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A BSTR A C T: Fouling form ation in reactor vessels poses a serious 
th rea t to  the safe opera tion  o f the industria l low -density  
polyethylene (LD PE) polymerization. Fouling also degrades the 
polym er quality and causes productivity loss to  som e extent. In this 
work, neural W iener m odel predictive control (N W M PC ) is 
in troduced to  address the fouling concern. In addition, a soft 
sensor m odel is used to  activate the fouling—defouling ( F - D )  
mechanism  w hen the fouling surpasses the thickness limit to 
prevent vessel overheating. N W M PC  is proven to  be fast, stable, 
and robust under various control scenarios. T he use of a soft
sensor m odel in conjunction w ith N W M PC  enables the online m onitoring and controlling of the F—D processes. W hen com parison 
is m ade w ith a state space (SSM PC) utilizing only the linear block, N W M PC  is found to  be able to  control the LDPE grade with 
quicker grade transition and lower resource consum ption.

model mismatch

Article

1. INTRODUCTION

Fouling problem s arise as a result of the highly exothermic 
nature o f the low-density polyethylene (LD PE) polym er­
ization process and the heating—cooling utilities in tubular 
reactors (T R s). T he polyethylene/ethylene com pound shapes 
two phases inside the reactor, causing fouling in an LDPE- 
T R .1 T he fouling layer is highly insulating, causing heat 
transfer restriction to  the cooling jacket and thereby reducing 
the reactor perform ance. T he fouling layer form ation can also 
cause an increase in tem perature around the affected location, 
which can induce the ethylene gas m olecule to  decom pose 
and liberate a significant am ount o f heat. T he reactor 
consequently is overheated as the fouling layer thickens over 
tim e according to  a study by Buchelli et al.2 This poses a 
significant threat to  the safety in m anufacturing facilities.

A high fouling level results in energy losses owing to 
dim inished therm al efficiency and additional capital costs, 
specifically for the m aintenance study, which includes the 
cleaning of heat transfer (H T ) equipm ent and the use o f anti- 
foulants. A ccording to  refs 3—6, fouling has various negative 
consequences, such as abatem ent in product quality, including 
the m onom er conversion (X M ) and m elt flow index (M FI). A 
low m anufacturing perform ance reportedly im pacted 0.25 to 
30% of the gross dom estic p roduct.7- 9 Kiparissides et al.10 
discovered tha t w hen fouling builds up, the XM, m olecular 
weight (M w), long-chain branching (LCB), and density 
reduce, while the short-chain branching (SCB) and M FI 
elevate.

Fouling form ation on the inner reactor wall is difficult to 
assess. It has only been described in a few earlier LDPE-

related technical papers .3 Fouling prediction is no t system ati­
cally form ulated in norm al practice, and historical data is 
underutilized for the goal o f optim al control.1 O nce the 
product quality falls outside o f the acceptable range, the 
process param eters are m anually adjusted to  eliminate fouling 
and restore the product quality. This m anual operation is 
usually slow and inefficient. T he phase equilibria of the 
polyethylene/ethylene system m ust be determ ined to  m odel 
the fouling mechanism . Fries et al.11 in troduced a fouling 
m odel based on the concentration of the foulant in the 
reactor’s local wall cell.

T he rem oval o f the fouling layer o f polym er adhered to the 
inside wall o f the reactor is referred to  as defouling. T he 
defouling m ethod, know n as online cleaning, can be used 
while the plant is still operating. In the functioning of LDPE 
reactors, a typical fouling—defouling situation occurs. LDPE 
TRs are subject to periods w hen the polym er layer is defouled 
through online pressure cleaning or therm al shock .2 T he 
reactor fouls in the first period, inducing the values of the 
fouling thickness layer to  rise, while the reactor defouls in the 
second, leading the fouling thickness layer to  fall. Stabilizing 
the reactor during these disturbance cycles is critical to 
prevent reactor runaway and m aintain the targeted polym er
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Figure 1. LDPE-TR: (a) schematic diagram of the LDPE T R32 and (b) Aspen Plus model.

properties. In this scenario, the controller’s target is to keep 
the input profile as close to a specific target profile as possible 
while the reactor fouls and defouls. Furtherm ore, the polym er 
M FI and XM variations should be kept w ithin the acceptable 
lim its .12

LDPE reactors are typically m ade o f long pipes (1 —3 km ) 
w ith tiny inner diam eters (5 —10 cm) and thick reactor walls 
(2 —5 cm ) that are separated into several reaction and cooling 
zones .13 These m ultizone arrangem ents generate strong 
m ultivariable interactions along th e  reactor, resulting in 
complex operating procedures .14 O ne m ethod  for regulating 
the LDPE T R  is to use advanced process control (A PC), 
specifically m odel predictive control (M P C ). D ue to  its 
intrinsic multivariable control, explicit restriction m anagem ent,

and num erous comm ercial tools (in m odeling and controller 
im plem entation), M P C  is accepted by in the industry .15

The correctness o f the process m odel is critical to  the
perform ance o f any m odel-based controller, such as M PC.
Since the control o f polym er quality in the existence o f fouling
can be seen as a challenging task in the plant, the LDPE
research them es focus prim arily on developing a com plete
polym erization m odel for predicting polym er quality and
fouling^ 16 reactor control,17 and fouling touchstone m onitor- 

2,10 ing. ,
There are a few studies on LDPE safety control in a 

fouling—defouling situation. Zavala and Biegler 18 dem onstra­
ted  th a t a tracking nonlinear m odel predictive contro l 
(N M P C ) can stabilize the reactor in the face o f persistent 
F —D scenarios and tha t the controller can accom plish strict
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control o f the M FI. The perform ance constraints o f LDPE 
reactors in the face of fouling disturbances were evaluated 
using a first principle m odel (FPM ) o f TR. FPM  was derived 
based on the process' m athem atical mass, energy, and 
m om entum  equations.19 Nevertheless, its evolution suffers 
from  m athem atical complexity as a result o f enorm ous sets of 
differential and algebraic equations (D AEs). Furtherm ore, the 
N M P C  cleaning—fouling cycle was sim ulated using the 
heuristic m ode, in w hich a single param eter, namely, the 
heat transfer coefficients (H T C s) for all reactor zones, was 
scaled from their nom inal value. Exogenous disturbances 
(represented  in the m odel as param eters) are defined w hen 
the controller cannot capture the behavior o f the H TC s.

