state responses.
The results of this study indicate the feasibility of a predictive control for a TMM-actuated
pneumatic cylinder, which would facilitate future development of a compliant actuator
for safe human–robot interaction. Another focus of this research is to extend the position
control range of the servo actuator, which has resulted in the novel method as explained
previously. While using a conventional setup requires a larger space to accommodate
the increased length as explained in Section 2.1, it is unknown if it can produce a better
control. A study to compare the performance of a setup without pulleys and the elaborated
configuration to that of this research could thus be useful.
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PMA Pneumatic muscle actuator
PWA Piecewise Affine
SMPC Switching Model Predictive Control
TMM Thin McKibben muscle

References
1. Mao, Z.; Iizuka, T.; Maeda, S. Bidirectional Electrohydrodynamic Pump with High Symmetrical Performance and Its Application

to a Tube Actuator. Sens. Actuat. A Phys. 2021, 332, 113168. [CrossRef]
2. Faudzi, A.A.; Azmi, N.I.; Sayahkarajy, M.; Xuan, W.L.; Suzumori, K. Soft Manipulator Using Thin McKibben Actuator. In

Proceedings of the 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Auckland, New
Zealand, 9–12 July 2018; pp. 334–339. [CrossRef]

3. Peng, Y.; Liu, Y.; Yang, Y.; Liu, N.; Sun, Y.; Liu, Y.; Pu, H.; Xie, S.; Luo, J. Development of Continuum Manipulator Actuated by
Thin McKibben Pneumatic Artificial Muscle. Mechatronics 2019, 60, 56–65. [CrossRef]

4. Liu, Y.; Yang, Y.; Peng, Y.; Zhong, S.; Liu, N.; Pu, H. A Light Soft Manipulator With Continuously Controllable Stiffness Actuated
by a Thin McKibben Pneumatic Artificial Muscle. IEEE Asme Trans. Mechatronics 2020, 25, 1944–1952. [CrossRef]

5. Mohamed, M.F.; Hanif, A.S.M.; Faudzi, A.A. Segmentation of a Soft Body and Its Bending Performance Using Thin McKibben
Muscle. Int. J. Automot. Mech. Eng. 2020, 17, 7533–7541. [CrossRef]

6. Wang, S.; Sato, K. High-Precision Motion Control of a Stage with Pneumatic Artificial Muscles. Precis. Eng. 2016, 43, 448–461.
[CrossRef]

7. Shen, X. Nonlinear Model-Based Control of Pneumatic Artificial Muscle Servo Systems. Control Eng. Pract. 2010, 18, 311–317.
[CrossRef]

8. Abd. Rahman, R.; Sepehri, N. Design and Experimental Evaluation of a Dynamical Adaptive Backstepping-Sliding Mode Control
Scheme for Positioning of an Antagonistically Paired Pneumatic Artificial Muscles Driven Actuating System. Int. J. Control 2017,
90, 265–290. [CrossRef]

9. Dao, Q.T.; Nguyen, M.L.; Yamamoto, S.i. Discrete-Time Fractional Order Integral Sliding Mode Control of an Antagonistic
Actuator Driven by Pneumatic Artificial Muscles. Appl. Sci. 2019, 9, 2503. [CrossRef]

http://doi.org/10.1016/j.sna.2021.113168
http://dx.doi.org/10.1109/AIM.2018.8452698
http://dx.doi.org/10.1016/j.mechatronics.2019.05.001
http://dx.doi.org/10.1109/TMECH.2020.2993017
http://dx.doi.org/10.15282/ijame.17.1.2020.02.0557
http://dx.doi.org/10.1016/j.precisioneng.2015.09.010
http://dx.doi.org/10.1016/j.conengprac.2009.11.010
http://dx.doi.org/10.1080/00207179.2016.1176255
http://dx.doi.org/10.3390/app9122503


Actuators 2022, 11, 233 15 of 16

10. Ohta, P.; Valle, L.; King, J.; Low, K.; Yi, J.; Atkeson, C.G.; Park, Y.L. Design of a Lightweight Soft Robotic Arm Using Pneumatic
Artificial Muscles and Inflatable Sleeves. Soft Robot. 2018, 5, 204–215. [CrossRef] [PubMed]

11. Jiang, F.; Tao, G.; Li, Q. Analysis and Control of a Parallel Lower Limb Based on Pneumatic Artificial Muscles. Adv. Mech. Eng.
2017, 9. [CrossRef]

12. Son, N.N.; Kien, C.V.; Anh, H.P.H. A Novel Adaptive Feed-Forward-PID Controller of a SCARA Parallel Robot Using Pneumatic
Artificial Muscle Actuator Based on Neural Network and Modified Differential Evolution Algorithm. Robot. Auton. Syst. 2017,
96, 65–80. [CrossRef]

