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ABSTRACT 

Nowadays, thermal management becomes one of the major bottlenecks that 
restrict the further development of compact electronic devices. This restriction is 
because of the unpredicted increment of power density in the high-density microchip, 
which generates high heat flux. To reduce the excessive heat, the CPU throttling 
technology will slow down the performance of electronic devices by reducing the 
frequency of microchips. Thus, to ensure electronic devices always perform at their 
optimum condition, a cooling system with an advanced cooling technique, such as 
microchannel heat sink (MCHS), is needed to ensure the operating temperature of 
electronic devices does not exceed the allowable temperature of the semiconductor 
components. However, conventional MCHS is inadequate to remove the heat flux 
effectively due to the thermal resistance in the laminar region and pumping power 
issue. In the present study, the hydrothermal performance of hybrid MCHS designed 
with the rib-cavity structure was optimised via secondary channel geometry 
parameters numerically and validated experimentally under laminar flow conditions. 
Firstly, the numerical approach was initially verified through the validation of the 
conventional MCHS. Secondly, a comparative study was conducted between the 
hybrid MCHS with other related enhanced MCHSs, namely, rectangular-rib MCHS, 
triangular-cavity MCHS, and rib-cavity MCHS. Thirdly, the hydrothermal 
optimisation of the hybrid MCHS was performed via parametric optimisation of 
secondary channel angles, secondary channel locations at the cavity structure, and 
secondary channel widths. Finally, the numerical result was validated experimentally 
based on the measurement of the Nusselt number and friction factor parameters. The 
results showed that the secondary channel geometries in the rib-cavity structure of the 
hybrid MCHS increased the heat transfer performance by 2.1% with the reduction of 
pumping power consumption by 82.2%. After the parametric optimisation of 
secondary channel geometry, the hybrid MCHS achieved a performance factor higher 
than 2.0 at the Reynold number of 450. The performance factor of the optimised hybrid 
MCHS was 2.02 at the Reynolds number of 450. The highest performance factor 
achieved by the optimised hybrid MCHS was 2.10 at the Reynolds number of 600 with 
the minimal entropy generation number of 0.58. The simulation result of the Nusselt 
number and friction factor showed a good agreement with the experiment, which was 
less than 20%. With this optimised hybrid MCHS as a cooling device, it can improve 
the heat transfer performance by 41.3% with a reduction of pumping power 
consumption by 83.7%. In addition, the coolant consumption has been saved up to 
68.9%. Thus, this hybrid MCHS is suitable for a compact electronic device that does 
not require high energy and coolant consumption for its cooling system. This hybrid 
MCHS is potentially explored for the usage of other electronic devices and 
applications. Several interesting aspects may be explored further by investigating the 
combination of secondary channel geometry with the various shapes of cavity 
geometry in hybrid MCHS as it affects the recirculation flow formation. Besides that, 
the utilisation of nanofluid in the hybrid MCHS should be considered together with 
the concave dimple geometry as the geometry can reduce the surface friction between 
the nanofluid and channel wall. 
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ABSTRAK 