It is preferable to set up an efficient strategy for developing 
online control safety that includes an online fouling—defouling 
m echanism  and an internal m odel controller developm ent. 
A lthough FPM  can produce precise prediction, the develop­
m en t o f such a m odel is expensive since it requires 
m aintenance (i.e., dealing w ith process unknow ns), and is 
only  applicable to  a particu lar un ique  p rocess .15 T he 
im plem entation o f an empirical m odel utilizing the nonlinear 
(N L ) m o d e l id en tif ica tio n  tech n iq u e  is an a ttrac tive  
alternative to this challenge.20 B lock-oriented (B O ) m odeling 
is one o f the existing N L m odel identification strategies.21 
Furtherm ore, the identification approach for block-oriented 
m odels is convenient as it involves little com putational effort, 
and it allows for the incorporation  of existing process
know ledge .22

The BO (block-oriented) m odel class includes a variety of 
configurations, including a  linear dynamic system  and an NL 
static elem ent. W iener's and H am m erstein 's m odels are the 
m ost extensively applied block-oriented m odels. B oth models 
have been used in m any case studies and have dem onstrated 
the ability to describe a wide range o f N L systems, such as 
biology and biochem ical processes.23 Because o f its transient 
responsiveness and the dynamic m odeling capabilities o f its 
N L  p o rtio n , th e  W ien e r m odel is p referab le  to  the 
H am m erstein m odel.24 Several researchers have previously 
explored the applicability o f the W iener m odel w ith N M PC  in 
the literature25 for online process m onitoring.

The developm ent o f a soft sensor m odel can help the online 
control safety o f the LDPE process to activate the defouling 
action as a certain condition crosses the safety lim it by 
predicting a  fouling thickness layer, w hich can help to capture 
the fouling—defouling m echanism  effectively. The multivariate 
statistical technique neural netw ork (N N ) m odels such as 
recurrent netw ork (R N ) and m ultilayer percep tron  (M LP) are 
applicable in soft sensor com putational learning .26'27 T here­
fore, the application o f an N N  m odel for fouling thickness 
calculation in the LDPE TR is feasible.

The m ain goal o f this w ork is to develop the neural W iener- 
based m odel predictive control (N W M PC ) w ith an online F — 
D m echanism  as an effective online control safety technique 
for handling the fouling effect in LDPE TR. In  the presence of 
F —D, the goal o f N W M PC  is to retain product quality, such 
as M FI and XM, within strict p roduct specifications. In 
accordance w ith the reference value, the M FI variability is 
fixed at <1%, while the F —D m echanism  is activated by 
controlling fouling thickness. The defouling is activated w hen 
the fouling thickness crosses the safety lim it (allowable fouling 
thickness). The novelty of this research is the in troduction  of 
N W M PC  and fouling thickness estim ator com bination being

applied w ith the A SPEN  sim ulator as N L  controller for 
handling the fouling o f LDPE in TR.

2. MODELING OF THE LDPE TUBULAR REACTOR 
AND FOULING THICKNESS LAYER

2.1. Process Description. T he present LDPE T R  m odel 
is based on the w ork o f Asteasuain et al.28 The reactor m odel 
is based on an industrial reactor w ith a huge leng th /d iam eter 
(L /D ) ratio o f above 20,000 and has been validated using 
industrial data .29 The reactor runs at approximately 70 °C at 
the input to around 325 °C at its peak. The pressure w ithin 
the reactor is roughly 2200  bar, w ith a 10% pressure drop 
throughout the reactor. F or the free radical polym erization 
process to occur in the LDPE-TR, high-tem perature and 
-pressure operations are required. W ith a mixture velocity of 
11 m /s , the reactor residence period is sufficient to ensure 
that the gel effect phenom enon is negligible inside the wall o f 
the reactor.30Figure 1a depicts a schem atic diagram of an 
LDPE TR. A ccording to the figure, the m onom er (ethylene) 
is in troduced into the reactor together w ith oxygen, telogen, 
and an inert stream. n-Butane is used as an inert solvent, 
whereas oxygen is em ployed to enhance the polym erization 
process by producing free radicals,.31 Propylene is utilized as a 
telogen or chain transfer agent (C T A ) in the mixture to 
control the production  of long polym er chains.28 Initiators are 
used  to initiate the polym erization process by  decom posing 
into free radicals that bond  w ith ethylene molecules to  form 
active polym er chain molecules. tert-Butyl peroxypivalate 
(T B PPI) is selected as the first initiator, and tert-butyl 3,5,5- 
trim ethyl-peroxyhexaonate (T B PIN ) is selected as the second 
initiator.2 ,31

The reactor was com posed of five zones for sim ulation 
purposes based on the placem ents o f the reactor jacket and 
initiator. Table 1 describes the reactor's design specifications 
and nom inal operating conditions.

