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ABSTRACT 

 

A helicopter rotor-fuselage flow interaction has been studied theoretically and 

numerically. The study began with the analysis of the induced velocity by helicopter 

rotor both in hovering and forward flight by using Momentum Theory, Blade 

Element Theory and Blade Element Momentum Theory. Three-dimensional steady 

and unsteady simulations of rotor-fuselage flow interaction have been conducted 

using Computational Fluid Dynamics (CFD) commercial software FLUENT 6.2 on 

ROBIN and AS355 helicopter. The study on ROBIN is to justify the method used in 

CFD simulation for this current research on AS355 is correct. The study emphasizes 

on flow generated during hovering and forward flight onto the helicopter fuselage. 

Aerodynamic forces on the fuselage have been obtained through theoretical analysis 

and numerical simulation. The Spalart-Allmaras turbulent model has been utilized to 

model the physics of flow related to the helicopter fuselage. This model is chosen in 

terms of its reliability, practical and proven to be effective in modeling the rotor-

fuselage flow interaction. The simulation was first carried out in steady state using 

Moving Reference Frame capability in FLUENT 6.2. this is then followed by 

unsteady simulation using Sliding Mesh Model, which is a time accurate simulation. 

Unsteady simulation was carried out because the nature of rotor-fuselage flow 

characteristic that is unsteady and periodic with time along azimuth angle. From this 

research it is found that the flow on the helicopter fuselage can be divided into two 

parts, which is a complex unsteady aerodynamic interaction that occur during 

hovering and low advance ratio, and a steady aerodynamic condition that occur at 

high advance ratio. At high advance ratio the rotor wakes flows above the body and 

only interacts with the fuselage pylon, and at this point the flow field of the 

helicopter fuselage is dominated by free stream velocity. A fully three dimensional 

and an unsteady computational method using Sliding Mesh Model has successfully 

model the rotor-fuselage flow interaction in AS355, a 5-seater helicopter. These 

results however provide preliminary understanding for designing the fuselage for 

optimal aerodynamic characteristics. 
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ABSTRAK 

Interaksi aliran udara melalui bilah rotor dan fiuslaj helikopter dikaji secara 

teori dan secara kaedah berangka. Kajian ini dimulakan dengan analisis halaju 

teraruh daripada bilah rotor utama dalam keadaan apungan pugak dan penerbangan 

kehadapan dengan menggunakan Teori Momentum, Teori Elemen Bilah dan Teori 

Momentum Elemen Bilah. Simulasi tiga-dimensi dalam keadaan mantap dan tidak 

mantap untuk aliran bilah rotor-fiuslaj dijalankan menggunakan perisian Dinamik 

Aliran Berkomputer (CFD), FLUENT 6.2 terhadap helikopter ROBIN dan AS355. 

Simulasi terhadap ROBIN dijalankan untuk mengesahkan teknik yang digunakan 

terhadap AS355 adalah betul. Kajian meliputi aliran udara yang dihasilkan semasa 

apungan pugak dan penerbangan kehadapan serta kesan aliran tersebut ke atas fiuslaj 

helikopter. Daya-daya aerodinamik ke atas fiuslaj helicopter ditentukan secara teori 

dan simulasi berangka. Persamaan gelora Spalart-Allmaras digunakan untuk 

permodelan aliran di sekitar helicopter fiuslaj. Persamaan ini digunakan kerana 

terbukti keberkesanannya dalam memodelkan interaksi aliran bilah-fiuslaj. Pada 

mulanya, simulasi dijalankan dalam keadaan mantap menggunakan kaedah Kerangka 

Rujukan Bergerak dalam FLUENT 6.2. Kemudian,  diikuti dengan Model Gelincir 

untuk keadaan tidak mantap, di mana kaedah ini adalah model yang sesuai bagi 

masalah  simulasi masa tepat. Simulasi keadaan tidak mantap dijalankan kerana 

keadaan sebenar aliran bilah rotor-fiuslaj sendiri yang bergantung dengan masa dan 

berkala bagi setiap pusingan bilah. Daripada kajian ini, didapati bahawa aliran udara 

terhadap helikopter fiuslaj boleh dibahagikan kepada dua bahagian, iaitu interaksi 

aerodinamik yang kompleks pada nisbah kehadapan rendah dan keadaan yang 

mantap pada kelajuan nisbah kehadapan yang tinggi. Pada nisbah kehadapan yang 

tinggi, aliran daripada bilah adalah tidak menyentuh fiuslaj dan hanya berinteraksi 

dengan pylon sahaja dan pada keadaan ini, aliran udara adalah dipengaruhi oleh 

aliran udara bebas. Kajian ini juga menunjukkan bahawa kaedah tidak mantap Model 

Gelincir dapat memodelkan interaksi aliran bilah rotor-fiuslaj secara 3 dimensi pada 