Kini, pengurusan haba menjadi salah satu halangan utama yang menyekat 
perkembangan pembangunan peranti elektronik yang padat. Ia berpunca daripada 
peningkatan ketumpatan kuasa tidak terjangka dalam mikrocip berkepadatan tinggi, di 
mana ia menghasilkan fluks haba yang tinggi. Untuk mengurangkan haba berlebihan 
itu, teknologi pendikit CPU akan memperlahankan prestasi peranti elektronik melalui 
pengurangan frekuensi mikrocip. Oleh itu, untuk memastikan peranti elektronik 
berfungsi pada tahap optimum, sistem penyejukan yang menggunakan teknik 
penyejukan termaju, seperti sinki haba saluran mikro (MCHS), diperlukan bagi 
memastikan suhu peranti elektronik tidak melebihi suhu yang dihadkan untuk 
komponen semikonduktor. Namun begitu, MCHS konvensional tidak mampu 
menyingkirkan fluks haba secara efektif kerana masalah rintangan terma dalam aliran 
laminar, dan masalah kuasa mengepam. Dalam kajian ini, prestasi hidroterma MCHS 
hibrid yang direka bentuk dengan struktur rusuk-rongga telah dioptimumkan melalui 
parameter geometri saluran sekunder secara berangka dan telah disahkan secara 
eksperimen dalam keadaan aliran laminar. Pertama, pendekatan berangka pada 
mulanya telah disahkan melalui pengesahan MCHS konvensional. Kedua, kajian 
perbandingan telah dilakukan di antara MCHS hybrid tersebut dengan MCHS yang 
berkaitan seperti MCHS dengan rusuk-segi-empat-tepat, MCHS dengan rongga-segi-
tiga, dan MCHS dengan rusuk-rongga. Ketiga, pengoptimuman hidroterma MCHS 
hibrid telah dilakukan melalui pengoptimuman parametrik sudut saluran sekunder, 
lokasi saluran sekunder di struktur rongga, dan lebar saluran sekunder. Akhirnya, hasil 
kajian berangka telah disahkan secara eksperimen berdasarkan pengukuran parameter 
nombor Nusselt dan faktor geseran. Hasil kajian telah menunjukkan bahawa geometri 
saluran sekunder di dalam struktur rusuk-rongga MCHS hibrid telah meningkatkan 
prestasi pemindahan haba sebanyak 2.1% dengan pengurangan penggunaan kuasa 
pengepaman sebanyak 82.2%. Selepas pengoptimuman parametrik geometri saluran 
sekunder, MCHS hybrid tersebut telah mencapai faktor prestasi lebih daripada 2.0 
pada nombor Reynolds, 450. Faktor prestasi MCHS hibrid yang telah dioptimumkan 
pada nombor Reynolds, 450 adalah 2.02. Faktor prestasi tertinggi yang telah dicapai 
oleh MCHS hibrid yang dioptimumkan ialah 2.10 pada nombor Reynolds, 600 dengan 
nombor penjanaan entropi minimum, 0.58. Hasil kajian simulasi untuk nombor 
Nusselt dan faktor geseran telah menunjukkan persetujuan yang baik dengan 
eksperimen, iaitu kurang daripada 20%. Dengan MCHS hibrid yang dioptimumkan ini 
sebagai peranti penyejuk, ia boleh meningkatkan prestasi pemindahan haba sebanyak 
41.3% dengan pengurangan penggunaan kuasa pengepaman sebanyak 83.7%. Di 
samping itu, penggunaan bahan pendingin dijimatkan sehingga 68.9%. Oleh itu, 
MCHS hibrid ini sesuai untuk peranti elektronik yang padat dan tidak memerlukan 
penggunaan tenaga dan bahan pendingin yang tinggi untuk sistem penyejukannya. 
MCHS hibrid ini juga berpotensi untuk dikaji bagi kegunaan peranti elektronik dan 
aplikasi yang lain. Beberapa aspek menarik boleh diterokai dengan lebih lanjut melalui 
kajian gabungan geometri saluran sekunder dengan pelbagai bentuk geometri rongga 
dalam MCHS hibrid kerana ia mempengaruhi pembentukan aliran peredaran semula. 
Selain itu, penggunaan bendalir nano dalam MCHS hibrid perlu dipertimbangkan 
bersama-sama dengan geometri lesung cekung kerana geometri tersebut boleh 
mengurangkan geseran permukaan antara bendalir nano dan dinding saluran.  
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Background of Study 

Application of cooling system in thermal engineering is recognised and have 

been studied both theoretically and practically in building energy system, electronic 

devices, chemical vapour deposition instruments, solar energy collectors, furnace 

engineering and many more [1]. In recent years, thermal management of electronic 

devices is of interest as a new generation of high performing dense chip packages that 

function at high frequency produces a high heat flux on the electronic devices. 

Prolonged heat flux creates a hot spot on the electronic devices and reduces the lifespan 

of the electronic devices [2, 3] due to the acceleration of the Mean Time to Failure 

(MTTF) as described by the Black’s equation [4]. Thermal management of compact 

electronic devices that operate at high power density is critical as there is a lack of 

efficient technique to remove heat dissipation from the electronic devices [5-8].  