2.2. Reactor Modeling. The m odel o f LDPE T R  is 
developed and validated in this w ork using the A spen Plus 
software. The T R  in the A spen Plus process flowsheet is 
configured as a collection o f RPLU G  blocks that indicate the 
reactor zones (i.e., zone 1, zone 2, zone 3, zone 4, and zone 
5 ) .33Figure 1b depicts the entire A spen Plus flowsheet.

T able 1. T u b u la r R eacto r D esign Specifications and  
N om inal C o n d itio n s33

reactor param eters values unit

length/d iam eter (L / D) 27,800
internal diam eter 0.05 m

num ber o f zones 5
zone length (L^, i = 1...5) 045 0' 51 0' 8 0' 0 0'6 m
inlet tem perature 76 °C

inlet pressure 2250 atm
global heat transfer coefficient 1088.568; 1088.568; 837.36; W /m 2K

(U , i = 1...5) 628.02; 196.7796
m ean jacket tem perature ( T  

i = 1...5) ’

6 ; 2 to ; 6 ; 6 ; 6 00 °C

density o f reacting mixture 530 k g /m 3

m onom er flow rate 11 kg /s
oxygen flow rate 6.8 X 10—5 kg /s

CTA  flow rate 7.4 X 10—2 kg /s

inert flow rate 2.2 X 10—1 kg /s
initiator 1 flow rate 1.0 X 10—3 kg /s

initiator 2 flow rate 1.6 X 10—4 kg /s

39650 https://doi.org/10.1021/acsomega.2c03078
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T able 2. L ist o f  K inetic M echanism s an d  P aram eters U sed  in T his S tudy

kinetic mechanisms kinetic param eters efficiency

ko (1 /s ) Ea (J/km ol) AV  (m 3/km ol)

initiator 1 decom position (£*) 1.00 X 1014 1.3241 X 108 0.0140 0.95
initiator 2 decom position ( k ) 1.00 X 1012 1.2393 X 108 0.0116 0.95
oxygen decom position (k0) 1.60 X 1011 1.3361 X 108 —0.0121 0.25

chain initiation (k^ t) 4.00 X 105 1.7431 X 107 —0.0168

propagation (kp) 4.00 X 105 1.7431 X 107 —0.0168
chain transfer to  polym er (ktp) 5.20 X 104 3.6844 X 107 —0.0190

chain transfer to  agent (kta) 7.00 X 104 1.8406 X 107 0.0000

chain transfer to  solvent (kb) 7.00 X 104 1.8406 X 107 0.0000
therm al degradation ( k ^ ) 7.70 X 109 8.7430 X 107 —0.0100

term ination by  com bination (ktc) 8.70 X 108 1.5282 X 107 0.0092
back-biting (kbb) 1.20 X 1010 6.0537 X 107 0.0000

In  the sim ulation model, initiators 1 and 2 are in troduced 
into the reactor at the start o f zones 3 and 5, respectively. The 
m anipulated variable is the C T A  flow rate, w hich is filled 
independently  from  the prim ary feed stream. Perturbed-chain 
statistical fluid theory  (P C -S A fT ) equation-of-state (EO S) 
m odels specify the therm odynam ic characteristics and phase 
behavior o f the LDPE polym erization process.34 The process 
heat o f polym erization is controlled by  regulating the heat of 
form ation (D H FV K ) of the polym er segm ent w ithin Aspen 
Properties. The D HFV K  value specified in this calculation is 
—2.669 X 107 J/km ol. D H FV K  is the heat o f form ation, which 
is estim ated by using the V an Krevelen G roup C ontribution  
M ethod  to estim ate the heat capacity and m olar volum e o f the 
polym er segm ent (and, thereafter, o f polym ers and oligomers) 
inside A spen Plus. Thus, this w ork estim ates this value using 
the heat polym erization o f ethylene at 21,500 ca l/m ol28 via a 
reverse-calculated m ethod. Thus, the value for D H FV K  and 
heat o f polym erization for ethylene is different. The Aspen 
Plus com ponent database contains all o f the com ponents 
applied in this simulation.

2.3. Kinetic Mechanism. U nder high pressure settings, 
e thy lene  p o lym eriza tion  p ro ceed ed  v ia  a free rad ical 
m echanism .35 The LDPE polym erization kinetic m echanism  
is derived from  the m entioned m odel in Asteasuain et al.,28 
while its characteristics are depicted from  the w ork of Agrawal 
et al.31 and M uham m ad et al.33 The LDPE polym erization 
kinetic process is split into  prim ary reactions: in itiator 
decom position, chain initiation, chain propagation, chain 
term ination, and chain transfer.36 The kinetic m echanism  
used in this w ork is expressed below:

Initiator decom position 

Oxygen decom position

I I  2R (0 )

O2 +  M  —o 2R(0)

C hain initiation R (0 ) + M  R (m )

kp
Propagation R (m  ) +  M  -4  R (m  +  1)

C hain transfer to polym er
ktp

R (n ) + P (m ) -*■ P (n) + R (m )

C hain transfer to transfer agent
k

R (m ) + S -4  P (m ) +  R (0)

( 1)

(2)

(3)

(4)

(5)

(6)

C hain transfer to  solvent R (m )  +  S -4  P (m  ) +  R (0)

Term ination by com bination
k

R (n ) + R (m )  -4  P(n  +  m)

(7)

(8)

Therm al degradation R (m  +  1) -^4  P (m ) + R (0 )  (9)

Back — biting R (m )  -4  R (m ) ( 10)

The modified A rrhenius equations are used in A spen Plus 
to  com pute the kinetic rate constants for the free radical 
reaction, as seen in eq 11:

k =  koexp
Ea AV x P
— + --------
R R

1

Trre f ( 11)

T able 2 show s the LD PE  k inetic  m echanism s and 
properties considered in this study. Because the referred 
w ork  uses d ifferen t m odeling  tech n iq u es th a n  A spen  
m odeling , th e  k in e tic  ra te  co n stan ts  m ust be tu n e d  
specifically.34 To supply the reactor tem perature profile, the 
efficiency of the initiators and oxygen has been retuned  using 
the A spen D ata F itting technique. Furtherm ore, A spen Design 
Spec was utilized to com pute the activation energy of the be ta  
scission reaction to achieve the average LD PE's Mw.

