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ABSTRACT 

An air conditioner maintains occupants’ thermal comfort; however, it is also 
power-hungry in which leads to high electricity consumption. Maintaining thermal 
comfort while minimising electrical power consumption is difficult, especially when 
the weather-related inputs are not predictable. This leads to overcooling due to 
undershoot and undercooling due to overshoot. Undercooling causes discomfort, while 
overcooling causes discomfort and high-power usage. To minimise this problem, the 
implementation of model-based predictive controllers can be developed to produce 
necessary pre-emptive control decisions based on the output of the embedded 
simulation model in the controller. However, the simulation model must be accurate 
for the best result. This project develops accuracy-improved mathematical models that 
represent the dynamic hygrothermal behaviour of a laboratory in aiding future 
potential energy-efficient predictive controllers. This is to maintain the thermal 
comfort level in the laboratory while minimising power consumption. Two thermal 
comfort variables were modelled to maintain two different desired setpoints 
simultaneously in the future. First, the empirical modelling was developed to capture 
the dynamics of the temperature and humidity behaviours of the laboratory using three 
existing standard methods, which were: (1) autoregressive–moving-average (ARMA) 
model; (2) transfer function (TF) model; and (3) nonlinear autoregressive exogenous 
model (NARX) model. Second, the ensemble methods were implemented to increase 
the simulation accuracy of the developed modelling by summing up the output values 
from all three developed models – prior to summation, the output of each of the models 
was multiplied by the weight value assigned for each of the models. The values of 
these weights were determined using the following three ensemble methods: (1) 
weighted average; (2) least square technique (LST) / least square method (LSM); and 
(3) genetic algorithm (GA). All models’ simulation outputs were compared with the 
actual data for accuracy benchmarking. Results showed that the most accurate 
ensemble models have better accuracies than the most accurate individual models 
developed in this research while being simulated with the testing data set in each 
simulation case. The improvements in the air temperature simulation models are by 
3.40%, 7.38%, and 8.69% each for one-, five-, and ten-minute(s) simulation ahead, 
while the improvements in the relative humidity simulation models are by 0.96%, 
1.35%, and 2.38% each for one-, five-, and ten-minute(s) simulation ahead. The 
accuracy-improved models can then be utilised in model-based predictive controllers 
for maintaining occupants’ thermal comfort in a building while minimising the air 
conditioners’ power consumption for energy saving and environmental conservation. 
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ABSTRAK 

Pendingin hawa mengekalkan keselesaan haba penghuni-penghuni dalam 
bangunan; walau bagaimanapun, pendingin hawa menggunakan kuasa elektrik yang 
tinggi dan mengakibatkan bil elektrik yang tinggi. Mengekalkan keselesaan haba 
sambil meminimumkan penggunaan kuasa elektrik adalah sukar, lebih-lebih lagi 
apabila gangguan daripada input-input yang berkaitan dengan cuaca tidak dapat 
diramal. Ini mengakibatkan penyejukan berlebihan akibat kurang lajakan dan 
kekurangan penyejukan akibat lebih lajakan. Kekurangan penyejukan mengakibatkan 
ketidakselesaan manakala penyejukan berlebihan mengakibatkan kedua-dua 
ketidakselesaan dan penggunaan kuasa yang tinggi. Untuk meminimumkan masalah 
ini, perlaksanaan pengawal ramalan berasaskan model boleh dibangunkan bagi 
menghasilkan keputusan kawalan pendahuluan yang perlu berdasarkan output model 
penyelakuan yang terbenam kalam pengawal. Walaubagaimanapun, model 
penyelakuan mestilah tepat untuk keputusan yang terbaik. Projek ini membangunkan 
model-model matematik yang ditambahbaik ketepatan bagi mewakili perlakuan 
dinamik higrotermal untuk sebuah makmal bagi membantu perlaksanaan pengawal 
peramal cekap tenaga yang berpotensi pada masa akan datang. Ini dilakukan untuk 
mengekalkan tahap keselesaan haba dalam makmal sambil meminimumkan 
penggunaan kuasa. Dua pemboleh ubah keselesaan haba telah dimodelkan bagi 
mengekalkan dua titik tolak berbeza yang dikehendaki serentak pada masa akan 
datang. Mula-mula, pemodelan empirikal telah dibangunkan bagi merakam dinamik 
kelakuan-kelakuan suhu udara dan kelembapan relatif dalam makmal menggunakan 
tiga kaedah standard yang sedia ada, iaitu: (1) model autoregresif–purata-bergerak 
(autoregressive–moving-average (ARMA) model); (2) model rangkap pindah (transfer 
function (TF) model); dan (3) model eksogen autoregresif tak linear (nonlinear 
autoregressive exogenous (NARX) model). Kemudian, kaedah-kaedah ensemble 
dilaksanakan bagi meningkatkan ketepatan pemodelan dengan menjumlahkan nilai 
output daripada ketiga-tiga model yang telah dibangunkan – sebelum dijumlahkan, 
output bagi setiap model didarabkan dengan nilai pemberat yang telah ditentukan bagi 
setiap model. Nilai pemberat-pemberat ini telah ditentukan menggunakan tiga kaedah 
ensemble berikut: (1) berpemberat purata (weighted average); (2) teknik kuasa dua 
terkecil (least square technique (LST)) / kaedah kuasa dua terkecil (least square 
method (LSM)); dan (3) algoritma genetik (genetic algorithm (GA)). Output penyelaku 
daripada kesemua model dibandingkan dengan data sebenar bagi tujuan penandaan 
aras. Keputusan-keputusan menunjukkan bahawa model-model ensemble yang paling 
tepat mempunyai ketepatan yang lebih baik berbanding model-model individu yang 
paling tepat yang dibangunkan dalam penyelidikan ini ketika diselakukan dengan set 
data ujian dalam setiap kes penyelakuan. Penambahbaikan model penyelakuan suhu 
udara adalah sebanyak 3.40%, 7.38%, dan 8.69% masing-masing untuk penyelakuan 
satu, lima, dan sepuluh minit ke hadapan manakala penambahbaikan model 
penyelakuan kelembapan relatif adalah sebanyak 0.96%, 1.35%, dan 2.38% masing-
masing untuk penyelakuan satu, lima, dan sepuluh minit ke hadapan. Model-model 
penyelakuan yang telah ditambahbaik ketepatan kemudiannya boleh dimanfaatkan 
dalam pengawal ramalan berasaskan model bagi mengekalkan keselesaan haba 
penghuni-penghuni dalam bangunan sambil meminimumkan penggunaan kuasa 
pendingin hawa demi penjimatan tenaga dan pemuliharaan alam sekitar.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