13. Ugurlu, B.; Forni, P.; Doppmann, C.; Sariyildiz, E.; Morimoto, J. Stable Control of Force, Position, and Stiffness for Robot Joints
Powered via Pneumatic Muscles. IEEE Trans. Ind. Inform. 2019, 15, 6270–6279. [CrossRef]

14. Anh, H.P.H. Online Tuning Gain Scheduling MIMO Neural PID Control of the 2-Axes Pneumatic Artificial Muscle (PAM) Robot
Arm. Exp. Syst. Appl. 2010, 37, 6547–6560. [CrossRef]

15. Zhong, J.; Zhou, X.; Luo, M. A New Approach to Modeling and Controlling a Pneumatic Muscle Actuator-Driven Setup Using
Back Propagation Neural Networks. Complexity 2018, 2018, 4160504. [CrossRef]

16. Anh, H.P.H.; Son, N.N.; Nam, N.T. Adaptive Evolutionary Neural Control of Perturbed Nonlinear Serial PAM Robot. Neurocom-
puting 2017, 267, 525–544. [CrossRef]

17. Al-Ibadi, A.; Nefti-Meziani, S.; Davis, S.; Theodoridis, T. Novel Design and Position Control Strategy of a Soft Robot Arm.
Robotics 2018, 7, 72. [CrossRef]

18. Yager, R.R.; Zadeh, L.A. An Introduction to Fuzzy Logic Applications in Intelligent Systems; Springer: New York, USA, 2012;
Volume 165.

19. Leephakpreeda, T. Fuzzy Logic Based PWM Control and Neural Controlled-Variable Estimation of Pneumatic Artificial Muscle
Actuators. Exp. Syst. Appl. 2011, 38, 7837–7850. [CrossRef]

20. Anh, H.P.H.; Ahn, K.K. Hybrid Control of a Pneumatic Artificial Muscle (PAM) Robot Arm Using an Inverse NARX Fuzzy Model.
Eng. Appl. Artif. Intell. 2011, 24, 697–716. [CrossRef]

21. Chandrapal, M.; Chen, X.; Wang, W.; Hann, C. Nonparametric Control Algorithms for a Pneumatic Artificial Muscle. Exp. Syst.
Appl. 2012, 39, 8636–8644. [CrossRef]

22. Feng, Y.; Ide, T.; Nabae, H.; Endo, G.; Sakurai, R.; Ohno, S.; Suzumori, K. Experimental Comparison of Antagonistic Hydraulic
Muscle Actuation under Single/Dual and Zero/Overlapped Servovalve Configurations. Mechatronics 2022, 83, 102737. [CrossRef]

23. Mohd Faudzi, A.A.; Ooga, J.; Goto, T.; Takeichi, M.; Suzumori, K. Index Finger of a Human-Like Robotic Hand Using Thin Soft
Muscles. IEEE Robot. Autom. Lett. 2018, 3, 92–99. [CrossRef]

24. Mohd Faudzi, A.A.; Endo, G.; Kurumaya, S.; Suzumori, K. Long-Legged Hexapod Giacometti Robot Using Thin Soft McKibben
Actuator. IEEE Robot. Autom. Lett. 2018, 3, 100–107. [CrossRef]

25. Woods, B.K.S.; Choi, Y.T.; Kothera, C.S.; Wereley, N.M. Control System Development for Pneumatic Artificial Muscle-Driven
Active Rotor Systems. J. Guid. Control Dyn. 2013, 36, 1177–1185. [CrossRef]

26. Al-Fahaam, H.; Nefti-Meziani, S.; Theodoridis, T.; Davis, S. The Design and Mathematical Model of a Novel Variable Stiffness
Extensor-Contractor Pneumatic Artificial Muscle. Soft Robot. 2018, 5, 576–591. [CrossRef] [PubMed]

27. Andrikopoulos, G.; Nikolakopoulos, G.; Manesis, S. Pneumatic Artificial Muscles: A Switching Model Predictive Control
Approach. Control Eng. Pract. 2013, 21, 1653–1664. [CrossRef]

28. Andrikopoulos, G.; Nikolakopoulos, G.; Manesis, S. Advanced Nonlinear PID-based Antagonistic Control for Pneumatic Muscle
Actuators. IEEE Trans. Ind. Electron. 2014, 61, 6926–6937. [CrossRef]

29. Zhao, L.; Liu, X.; Wang, T. Observer-Based Nonlinear Decoupling Control for Two-Joint Manipulator Systems Driven by
Pneumatic Artificial Muscles. J. Dyn. Syst. Meas. Control Trans. ASME 2020, 142, 041001. [CrossRef]

30. Schindele, D.; Aschemann, H. Nonlinear Model Predictive Control of a High-Speed Linear Axis Driven by Pneumatic Muscles.
In Proceedings of the 2008 American Control Conference, Seattle, WA, USA, 11–13 June 2008; pp. 3017–3022.