2.4. Melt Flow Index Model. The M FI values in this 
study are calculated using Rokudai and O kada's37 empirical 
formulation, as show n in eq 12:

M FI =  1.06 X 1028( f  X M W W ) - 6.06 ( 12)

Based on m any studies in estim ating M FI for LDPE, ’ 
the m ain prerequisite for estim ating it is the weight average 
m olecular weight and branching index inform ation. The 
branch ing  index d e te rm ined  from  D ietrich  et al.,38 a 
com prehensive study o f the similarly referred LDPE model, 
is denoted  by the value o f g. Because the LDPE polym er 
comprises complex branches, the branching index inform ation 
is indispensable; otherwise, no prevalent relationship can be 
determ ined until the polym er's rheology is characterized .39 
T he weighted average m olecular weight (M W W , kg/km ol) is 
derived in the A spen sim ulation m odel utilizing the m ethod  of 
m om ents. The A spen Plus Dynamics m odel is attached w ith 
the MATLAB Simulink environm ent to execute the equation. 
T he A spen Plus Dynamics m odel is processed as a sim ulation 
block on the MATLAB Simulink environm ent, and its output
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(M W W ) is com puted using an approxim ation branching index 
to  determ ine the M FI values.

2.5. Reactor Model Validation. T he validation results of 
the reactor tem perature profile according to zones are show n 
in Figure 2 . From  the figure, the A spen Plus m odel effectively

0 200 400 600 800 1000 1200 1400

Reactor length (m)

Figure 2. LDPE reactor temperature validation profile.

generates the reactor tem perature profile w ith an R2 value of 
0.981, w hich com pares well w ith the industrial data provided 
by  Asteasuain et al.28 Furtherm ore, the sim ulated tem perature 
profiles resem ble the tem pera tu re  profiles o f industrial 
reactors, w hich have a rounded peak and a gradual decline.34 
It is notew orthy that the A spen Plus m odel outperform s the 
m echanistic m odel from  Agrawal et al.,31 w hich also used a 
similar case study, in predicting the reactor tem perature 
profile. This is because the A spen m odel used a fine-tuning 
procedure for the kinetic param eters.

Table 3 sum marizes the results o f the LDPE final XM and 
p roperty  validation. The table com pares industry data  w ith the

T able  3. L D PE  XM  an d  P ro p e rty  V alidation

properties

industrial data 
Asteasuain e t al.

(2001)28

Agrawal et 
al.

(2006)31
error
(%)

Aspen
M odel

error
(%)

XM (%) 30.0 29.7 1 29.5 1.7
num ber 

average M w 
(g /m o l)

21,900 21,901 0< 22,070 0.8

mixture 0.530 n /a 0.565 6.6
density (g / 
mL)

A spen Plus m odel and the Agrawal m odel in term s of LDPE 
XM, average Mw, and mixture density. A ccording to the table, 
the developed m odel correlates favorably to  the industrial 
data .28 The accuracy o f the developed m odel to  describe the 
L D PE -T R  is high as a result o f the tem perature and property  
validation results.

2.6. Formation of the Fouling Thickness Layer. The 
fouling resistance ( f )  is calculated using the condition of 
overall heat transfer coefficients (U, W /m 2K). There are two 
p rim a ry  w ays fo r d e te rm in in g  U: first, Uclean using  
correlations2 and second, using heat transfer system data 
from  a plant. T he first technique relies on correlations of

dim ension less num bers derived  from  the com p o n en t's  
physical characteristics and operating conditions. The second 
m ethod  calculates Uplant using the heat transferred and the log 
m ean tem perature discrepancy. Because p lant data obviously 
dem onstrates a  fouling behavior in the reactor, the fouling 
thickness in the L D PE-TR  can be examined using Uplant and a 
heat-transfer m odel.2

As show n in the equation below, the equation for U  takes 
four resistances into account in series: those of the film on the 
reaction mixture side, the reactor wall, the film on the 
coo ling /hea ting  jacket side, and the fouling buildup, Rf 
(fouling resistance, m 2 K /W ). In  this study, the effects o f 
film and therm al resistance are considered to  be constant 
th ro u g h o u t the  study. T hus, these  assum ptions (and  
lim itations) were applied in this study. It is w orth  noting 
that the U  coefficient is affected by  variables that are 
com puted  as functions o f the time:

1 1
+

2.3D

U (t)  hi(t)  2k log.
Dr

+
1

(13)

w here D 0 and D  are the internal diam eters o f the jacket and 
reactor, respectively, and kw is the therm al conductivity o f the 
wall. Lacunza et al.40 provide a review o f H T C  used in 
ethylene polym erization. Calculating U  under clean conditions 
is possible w ith Rf = 0. Using eq 14, the H T C  can be 
calculated directly using the tem perature differences and heat 
transferred in the reactor.