The air conditioner is one of the typical thermal comfort equipment used to 

maintain the occupants’ thermal comfort in a building. Even though it is an effective 

equipment to maintain an indoor space’s desired thermal setpoint, it also utilises a high 

amount of electricity. This high-power consumption is economically bad to the 

consumer due to the high electricity bill and also environmentally harmful to the nature 

if the electricity used to power the air conditioner is generated from the non-renewable 

fossil fuel sources such as natural gas, coal, and diesel. As cooling demands increase 

because of these developments, the energy sector is being greatly disrupted because 

the energy sector is thought to be a key contributor to climate change [1], [2]. 

According to the International Energy Agency (IEA) in the year 2021, 606.490 

exajoule of energy is produced worldwide each year [3]. In 2015, it is reported that 

nearly 40% of the generated energy is utilised by buildings, which also accounts for 

an equivalent amount of greenhouse gas emissions [4]. Meanwhile, buildings are the 

world’s third most total final energy consumption in 2017, trailing only the industry 

and transportation sectors [5], [6]. Over 70% of greenhouse gas emissions originate 

from metropolitan areas, primarily because of continuous use of heating, ventilation, 

and air conditioning (HVAC) systems. Thus, it is highly desirable to ensure that the 

air conditioner can be operated at its highest efficiency without sacrificing the users’ 

thermal comfort [1], [7], [8]. 

The air conditioner system’s disturbance is the unpredictable weather-related 

inputs, such as the outdoor temperature, solar radiation, and rainfall. These 

disturbances will lead to overshoot and undershoot while maintaining the indoor 

space’s thermal conditions at the desired setpoints – both the overshoot and undershoot 

will cause discomfort to the occupants in the thermally controlled occupied area. In 
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contrast, the undershoot will cause unnecessary power usage during the extra cooling. 

Predictive controllers can be implemented to produce necessary control outputs that 

can minimise the overshoot and undershoot while maintaining the desired setpoints. 

However, an accurate simulation model representing the plant’s dynamic behaviour is 

required for the predictive controller to function effectively. 

Some of the air conditioning systems today are capable of maintaining the 

desired indoor air temperature and the desired indoor relative humidity. Besides, there 

is also the requirement for the air conditioner in the large non-residential spaces to mix 

a certain percentage of fresh outdoor air into the existing air circulated in the area. The 

mixing of outdoor and existing air was done to reduce the content of unpleasant 

odours, harmful microorganisms, and carbon dioxide to an acceptable level to 

minimise the negative effect on the occupants’ health and productivity. These new 

criteria lead to additional desired setpoints, which then lead to multi-objective 

setpoints. 