31. Andrikopoulos, G.; Nikolakopoulos, G.; Arvanitakis, I.; Manesis, S. Switching Model Predictive Control of a Pneumatic Artificial
Muscle. Int. J. Control Autom. Syst. 2013, 11, 1223–1231. [CrossRef]

32. Andrikopoulos, G.; Nikolakopoulos, G.; Arvanitakis, I.; Manesis, S. Piecewise Affine Modeling and Constrained Optimal Control
for a Pneumatic Artificial Muscle. IEEE Trans. Ind. Electron. 2014, 61, 904–916. [CrossRef]

33. Andrikopoulos, G.; Nikolakopoulos, G.; Manesis, S. Adaptive Internal Model Control Scheme for a Pneumatic Artificial Muscle.
In Proceedings of the 2013 European Control Conference, Zurich, Switzerland, 17–19 July 2013; pp. 772–777.

34. Andrikopoulos, G.; Nikolakopoulos, G.; Manesis, S. Non-Linear Control of Pneumatic Artificial Muscles. In Proceedings of the
2013 21st Mediterranean Conference on Control and Automation, Crete, Greece, 25–28 June 2013; Antsaklis, P., Valavanis, K.,
Tsourveloudis, N., Zingaretti, P., Moreno, L., Eds.; pp. 729–734.

35. Anh, H.P.H.; Son, N.N.; Kien, C.V. Adaptive Neural Compliant Force-Position Control of Serial PAM Robot. J. Intell. Robot. Syst.
2018, 89, 351–369. [CrossRef]

36. Chan, C.Y.; Chong, S.H.; Loh, S.L.; Alias, A.; Kasdirin, H.A. Positioning Control of an Antagonistic Pneumatic Muscle Actuated
System Using Feedforward Compensation with Cascaded Control Scheme. Int. J. Integr. Eng. 2020, 12, 70–74. [CrossRef]

37. Martens, M.; Zawatzki, J.; Seel, T.; Boblan, I. A Pneumatic-Muscle-Actuator-Driven Knee Rehabilitation Device for CAM Therapy.
In Proceedings of the 2019 41st Annual International Conference of the Ieee Engineering in Medicine and Biology Society (Embc),
Berlin, Germany, 23–27 July 2019; pp. 6237–6242.

http://dx.doi.org/10.1089/soro.2017.0044
http://www.ncbi.nlm.nih.gov/pubmed/29648951
http://dx.doi.org/10.1177/1687814016685002
http://dx.doi.org/10.1016/j.robot.2017.06.012
http://dx.doi.org/10.1109/TII.2019.2916228
http://dx.doi.org/10.1016/j.eswa.2010.02.131
http://dx.doi.org/10.1155/2018/4160504
http://dx.doi.org/10.1016/j.neucom.2017.06.036
http://dx.doi.org/10.3390/robotics7040072
http://dx.doi.org/10.1016/j.eswa.2010.12.120
http://dx.doi.org/10.1016/j.engappai.2010.11.007
http://dx.doi.org/10.1016/j.eswa.2012.01.190
http://dx.doi.org/10.1016/j.mechatronics.2022.102737
http://dx.doi.org/10.1109/LRA.2017.2732059
http://dx.doi.org/10.1109/LRA.2017.2734244
http://dx.doi.org/10.2514/1.56528
http://dx.doi.org/10.1089/soro.2018.0010
http://www.ncbi.nlm.nih.gov/pubmed/30040059
http://dx.doi.org/10.1016/j.conengprac.2013.09.003
http://dx.doi.org/10.1109/TIE.2014.2316255
http://dx.doi.org/10.1115/1.4045701
http://dx.doi.org/10.1007/s12555-012-0176-0
http://dx.doi.org/10.1109/TIE.2013.2254094
http://dx.doi.org/10.1007/s10846-017-0570-1
http://dx.doi.org/10.30880/ijie.2020.12.02.008


Actuators 2022, 11, 233 16 of 16

38. Tang, T.F.; Chong, S.H. Practical Controller Design for Ultra-Precision Positioning of Stages with a Pneumatic Artificial Muscle
Actuator. In Proceedings of the International Technical Postgraduate Conference, Johor, Malaysia, 7 December 2017; IOP
Conference Series-Materials Science and Engineering; Harun, S.W., Latiff, A.A., Eds.; Volume 210.