AS355, iaitu helicopter 5 penumpang dengan jayanya. Hasil kajian ini dapat 

digunakan sebagai panduan awal untuk merekabentuk fiuslaj dalam keadaan yang 

optimum dari segi ciri-ciri aerodinamik. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.0  Background 

 Helicopter flight was probably the first type of flight envisioned by man. The 

idea dated back to ancient China, where children played with homemade tops of 

slightly twisted feathers attached to the ends of sticks. The flying Chinese top was a 

stick with a propeller on top, which was spun by hands and released [1]. 

The helicopter, or direct lift airplane obtaining its support from the vertical 

thrust of propeller turning in a horizontal plane instead of from the air reaction on 

wings. Its most important advantage is its ability to rise vertically from a standing 

start, eliminating the necessity for the long preliminary run characteristic of the 

airplane. It offers the possibility of hovering motionless over a given spot, a feature 

of tremendous usefulness for military purposes [2]. 

Helicopters have come a long way since the first ones flew in the early 

twentieth century. Modern designs are capable of flying higher and faster than their 

predecessors. In conjunction with the advances made thus far, tilt-rotors helicopter 

will be expected to have even greater demands for improved performance and 

reliability. 

Recently, Universiti Teknologi Malaysia (UTM) has taken a big step to start 

the study of helicopter technology through research and development and also 

through the offering of the subject “helicopter technology” as an optional subject for 

the final year degree of mechanical engineering (aeronautic) course.  This is aimed at 

http://www.centennialofflight.gov/essay/Dictionary/helicopter/DI27.htm
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the fulfillment of the country's needs and in the long run to minimize the dependence 

on foreign technology and expertise. The purchasing of the 2-seater helicopter is to 

support teaching and learning and also for reverse engineering purposes. Faculty of 

Mechanical Engineering, UTM has also formed a helicopter R&D group to design 

and build a 4-seater helicopter as the first Malaysia made helicopter.  The 

aerodynamic and structural designs of helicopter are very vital and must be fully and 

well understood.  In order to reduce drag and also for good vertical take-off and fast 

forward flight,  the effect of interaction of flows from the helicopter main rotor to the 

fuselage in vertical take-off and forward flight has to be studied in order to establish 

the aerodynamics of the helicopter. This fact triggered the research that has been 

taken and detailed in this thesis.  

 

 

1.1 Problem Statement 

 It is well known that rotary wing aircraft aerodynamics is complicated. 

Unlike fixed wing aircraft, on which a steady-state flight condition implies steady-

state aerodynamics, a rotary wing aircraft experiences a significant unsteady 

aerodynamic environment in all flight conditions, even in level, unaccelerated flight, 

due to the presence of the rotating wings. For fixed wing aircraft, the flow on the 

fuselage body can be treated solely by free-stream velocity but in rotary wing 

aircraft, both free-stream velocity and rotor wakes interact with the fuselage body. 

Therefore, a study on the rotor-fuselage flow interaction is necessary in order to 

understand the flow physics that leads to the proper aerodynamic design for the 

fuselage body. 

 The rotor and fuselage interact in a complex, nonlinear fashion, making it 

difficult to obtain reliable results from simple method. Most of the aerodynamic 

research on helicopters done previously concerned with the prediction of the main 

rotor forces and induced velocities. Aerodynamic analysis is important for 

helicopters design because of unexpected aerodynamic behavior can affect the 

aircraft in many ways, such as: 
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i. Performance: Poor aerodynamics reduces the aircraft’s ability to accomplish 

its mission. 

ii. Handling: Poor aerodynamics can also lead to reduced control system 

effectiveness, degrading the stability characteristics of the aircraft. 

iii. Vibration: The periodic aerodynamic loading can lead to structural vibrations 

and can be a source of annoyance to the pilot.  

iv. Maintenance: Unexpected aerodynamic loading can lead to increased fatigue 

on components forcing them to require more frequent repair. 

v. Noise: A variety of aerodynamic interactions can increase the noise generated 

by the aircraft during operation.  