U  =
Q

A A T ,lm (14)

According to Buchelli et al.,2 the evaluation o f the fouling 
m echanism  can be attained at a  m aximum in the cooling 
zone's term inal point. The U  value is low er w hen the surface 
is fouled. Equation 15 is used to calculate the fouling 
resistance (Rf) value.

Rf
(15)

w here Ufouled refers to Uplant in Equation, whereas Uclean refers 
to  U  in the equation w ith Rf = 0. The foulant resistance is 
related to a foulant thickness (m m ), f  given in eq 16, 
assuming that the foulant is the polym er attached to the wall.

R  f =
1

(ri — f )ln
r -  tf

kpolymer =  0.274 +  2.91 X 10-5 X P +

(16)

(17)

w here kpolymer (W /m -K ) is the polym er therm al conductivity 
and ri (m ) is the inside reactor radius. T he heat transfer 
coefficients U  (W /m 2K) and tem perature T  (K) inputs o f the 
equation have a significant effect on tf, such as show n in 
Figure 3. In  the m eantim e, the pressure P  (N /m 2) rem ained 
alm ost constant throughout the course. Based on the study of 
Buchelli et al.,2 the fouling layer's rise appears to  be linear 
over tim e w ith 0.00004 k g /s  o f calculated deposition rate 
followed by a decrease o f 2.083 X 10—5 m m /s  fouling 
thickness after defouling. To determ ine tf in eq 16, a direct 
analytical approach is infeasible. It can be solved numerically 
to  develop an approxim ation m odel. As a consequence, the

w

r
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Figure 3. The validated data (a) U and (b) T  depicted from Aspen Plus with the (c) calculated tf.

empirical m odel o f tf w ith the input functions o f U  and T  is 
form ulated as

T
=  0 .0006273------- 0.0004996 , x

f U  (18)

The validated data  (U  and T ) from  Aspen plus and the tf 
from  the empirical m odel are considered actual data, which 
are then  used to develop the soft sensor model.

3. SOFTWARE SENSOR FOR ESTIMATING FOULING 
THICKNESS

T he soft sensor m odel is built using the MATLAB neural 
netw ork (N N ) identification technique. The F FN N  (feed 
forward neural netw ork) m odel is extensively im plem ented in 
chemical processes and engineering applications, attesting to 
its ability to  m odel N L system s.41’4 The N N  m odel is trained 
using the trainlm  function in MATLAB, w hich is know n as 
Levenberg—M arquardt (LM ) backpropagation. LM training is 
the fastest available backpropagation technique available in 
MATLAB. The M ISO  m odel is used in the developm ent of 
soft sensors. In this case, the holdout m ethod  is used for the 
m odel cross-validation. First, 70% of the data is used during 
the training process. Then, 15% of the data  is em ployed for 
validation during the training process (to prevent overfitting). 
Finally, the rest o f the data (15%) is used for the second 
validation after the training is com pleted. To evade ill- 
conditioned system modeling, all param eters are reform ed by 
data  scaling using eq 19 below :43

x sca led
(19)

w here x  is the original value, xss is the steady-state value o f the 
param eter, xmax is the maximum value o f the param eter, and 
xmin is the m inim um  value of the param eter. T he maximum 
and  m in im um  values are d e te rm in ed  from  th is w ork  
param etric analysis.

Table 4  lists the param eters for the soft sensor m odel. The 
input param eters are listed in the order in w hich data

T able  4. P aram eters fo r Soft S enso r M odel In p u t—O u tp u t 
Selection

input param eters ou tpu t param eter

initiator 1 flow rate 
initiator 2  flow rate 

C TA  flow rate
heat transfer coefficient in zone 3 

heat transfer coefficient in zone 4 (cooling) 
heat transfer coefficient in zone 5 

tem perature o f term inal point zone 3 

tem perature o f term inal point zone 4 (cooling) 
tem perature o f term inal point zone 5 

polym er exit density

fouling thickness

m easurem ents from  the Aspen Plus Dynamics m odel are 
available. A n input selection m ethodology is devised to  select 
the appropriate inputs for the soft sensor model.

T he software sensor inputs (A N N  m odel) are chosen using 
the Pearson correlation coefficient (P C C ) analysis. PC C  is a 
technique for selecting variables based on linear correlation of 
the respective variables.44 T he PC C  results are listed in Table 
5 . T he higher PC C  value shows the higher correlation or 
relationship of the input param eter w ith the ou tpu t param eter.

H ere, U, T, and polym er density are excited w ith m inim um  
and maxim um  changes from  their steady-state value using a 
uniform  random  num ber generator. For each m odel training 
and validation purpose, 800 m in of sim ulation tim e w ith a 
sam pling tim e of 0.1 m in and a total o f 8000 data points was 
applied for building the N N  m odel. Figure 4 a—c depicts the 
outcom es of input excitation from  U, T  in the cooling zone, 
and polym er density u nder the specified range operating 
condition. The regression plot for the N N  m odel w ith the

x x
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T able 5. P C C  R esults fo r P a ram ete r O u tp u ts

input param eters 

initiator 1 flow rate 
initiator 2  flow rate 

CTA  flow rate
heat transfer coefficient in zone 3

heat transfer coefficient in zone 4 (cooling)

heat transfer coefficient in zone 5
tem perature o f term inal point zone 3
tem perature o f term inal point zone 4 (cooling) 

tem perature o f term inal point zone 5 

polym er exit density

PC C  fouling thickness 

0.278 
0.127 

0.277 
0.188 

0.993 
0.012 
0.231 
0.970 

0.302 

0.721

best h idden  neurons is show n in Figure 5 . A ccording to the 
figure, the m odel has a high correlation w ith the target data 
and a  low  disparity. T he m odel fouling thickness has an R2 
value o f 0.999. Thus, w ith these validation results, the m odel 
is found to  be suitable for use in a soft sensor m odel study.