According to Moore’s law used by Intel for transistor count observation, it 

demonstrates that the number of transistors doubling every 24 months [9-13] as shown 

in Figure 1.1 [10]. There are three measures considered in the increasing number of 

transistors per microchips, such as shrinking the size of the single transistor (scaling), 

increasing the microchip area, and improving circuit and device design. As seen in 

Figure 1.2, scaling down the individual transistor and microchip size in improving the 

microprocessor performance [14, 15] has caused detrimental effects that leading to 

high heat dissipation. That is one of the biggest challenges in microchip development 

[16]. As a consequence, urgent needs for the advanced cooling device is raising by 

years. Based on the Market Research Report [17], microchannel cooling is one of the 

cooling technology that expected to grow at the highest Compound Annual Growth 

Rate (CAGR) in the global thermal management market for the global forecast of the 

year 2025. 
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Figure 1.1 Evolution of transistor count according to Moore’s law [12] 

 

 

Figure 1.2 Evolution of microchip size [14, 15] 

The increase in power density and miniaturisation of electronic packages has 

changed the direction of cooling system technology, from air-cooling technology to 
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the advanced heat transfer technology due to the inadequacy of conventional method 

to remove extreme high heat flux [18].  

Several methods have been proposed in the previous studies to improve the 

cooling performance, such as air cooling method [19], heat pipe method [20], use of 

liquid material as a coolant [21], and micro-cooling method [22-24]. Micro-cooling is 

a good technique due to its high cooling efficiency compared to the other methods. 

Even though the air cooling method is the simplest cooling technique, it has a low 

cooling efficiency with additional heat generation by the fan itself [25]. Meanwhile, 

for the liquid material and heat pipe applications, space is required to accommodate 

additional system for condensation process [25] which are not suitable for compact 

electronic devices. Therefore, the micro-cooling method is one of the most promising 

techniques that can dissipate a high heat flux generated by the compact electronic 

devices that can be attributed to the high heat transfer surface-area-to-volume ratio. 

Besides that, the micro hydraulic diameter also contributes to the heat transfer 

performance enhancement due to the augmentation of heat transfer coefficient [26].  

When the micro-cooling method is used, microchannel heat sink (MCHS) is 

found to be the most prospective as a high heat flux can be removed compared to 

micro-jet impingement, micro-heat pipe and micro-electro-hydrodynamic methods 

[27]. In 1981, Tuckerman and Pease [28] reported that rectangular MCHS can remove 

heat-flux up to 790 W/cm2. However, the pumping power required by the MCHS was 

high due to high-pressure drop penalty generated in the microchannel. Based on the 

study of Japar et al. [29], high-pressure drop penalty attributed to the high wall shear 

stress in the developing region of laminar flow. This important discovery motivates 

many scholars to investigate the performance of rectangular microchannel via 

geometry parameters and stacked layer optimisations. 

In the geometry parameter optimisation of rectangular MCHS, the thermal and 

hydraulic resistances decreased with increasing aspect ratio of a rectangular 

microchannel (channel width to channel height) [30]. This is because MCHS with high 

aspect ratio provide a larger convective heat transfer area and flow cross-section area. 

The findings were further supported by Kowsari et al. [31] where for a smaller and 
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constant cross-section area, the heat transfer performance increased with channel 

aspect ratio. In-depth effect of a rectangular channel aspect ratio on the thermal 

performance was investigated by Sobhan et al. [32] and Kou et al. [33]. The authors 

found that at a fixed aspect ratio, channel width significantly affected thermal 

resistance as the bottom channel area lied directly under the applied heat flux. Besides 

the thermal resistance issue, the pressure drop penalty is also an aim of rectangular 

channel MCHS optimisation process.  

One of the related studies includes investigation of hydrothermal performance 

in a single-layered and double-layered MCHS to reduce the pressure drop penalty by 

Chong et al. [34]. The study demonstrated that in the laminar region, the double-

layered MCHS reduced the pressure drop, P∆  by 53.9% compared to the single-

layered MCHS. However, the thermal resistance in the double-layered MCHS was 

higher than the single-layered MCHS by 20.8%. A solution was proposed by Wei et 

al. [35] to reduce the thermal resistance in a stacked MCHS, either to increase the 

pumping power or to reduce the channel length. Hung et al. [36] also recommended 

increasing the pumping power to mitigate the optimal thermal resistance. However, in 

another study by Wang et al. [37], both thermal resistance and pumping power 

consumption were improved simultaneously through optimisation of semi-porous rib 

geometry. The researchers reported that the double-layered MCHS with the optimised 

semi-porous-rib geometry improved the cooling performance and pumping power by 

14.06% and 16.40%, respectively. 

Nevertheless, further geometry optimisation of a rectangular channel MCHS is 

limited by pressure drop penalty in a mono-layered MCHS and additional space 

requirement by a multi-layered MCHS in the cooling system of a compact electronic 

device. In recent years, many investigations have been conducted to further improve 

the performance of MCHS through advanced geometric structure and nanofluid [38] 

which can provide high cooling performance with less pumping power consumption. 