39. Tang, T.F.; Chong, S.H.; Noto, R.M.; Sato, K. Practical Control Strategy for Positioning Control of Pneumatic Artificial Muscles
Driven Stage: Improved NCTF Control. IEEE Access 2019, 7, 85513–85524. [CrossRef]

40. Jouppila, V.; Gadsden, S.A.; Ellman, A. Experimental Comparisons of Sliding Mode Controlled Pneumatic Muscle and Cylinder
Actuators. J. Dyn. Syst. Meas. Control Trans. ASME 2014, 136, 044503. [CrossRef]

41. Kurumaya, S.; Nabae, H.; Endo, G.; Suzumori, K. Design of Thin McKibben Muscle and Multifilament Structure. Sens. Actuat. A
Phys. 2017, 261, 66–74. [CrossRef]

42. Mhd Yusoff, M.; Mohd Faudzi, A.; Hassan Basri, M.; Rahmat, M.F. A Piecewise Affine System Modeling Approach of Thin
McKibben Muscle Servo Actuator. In Proceedings of the Enabling Industry 4.0 through Advances in Mechatronics, Pekan,
Malaysia, 20 September 2021; Springer Nature Singapore: Pekan, Malaysia, 2021. [CrossRef]

43. Schulte, H.F., Jr. The Characteristics of the McKibben Artificial Muscle (1961) The Application of External Power in Prosthetics and
Orthotics; National Academy of Sciences-National Research Council: Washington, DC, USA, 1961; pp. 94–115.

44. Bemporad, A. Hybrid Toolbox—User’s Guide; IMT School for Advanced Studies Lucca: Lucca, Italy, 2004.
45. Mhd Yusoff, M.A.; Mohd Faudzi, A.A.; Hassan Basri, M.S. Feasibility of Pi Control for a Double-Acting Cylinder Actuated by

Mckibben Muscles. In Proceedings of the RiTA 2020, Cardiff, UK, 30 October–1 November 2020; Lecture Notes in Mechanical
Engineering; Chew, E., Abdul Majeed, P.P., Liu, A., Platts, P., Myung, J., Kim, H., Kim, J.H., Eds.; Springer: Singapore, 2021;
pp. 327–339. [CrossRef]

46. Herceg, M.; Kvasnica, M.; Jones, C.N.; Morari, M. Multi-Parametric Toolbox 3.0. In Proceedings of the 2013 European Control
Conference (ECC), Zurich, Switzerland, 17–19 July 2013; pp. 502–510. [CrossRef]

47. Lofberg, J. YALMIP: A Toolbox for Modeling and Optimization in MATLAB. In Proceedings of the 2004 IEEE International
Conference on Robotics and Automation, New Orleans, LA, USA, 1 May 2004; (IEEE Cat. No.04CH37508); pp. 284–289. [CrossRef]

48. Torrisi, F.; Bemporad, A. HYSDEL—A Tool for Generating Computational Hybrid Models for Analysis and Synthesis Problems.
IEEE Trans. Control Syst. Technol. 2004, 12, 235–249. [CrossRef]

49. Rawlings, J.B.; Mayne, D.Q.; Diehl, M.M. Model Predictive Control: Theory, Computation and Design, 2nd ed.; Nob Hill Publishing:
Santa Barbara, CA, USA, 2020.

50. Borrelli, F.; Bemporad, A.; Morari, M. Predictive Control for Linear and Hybrid Systems; Cambridge University Press: Cambridge,
UK, 2017.

51. Mayne, D.Q.; Rawlings, J.B.; Rao, C.V.; Scokaert, P.O.M. Constrained Model Predictive Control: Stability and Optimality.
Automatica 2000, 36, 789–814. [CrossRef]

52. Liberzon, D. Switching in Systems and Control; Birkhauser: Boston, MA, USA, 2003.
53. Özkan, L.; Kothare, M.V. Stability Analysis of a Multi-Model Predictive Control Algorithm with Application to Control of

Chemical Reactors. J. Process Control 2006, 16, 81–90. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2019.2922383
http://dx.doi.org/10.1115/1.4026873
http://dx.doi.org/10.1016/j.sna.2017.04.047
http://dx.doi.org/10.1007/978-981-19-2095-0-11
http://dx.doi.org/10.1007/978-981-16-4803-8-33
http://dx.doi.org/10.23919/ECC.2013.6669862
http://dx.doi.org/10.1109/CACSD.2004.1393890
http://dx.doi.org/10.1109/TCST.2004.824309
http://dx.doi.org/10.1016/S0005-1098(99)00214-9
http://dx.doi.org/10.1016/j.jprocont.2005.06.013

	Introduction
	Materials and Methods
	TMM Servo Actuator and Its PWA Model
	Tracking MPC
	Experiment Setup
	Stability of Finite Horizon Optimal Controller
	Stability of SMPC
	Gain-Scheduled Proportional-Integral-Derivative

	Results
	Conclusions
	References