4. DEVELOPMENT OF ONLINE SAFETY CONTROL 
USING MPC

To connect the MATLAB Simulink environm ent w ith Aspen 
Plus Dynamics, the online safety control system  is linked using 
(A spen M odeler) A M Sim ulation. Figure 6a show s the 
im plem entation of the N W  m odel in the M PC control 
schem e. Figure 6b depicts a  generic block diagram o f the 
m odel predictive control (M P C ) workflow for online safety 
control.

W hen contrasted to the actual process by the Aspen Plus 
Dynamics model, the internal m odel works as the ideal 
process condition. N eural W iener (N W ) and state space (SS) 
are the internal m odels investigated in this study. A  m odel 
m ism atch is the difference betw een the two outputs, w hich is

produced by process disturbance or uncertainty. A  set point 
(o r reference) signal is delivered to the controller to indicate 
the m odel m ism atch. T he m odel m ism atch signal indicates the 
current state o f the process, while the set point signal 
represents the desired state o f the process. B oth signals are 
generated using an optim ization strategy within the M PC 
algorithm  to create the optim al process input that can lead the 
process to the target condition. The soft sensor m onitors the 
fouling thickness dynamic, w hich triggers the defouling 
scenario w hen the fouling thickness exceeds the perm issible 
maxim um  value, tf > 3.5 mm . The defouling scenario is carried 
out by  online cleaning for approximately 4 h, as noted  by an 
increase in U  value and a decrease in tf.

The developm ent o f the neural W iener M PC  (N W M PC ) in 
this w ork follows a structure that is similar to that o f the given 
M PC  schem e bu t w ith a few transform ations. To begin, the 
ou tpu t m easurem ent is utilized to  im m ediately update  the 
process m odel w ithout the requirem ent o f an observer 
because the A spen m odel can give process state m easure­
m ents. Second, in the optim izer's cost functional algorithm, 
the current controller utilizes just ou tpu t reference tracking 
and m odifications in m anipulated variables. Generally, M PC 
can control the process w ith these two cost functions 
satisfactorily .45 These cost functions are resolved via an 
online optim ization approach to deliver the trajectory o f the 
controller output. The selection of the process m odel type is 
the prim ary factor that distinguishes nonlinear M PC  (N M PC ) 
from  linear M PC  (L M PC ). The N M PC  uses the neural 
W iener (N W ) m odel as its process m odel in this study, which 
is referred as neural W iener M PC  (N W M PC ).

In this scheme, three MVs (initiator 1, initiator 2, and C TA  
flow rate) are utilized to control two CVs (LD PE XM and 
M FI), resulting in  a m ulti-input m ulti-ou tpu t (M IM O ) 
system. In  addition, the N W  m odel block serves as the

Data

(a)

Data

(b)

Data

(<0

Figure 4. Process input excitation data: (a) U, (b) T  in the cooling zone, and (c) polymer density.
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Figure 5. Regression plot for fouling thickness.

M PC  process model, inducing m odel m ism atch that updates 
the M PC  controller at each sampling period. SSM PC is also 
designed to com pare the perform ance using a similar control 
schem e. By switching the N W  m odel for the SS model, the 
SSM PC control schem e can be acquired.

4.1. Identification Technique. T he W einer m odel 
identification using the linear—nonlinear (L —N L) technique 
is used in this research .46 In accordance w ith the m ethod, the 
first step is to  collect a set o f dynamic data. To obtain this 
data, perturbations o f the A spen Plus Dynamics m odel are 
carried out. T he interm ediate signal is then  specified as the 
data  set's output. A  W iener m odel linear block can be 
represented by  the state space m odel as follows:

x (k  +  1) =  A x (k )  + B u (k )  

v(k) = C x(k) (20)

O nce the linear block has been identified, the m odel output 
signal is used as the input signal for the N W  static N L  block 
identification. In  this scenario, the identification of NL 
processes is perform ed using the MATLAB N N  toolbox and 
a single layer feed forward fitting N N  (fitne t) m odel. The 
ou tpu t o f the N N  model, y(k ), is w ritten as follows:

y (k )  = w0 +  2  wl<P(z i(k ))

where 

z i(k) +  wi^1v(k)

(21)

(22)

In  the equation, the netw ork bias is represented by w0, and 
the netw ork weight is specified by w\ j and w\ , for the first and 
second layers, respectively. In  addition, v(k)  represents the 
state space m odel output signal, p  denotes the netw ork NL

transfer function (i.e., hyperbolic tangent sigmoid), and K  
signifies the num ber of h idden  nodes.

To determ ine the num ber o f h idden nodes, the iterative 
validation approach is used. The N N  m odel is trained using 
Levenberg—M arquardt (LM ) backpropagation, and an early 
stopping m echanism  is utilized to avoid the netw ork from 
overfitting during the training process. T he ultim ate result o f 
the N W  m odel is exhibited as follows:

y (k ) +  y ,  wlq>(wli 0 + w ^i[C x(k)])
(23)

4.2. Controller Development. In  this paper, the 
optim izer o f the N W M PC  controller employs sequential 
quadratic program m ing (SQ P). T he MATLAB optim ization 
tool fm incon  function is used to run  the SQ P optim ization 
program . The quadratic objective function used in the M PC  
control schem e is p resented  in eq 24.

m in J = Y ( WylE (k +  O]}2
Au(fc) “ *  y

+  2  {Wu[u(k + i) ~  u (k  + i ~  1)]}2
i=0 (24)

The predicted error term, E, can be defined (for next 
prediction  horizon step) as follows:

E (k  +  1) =  Yr(k  +  1) -  Y (k  +  1) (25)

w here Yr is the desired set point and Y  is the corrected 
prediction  over the prediction  horizon, P . Y  can be acquired 
by:

Y  (k  +  1) =  y  (k  +  1) +  e (k  +  1) (26)

P

w 0
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model mismatch

a)

Figure 6. Scheme diagram of MPC: (a) neural Wiener model in NMPC control scheme and (b) online control safety scheme with Aspen Plus 
Dynamics inside MATLAB Simulink.