The cooling demand can be achieved by designing a sustainable enhanced MCHS with 

three criteria: (1) High cooling performance; (2) Low coolant and energy 

consumptions; (3) Small and compact heat sink [39]. Hybrid MCHS is one of the best 
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methods which can meet those criteria. Hybrid MCHS is a MCHS that integrated with 

more than one passive method in its microchannels in order to:  

(a) Increase the convective heat transfer area of microchannel via fin geometry,

and cavity or dimple structure.

(b) Reduce the local pressure drop penalty via cavity or dimple structure. Those

structures will enlarge the flow area in microchannel and thus reduce the

pumping power consumption.

(c) Redevelop boundary layer in the laminar region via flow disruptions method

so that the thermal resistance can be reduced and thus improve the cooling

performance.

(d) Increase the degree of fluid mixing between hot and cold coolant by promoting

the vortices flow formation in microchannels.

Based on the study conducted by Lu et al. [40], it is worth mentioning here that 

a hybrid MCHS can improve or negatively affect the overall performance of MCHS. 

For this reason, a comprehensive analysis needs to be conducted further for the hybrid 

MCHS designs. The combined effect of implemented methods on the fluid flow and 

heat transfer characteristics in the hybrid MCHS is a key factor that determines the 

overall performance of the hybrid MCHS. Therefore, this study conducted 

comprehensive analyses for the development of laminar forced convection cooling in 

hybrid microchannel heat sink with secondary channel for electronic devices. The 

findings from this study provides sustainable cooling solutions that can be used in 

many electronic devices and applications.  

1.2  Problem Statement 

Demand for high-performance electronic devices has continued to surge as the 

Fourth Industrial Revolution (IR 4.0) focuses heavily on interconnectivity, 

automation, machine learning, and real-time data. Thus, high-power integrated circuit 



 

6 

packages (microchips) have been developed further to enhance the performance of 

electronic devices. As a result, high heat dissipation is generated by electronic devices 

due to the scaling down effect of tiny transistors on microchips. With the unpredicted 

increment of power density in microchips, which close to 100 W/cm2 [41], an 

advanced cooling technique like MCHS is required to ensure the temperature of 

electronic devices does not exceed the allowable temperature of the semiconductor 

component. The allowable temperature is less than 358.15 K [42, 41]). However, the 

conventional design of conventional-rectangular microchannel heat sink (CR MCHS) 

is inadequate to effectively remove heat dissipation due to the thickness of the thermal 

boundary layer in the laminar region and pumping power issue [29]. Besides that, the 

CR MCHS requires high coolant and pumping power consumptions to reduce the 

operating temperature to less than the allowable temperature [42].  

Hybrid MCHS is an innovative cooling technique that can fulfil the cooling 

demand for compact electronic devices installed with the advanced microchips. Hybrid 

MCHS should provide high heat transfer performance with less pumping power 

consumption. Rib-cavity MCSH is one of the hybrid MCHS than can meet the criteria. 

However, the recirculation flow in the cavity geometries has deteriorated the heat 

transfer performance in the cavity geometry as it increases the residence time of fluid 

to remain longer in the stagnation zone (dead zone) area of cavity geometry [43-47]. 

Consequently, the heat from the sidewalls of cavity geometry cannot be removed 

efficiently. Secondary channel (SC) geometry is channels that connect each cavity 

geometry to the cavity geometry of the adjacent channel. The combination of rib-

cavity structure with SC geometries in hybrid MCHS could minimise the size of 

recirculation flow formation in the cavity geometry area and thus improve the overall 

heat transfer performance.  

Besides that, most of the rib-cavity MCHSs obtained performance factor (PF) 

lower than 2.0 at the Re of 450 [43, 45-55]. It indicates that those rib-cavity MCHSs 

required high coolant and pumping power consumptions in order to provide high 

hydrothermal performance. In addition, most of the rib-cavity MCHSs only considers 

PF in the design development. However, to implement sustainable cooling solutions 

in rib-cavity MCHSs, both cooling capacity and energy efficiency should be 
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considered in the design development. Therefore, the irreversibility (entropy 

generation rate) associated with the heat transfer process should be analysed together 

with performance factor, PF in order to determine the overall performance of an 

innovated MCHS. 