 

 Therefore, before any complicated design for a helicopter being done, one 

must first determine the aerodynamic behavior of the helicopter especially of the 

helicopter fuselage since the fuselage drag has been shown to account for up to one-

third of total helicopter drag [3]. In addition, the helicopter main rotor should be 

included in any numerical simulation since rotor-fuselage interaction may have a 

major influence on the helicopter flow field physics. The physics of the helicopter 

flow field are shown below. 

 

 

Figure 1.1: Flow structure and some aerodynamic problem areas on a 
helicopter in forward flight [4] 
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Rotor-fuselage flow interaction by experimental study which is normally 

conducted by wind tunnel testing is very expensive and time consuming. 

Computational method on the other hand has lately gained popularity as an 

alternative tool. Furthermore, increased in computer storage capacity and 

computation speed, increases the ability to simulate complex flow problem with high 

accuracy and at less cost compare to experimental test. In this study, a commercial 

CFD software from FLUENT Inc. is used since FLUENT had been widely used in 

aeronautic and related industries. Moreover, UTM had already subscribed the 

FLUENT software and there are a number of expert FLUENT users in the Faculty of 

Mechanical Engineering that could be referred in time of necessity. 

 

 

1.2 Research Objective 

The main objective of the present research is to study and obtain rotor-

fuselage flow interaction both in hovering and forward flight. By understanding the 

rotor-fuselage flow interaction, aerodynamic forces on the helicopter fuselage can be 

determined, leading to a proper design of the helicopter fuselage. 

 

 

1.3  Research Scope 

The research work will cover the following scopes: 

i. Theoretical determination of the aerodynamic characteristics of an existing 

helicopter. 

ii. Studying the governing equations, methods and assumptions in 

Computational Fluid Dynamics (CFD) simulation. 

iii. Using computational method to study and obtain flow characteristic of an 

existing helicopter fuselage for the following conditions: 

1. Isolated rotor blade during hovering and forward flight. 

2. Isolated fuselage in forward flight. 

3. Rotor with fuselage during hovering and forward flight. 
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1.4 Research Methodology 

This research will be carried out as follow: 

i. Literature review on the previous work of rotor-fuselage aerodynamics 

ii. Theoretical analysis on helicopter aerodynamics; concentrating on the effects 

of wakes and induced velocity of the rotor onto the helicopter fuselage 

iii. Numerical analysis on helicopter in hovering and forward flight by using 

FLUENT 6.2, a commercial CFD software package. 

iv. Comparing the results obtained from theoretical and numerical analysis and 

the previous work 

 

 

1.5 Thesis Outline 

This thesis is organized in seven chapters. The chapters are briefly described 

as follows. Chapter 2 reviews the previous works on helicopter aerodynamics 

generally. The works include the development of the theories, wind tunnel testing 

and computer simulation for cases of helicopter rotor-fuselage flow interactions. 

 

On the other hand, chapter 3 provides the basic theory of the helicopter 

aerodynamics. The flow fields around the helicopter were studied by using 

Momentum Theory, Blade Element Theory and Blade Element Momentum Theory.  

 

Chapter 4 explains the governing equations in CFD. It also describes the 

calculation method, turbulence modeling and commercial CFD software FLUENT 

6.2. Chapter 5 describes how the simulation is carried out in FLUENT 6.2 including 

the mesh boundary conditions and the methods used. It also provides the description 

of the real helicopters and the simulation models. 

 

Chapter 6 provides data comparison of the research and those of the previous 

work. The comparison is carried out in order to validate the results obtained and the 

method used. In this chapter the results of theoretical analysis and CFD for hovering 

and forward flight are also presented. Lastly, chapter 7 summarizes the works that 

have been done and provides concluding remarks for all the findings. 

Recommendations for future study have also been provided. 