0.4 o.e 
Target

(a) (b)

Figure 7. Regression plot for LDPE XM (Y1) for the (a) neural Wiener model (b) state space model.

w here y(k  + 1) is referred to as uncorrected  prediction and 
e (k  + 1) = y (k)  — y m(k) is the m odel m ism atch term.

4.3. Tuning Method. T he prediction horizon (P ), control 
horizon (M ), ou tpu t w eighting (o r error penalty) matrix, and 
input rate w eighting (o r move suppression) matrix are the 
four tuning param eters for a specific M PC . T he guidelines o f 
Seborg et al.47 are used to  select the prediction and control 
horizon settings. T he rules are 5 <  M  <  20 and N /3  < M  < N , 
w here N  represents the m odel horizon. T he m odel horizon

can be determ ined using N A t = ts, w here A t is the sam pling 
tim e and ts is the settling tim e o f the open-loop response. 
W hen the control horizon M  is expanded, the M PC  gets m ore 
rigorous, w hich necessitates greater com putational work. T o 
account for the com plete influence o f the m ost recent input 
m otion, the prediction horizon is usually set to P  = N  + M. As 
the control horizon decreases, the controller becom es m ore 
rigorous.
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Target
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Figure 8. Regression plot for MFI (Y2) for the (a) neural Wiener model (b) state space model.

Target

After the P  and M  param eters have been finalized, the M PC  
controller is tuned  using the MATLAB M PC  Tuning Advisor 
based on a linear version o f the process. The output weighting 
and input-rate weighting matrix in the software are modified 
to  yield the best perform ance using the Integral Absolute 
E rro r (IAE) perform ance indicator. A fter obtain ing an 
acceptable perfo rm ance w ith  th e  tu n ing  softw are, the 
initiatory tuning settings are re-evaluated during the online 
closed-loop sim ulation. A t this phase, the contro ller is 
im proved using a heuristic technique, w ith only the output 
tuning weight that is changing .48

5. RESULTS

5.1. Model Identification Results. Each training and 
validation data set has yielded a total o f 4080 m in o f LDPE 
T R  sim ulation results. Excitation inputs include the initiator 1 
flow rate, initiator 2 flow rate, and C TA  flow rate, as well as 
response, LDPE XM, and M FI outputs in each data set. The 
identification o f the neural W iener m odel involves two 
different m odel identification processes: state space and N N  
identification. The m odel order is determ ined using H ankel 
singular values during state space m odel identification. The 
state space m odel o f the sixth o rder is determ ined based on 
the H ankel singular value test. The num ber o f h idden  neurons 
chosen for the N N  m odel is nine, w hich has the lowest m ean 
square error (M SE) from the validation data test. Figure 7 
depicts the N W  m odel identification results as a regression 
plot. A ccording to the figure, the m ajority o f the ou tpu t data 
agrees w ith the target (validation) data based on the low 
disparity distribution of the data points along the fit line. The 
coefficient o f determ ination (R 2) analysis is used to evaluate 
the m odel's perform ance. A ccording to  the figure, bo th  
param eters fit the validation data well, w ith an R 2 value of 
0.989 for LDPE XM and R2 value of 0.986 for M FI output. In 
the N W M PC  control scheme, the validated N W  m odel can be 
im plem ented as the process model.

T he results for SS and neural W iener (N W ) m odel 
identification display the LDPE XM and M FI in a scaled 
form, respectively. T he steady-state condition is represented 
by  the value "0". MATLAB calculates the fit line, which 
represents the linear correlation of b o th  data. A ccording to 
Figure 7a, the N W  m odel's ou tpu t data is spread m ore 
im m inently throughout the diagonal line (Y = T) than  the SS 
m odel. This indicates that the estim ation from  the N W  m odel 
fits the original data b e tte r than  the SS model. T he SS m odel 
has drawbacks in capturing the maxim um  and m inim um  
region of the data, as evidenced by its imprecise data 
d istribution at bo th  extremities in Figure 7b. Based on R2

calculations, the N W  m odel has R 2 = 0.9889, w hich is higher 
than  the SS model, w hich has R2 = 0.9509.

Figure 8 depicts the regression plots o f the N W  and SS 
m odels for predicting M FI values. In  com parison to the SS 
model, the N W  m odel ou tpu t data distribution is denser along 
the fit line, as show n in the figure. The residuals in the SS 
m odel ou tpu t data are higher, spreading widely from the fit 
line and being congested at the m inim um  values. Thus, the 
N W  m odel outperform s the SS m odel in predicting M FI 
values, w ith R2 = 0.9860 versus R2 = 0.6693 for the linear 
model.

5.2. Online Safety Control Results. In  this case, the 
N W M PC  controller is tested  in a grade transition under 
fouling and F —D conditions. These tests are carried out to 
evaluate the controller in term s of tracking set points and 
handling process uncertainties in the presence of a fouling 
effect. A  state space M PC  (SSM PC) is used as a com parison 
to  assess the perform ance o f the N W M PC  controller. The 
SSM PC is created by utilizing only the linear block (i.e., state 
space) o f the N W  model.