The most critical issue in the design development of hybrid MCHS is its 

fabrication process since most of the design of hybrid MCHSs are too complex. 

Consequently, it is important to fabricate the proposed hybrid MCHS as there are many 

limitation during the fabrication process such as the size of cutting tools and micro-

machining process. It determines whether the proposed design can be commercialised 

and transferred to the mass production in electronic industry or not. Besides that, most 

of researchers still use straight-channel MCHS for their numerical model validation 

[44, 49, 50, 56-59] because experimental analyses of the fabricated hybrid MCHS such 

as regression analysis are limited in the previous studies. Regression equation that 

formulated from the regression analysis can be used as reference for validation purpose 

in the future study for an innovated MCHS that have similar design with the proposed 

MCHS. 

1.3 Research Objectives 

The main goal of this research is to develop a sustainable hybrid MCHS that 

can provide high heat transfer rate with low coolant and pumping power consumptions. 

It can be achieved by promoting a high degree of fluid mixing between cold and hot 

coolant at low Re. In order to achieve these goals, the objectives of this research are 

formulated as follows: 

1. To increase heat transfer performance with less pumping power consumption 

by integrating secondary channel geometry in the rib-cavity structure of hybrid 

MCHS that can eliminate the recirculation flow in the cavity geometry. 
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2. To increase the performance factor of hybrid MCHS higher than 2.0 for the 

Reynolds number of 450 with minimal entropy generation number by 

optimising the secondary channel geometry parameters. 

3. To validate the numerical model of the optimised design of hybrid MCHS 

experimentally based on the measurement of Nusselt number and friction 

factor of the fabricated hybrid MCHS 

 

1.4 Research Scopes 

In order to achieve the objectives of the present study, the following scopes are 

defined. Generally, there are two themes in this study, namely, numerical and 

experimental analysis of the enhanced MCHS adopted with the hybrid technique of 

passive method.   

1. Hydrothermal performance enhancement techniques in the studied MCHSs 

were developed by a passive method. 

2. Numerical investigations of the studied MCHSs were conducted by single-wall 

microchannel analysis. 

3. Numerical investigations focused on laminar forced convection cooling in the 

enhanced MCHSs for the Reynolds number of 100 to 800.  

4. Hydrothermal optimisation focused on secondary channel geometry 

parameters, namely, secondary channel angle (15o, 30o, 45o, 60o), secondary 

channel location (10 µm, 25 µm, 40 µm) at cavity area, and secondary channel 

width (20 µm, 30 µm, 40 µm, 50 µm). 

5. For the validation purpose, the fabricated MCHS is made of aluminium. The 

hydrothermal performance of the fabricated MCHS was investigated with the 

volume flow rate of 44 ml/min to 211 ml/min or the Reynolds number of 100 

to 500.  
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6. Regression equations of hydrothermal performance were formulated based on 

the optimised hybrid MCHS integrated with SC geometries. 

 

1.5 Contributions 

Thermal management is one of the biggest technical challenges facing 

numerous industries, especially microelectronic sector. Rapid growth in the 

microelectronic industry is increasing thermal load and requiring faster cooling. 

Hence, there is an urgent need for an advanced cooling technique like TC-RR-SC 

MCHS (the combination of triangular cavity, rectangular rib and secondary channel 

geometries in a single channel of MCHS) to meet the cooling demand. The 

contributions of the present study are: 

1. Test Rig: The test rig of TC-RR-SC MCHS was fabricated with the slotted 

MCHS. Thus, the present MCHS can be replaced with other enhanced MCHSs 

for experimental study in future. This test rig is suitable for the single-phase 

and two-phase system. This test rig can be used as teaching aids for 

demonstration and practical lessons. 

2. Further Development of Microchip: High heat flux generated by the 

electronic device becomes the bottleneck of further development of microchip. 

By having this TC-RR-SC MCHS as a cooling device, the advanced 

technology can be further developed for the development of technologies in 

line with Industry 4.0. 

3. Cooling System of Compact Electronic Device: TC-RR-SC MCHS does not 

require high coolant and energy consumptions. Thus, smaller microfluidic 

pump and reservoir tank can be used in cooling systems. Therefore, TC-RR-

SC MCHS is suitable for compact electronic devices that require less coolant 

and energy consumptions for their cooling system due to a small and compact 

cooling compartment area. With the TR-RR-SC MCHS, thermal performance, 
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energy and coolant consumptions are improved by 41.3%, 83.7%, and 68.9%, 

respectively, as compared with the optimum performance of CR MCHS. 

4. Knowledge: By knowing the fluid flow and heat transfer characteristics in the 

TC-RR-SC MCHS, a similar geometry structure can be implemented in the 

future design of MCHS. A high degree of fluid mixing at low flow rate is good 

for a sustainable cooling device. Besides that, the regression equations of the 

optimised hydrothermal performance of TC-RR-SC MCHS can be used as the 

reference in the future study.  

5. Application in other industrial sector: It is optimistic that this cooling 

technology can be applied in: (1) Nuclear industry for the heat transportation 

from the nuclear reactor to the steam generator, (2) Solar industry for solar 

collector, and (3) Automotive industry for car radiator. 

 

1.6 Thesis Outline 

The present thesis consists of five chapters, including this chapter. In general, 

there are two themes in this thesis, namely, numerical and experimental analyses of 

the enhanced MCHS adopted with the hybrid technique of passive method. Most of 

the works in this thesis are numerical study. The experimental study was conducted 

for the numerical model validation purpose only. 

In Chapter 1, a general overview of the current cooling demand of high-

performance electronic device is discussed comprehensively. Some micro-cooling 

techniques are compared to find the best cooling techniques that can provide a 

sustainable cooling system. MCHS is one of the most advanced cooling techniques 

that can meet the cooling demand. However, the conventional MCHS only achieve its 

optimum performance at a high flow rate, which affects the coolant and energy 

consumptions. This issue is discussed in detail in the problem statement section. Then, 
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the aim, objectives, and scopes are defined in order to set the direction of the present 

study. 

In Chapter 2, a comprehensive review of the MCHS performance is presented 

in order to identify the flow mechanism that helps in the enhancement of the heat 

transfer performance. Generally, two hydrothermal performance enhancement 

methods are highlighted, namely, active and passive methods. Nevertheless, the 

passive method is discussed critically throughout Chapter 2 compared to the active 

method. Firstly, MCHS with a single passive method was reviewed to identify the 

advantages and disadvantages of each technique in the passive method. Then, MCHS 

with hybrid techniques of passive method was examined to investigate how the 

combined effect of the hybrid technique can improve the heat transfer performance 

with an acceptable pressure drop. Secondly, the optimization techniques implemented 

by the previous researcher were discussed comprehensively. Lastly, the experimental 

studies related to the enhanced MCHS were reviewed in order to investigate the 

limitation of the experimental analysis. From this review, the research gap was pointed 

out. 

In Chapter 3, the used methodologies to conduct this research are presented. 

The works can be separated into two parts: numerical study, and; experimental study. 

In the numerical investigation, comparative studies among the studied MCHSs were 

conducted in order to investigate the effect of the geometry structures on the fluid flow 

and heat transfer characteristics in a single-wall microchannel. Besides that, the 

optimisation of PF and minimisation of asN ,  were performed in order to identify the 

optimum overall performance of the proposed hybrid MCHS. All the studied MCHSs 

were designed and analysed by CATIA-V5R20 and ANSYS-17.0 software, 

respectively. Besides that, the contour profiles of the studied MCHSs were examined 

by Tecplot-360. In the experimental study, the friction factor, appf , and the average 

Nusselt number, aveNu , of the fabricated MCHS were measured and compared with 

the numerical model for the validation purpose. 
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In Chapter 4, for simulation study, the overall performances of all the studied 

MCHSs were determined by PF. Besides that, the augmentation entropy generation 

numbers, asN ,  of all the MCHSs were calculated to measure the fluid flow and heat 

transfer irreversibility during the heat transfer process. Furthermore, the thermal 

resistance, TR , and average temperature, avebT . , at the bottom surface of MCHS were 

also calculated as the substrate of MCHS is attached directly to the heat source. The 

effect of geometry structures on the degree of fluid mixing was further investigated by 

measuring the average wall temperature, avewT , , of the studied MCHSs. Energy 

consumption of each studied design was calculated by pumping power consumption, 

pP . The effects of geometry structures on the fluid flow and heat transfer 

characteristics were illustrated in the contour profile too. For the experimental study, 

only two parameters were measured, appf  and aveNu . 

In Chapter 5, the main conclusions of the present work are drawn together and 

presented based on the objective of this study. Besides that, the recommendations for 

the future study are addressed in this section too.
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