Aspen Plus Dynamics is used to simulate the LDPE T R  
model, w hich runs concurrently w ith MATLAB Simulink 
during the simulation. Table 6 displays the tuning outcom es

T able 6 . M PC  T un ing  P aram eters

param eters SSMPC N W M PC

prediction horizon (P) 45 45
control horizon (M ) 5 5
outpu t weighting 9.00.0. 1.1, 2.0

input rate weighting 1.5, 1.2, 1.2 1.5, 1.2, 1.2

for SSMPC and N W M PC . T he initial tuning param eters o f 
the M PC  controllers are derived via calculation47 and offline 
sim ulation w ith the MATLAB M P C  Tool.

5.2.1. G rade Transition u n d er  a  F ouling Effect. The 
process o f changing the operating param eters o f a reactor to  a 
specific polym er grade based on a p redeterm ined product 
recipe is know n as grade transition. Figure 9 depicts the 
perform ance o f the SSM PC and N W M PC  in handling the 
step change grade transition operation in the presence of a 
fouling effect. A ccording to Figure 9a, N W M PC  reaches new 
grade M FI faster and w ith a quicker rise tim e than  SSMPC. 
T he fast C T A  controller is set in the first 20 m in (refer to 
Figure 9b for the M V  profile). Because there is a rate 
lim itation on the C T A  flow rate, N W M PC  decreases the flow 
rate o f its initiators, as show n in Figure 9d,e .49 Polym er M FI 
can be enhanced by lowering initiator flow rates. Furtherm ore,
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Figure 9. Comparison of grade transition control for NWMPC and SSMPC: (a) MFI profile, (b) CTA flow rate profile, (c) conversion profile, 
(d) initiator 1 flow rate profile, and (e) initiator 2 flow rate profile.
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Figure 10. Heat transfer coefficient (a) and estimated fouling thickness (b) under the fouling—defouling scenario.

as show n in Figure 9b, the decrem ent in initiator flow rates 
has a little effect on LDPE conversion. Based on the error 
analysis, N W M PC  produces IAE values o f 4.937 and 0.0683, 
respectively, for the M FI and LDPE conversion profiles, while 
SSM PC produces IAE values o f 7.609 and 0.013. As a result, 
N W M PC  is able to  control the LDPE grade transition using 
optim ized controller outputs, allowing for quicker grade 
transition  and low er resource consum ption  (C T A  and 
initiators).

In  term s o f control stability and feasibility o f the N W M PC, 
the K arush—K uhn—Tucker (K K T) conditions are evaluated. 
Since th e  op tim ization  process (in  th e  con tro lle r) is 
perform ed successfully in the MATLAB Sim ulink environ­

m ent, the KKT conditions have been met. Thus, it is safe to 
say that the control schem e is also stable and feasible.

5.2.2. F ouling—D efouling  M echan ism . Figure 10 depicts 
the estim ated heat transfer coefficient (H T C ) and fouling 
thickness o f a fouled T R  under an F —D scenario. T he H T C  
decreases on a regular basis as fouling accum ulates w ith 
increasing fouling thickness. W hen the fouling thickness, tf, 
reaches the m aximum lim it o f 0.35 m m  at 497 min, the 
defouling m echanism  activates the online cleaning to reduce 
fouling tf, thereby im proving heat transfer.

The effect o f F —D on the reactor outputs and M V  profile is 
show n in Figure 11. B oth controllers are able to tackle the F — 
D condition, as show n in Figure 11a, w ith SSM PC displaying
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Figure 11. Comparison of fouling—defouling control for NWMPC and SSMPC: (a) MFI profile, (b) CTA flow rate profile, (c) conversion 
profile, (d) initiator 1 flow rate profile, and (e) initiator 2 flow rate profile.

a m inor divergence in the M FI profile. In  the M FI profile, 
N W M PC  generated an IAE value of 4.937 com pared to 
SSM PC's ISE value o f 7.609. In  Figure 11c, bo th  controllers 
perform  similarly in term s o f polym er XM m aintenance 
despite the fact that N W M PC  uses m ore initiator than 
SSM PC (see Figure 11d). Based on the error analysis in the 
XM profile, bo th  controllers produce comparable IAE, w ith 
N W M PC  0.0683 and SSMPC 0.0919. Similar findings can be 
found in the study o f Zavala and Biegler 18 o f N M PC  
perform ance in the presence o f F —D inside an LDPE TR. As 
a result, the controllers dem onstrate a successful activation of 
the F —D m echanism  w ithin the reactor.

6. CONCLUSIONS

T he developm ent and perform ance evaluation o f the neural 
W iener M PC  (N W M PC ) in regulating a high-pressure LDPE 
T R  are presented. A  soft sensor m odel is developed w ith the 
N W M PC  control schem e (N W M PC-SS) to  address the 
fouling and defouling operation in the plant. This control 
system  is crucial because it offers the required stability and 
security for safe p lant operation. In the LDPE TR, the 
N W M PC  is proven to be fast, stable, and robust u nder various 
contro l scenarios. T he use o f a soft sensor m odel in 
conjunction w ith N W M PC  enables the online m onitoring 
and controlling o f the F —D processes. The soft sensor m odel

is added to the N W M PC  control schem e separately and can 
be operated independently  if necessary. T he N W M PC-SS 
dem onstrates its control solution for N L processes in the 
polym er industry w ith safety concerns.
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