This research focuses on constructing the model describing the dynamic indoor 

hygrothermal (temperature and humidity) behaviour of the Industrial Instrumentation 

Laboratory at Malaysia-Japan International Institute of Technology (MJIIT), 

Universiti Teknologi Malaysia (UTM) Kuala Lumpur. The model will be essential for 

potential predictive controllers in the future to maintain the hygrothermal level at 

desired setpoints during unpredictable weather conditions and to reduce power 

wastage due to unnecessary overcooling. The laboratory’s two dynamic indoor thermal 

behaviours, the air temperature, and the relative humidity, were selected to be 

modelled in this research at this moment. The models representing indoor air 

temperature and relative humidity can be used for the potential multi-objective 

predictive controllers in the future. Additional thermal comfort-related indoor dynamic 

behaviour of the laboratory, such as the content of dust and carbon dioxide in the air 

of the occupied indoor space, can be added in the future for a higher possible multi-

objective predictive controller. 

Most works in Malaysia related to building hygrothermal issues and 

investigations are done using in situ experiments and are not focused on simulation. 
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Examples of work done in Malaysia include Ali et al. [9], Aktas et al. [10], and 

Mohammad Yusoff [11]. 

Ali et al. in [9] focus on in situ experiments combined with hygrothermal 

analytical methods to assess the thermal envelope quality together with the operative 

conditions against condensation and mould growth risks of a building. The results 

show that the building is overcooled, leading to poor envelope hygrothermal 

performance with associated condensation and mould growth problems on the non-air- 

conditioned sides of the envelopes. No simulation models were used in their work. 

Aktas et al. in [10] focus on tackling urban heat islands in Kuala Lumpur 

through actual experiments and not using any simulation. They also focus on outdoor 

temperatures near buildings. Mohammad Yusoff in [11] focuses on a heritage 

mosque’s indoor thermal comfort based on in situ experiments. Again, no simulation 

models were used in this work. 

Hence, this research aims to fill the gap in hygrothermal modelling, focusing 

on creating and utilising indoor hygrothermal models for simulation in Malaysia. 

1.2 Research Objectives 

The objectives of this research are: 

1. To install relevant sensors at strategic locations to facilitate hygrothermal data 

collections from an actual laboratory. 

2. To develop the mathematical models representing a laboratory’s dynamic 

hygrothermal behaviour using black-box models as accurately as possible with 

limited knowledge and resources. 

3. To improve the simulation output accuracy of the constructed black box 

models by implementing ensemble methods to emphasise the strength of the 



 

4 

output feature(s) of each of the developed black-box models and validating 

them with the actual values recorded at the laboratory. 

 

1.3 Research Significance 

The contributions of this research are: 

1. The installation of the relevant sensors at strategic locations to facilitate 

hygrothermal data collections from an actual laboratory. This setup may be 

upgraded with newer types of sensors in the future to collect newer types of 

data for newer research objectives. This setup can also be converted into a 

smart laboratory facility for various research purposes in the future. 

2. The construction of the mathematical models representing the dynamic 

hygrothermal behaviour of an actual laboratory using several types of black-

box models. The models are developed with minimal physical knowledge 

related to the hygrothermal behaviour of the laboratory. The simulation outputs 

from these black-box models have been compared with the actual output 

recorded at the laboratory for accurate benchmarking. Since the models 

developed in this research are simple models with less parameters compared to 

the high-fidelity white box models, they are suitable to be implemented in 

model-based predictive controllers cost effectively because simple models 

require less computational power and can be implemented using low-cost 

computers, microprocessors, and microcontrollers. 

3. The improvement of the simulation output accuracy of the constructed black-

box models using ensemble methods to emphasise the strength of the output 

feature(s) of each of the developed black-box models. The output values are 

then combined into a single output value based on the strength of each model’s 

output. The simulation outputs from these ensemble models have also been 

compared with the actual output recorded at the laboratory for benchmarking 
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purposes. These accuracy-improved black box models are still simple, require 

less computational power and can be implemented using low-cost computers, 

microprocessors, and microcontrollers. 

 

1.4 Research Scopes 

First, the Industrial Instrumentation Laboratory at Malaysia-Japan 

International Institute of Technology (MJIIT), Universiti Teknologi Malaysia (UTM) 

Kuala Lumpur, is selected as the plant to be modelled in this research and will be 

described in more detail in Subsection 3.2. The laboratory was selected since it is 

conveniently located in the city centre, where the climate is hot and humid, which is 

the focus of this research. 

Second, only the weather-related inputs are used for the model developed in 

this research. The Industrial Instrumentation Laboratory is equipped with air 

conditioners and ventilation fans. However, the data available by the time this research 

are done is recorded when these thermal comfort equipment are not operated. 

Third, only two dynamic behaviours related to the laboratory’s thermal comfort 

control are modelled for this research due to time constraint, which are temperature 

and humidity. Additional hardware for recording other dynamic behaviours related to 

thermal comforts, such as indoor air quality (IAQ), will be developed and installed for 

data collection as a future work. 

Fourth, only the data recorded for 11 days are used for this research for the 

black box models development. Due to time constraint, only the data recorded for 11 

days are available by the time this research is done. Additional data could not be 

recorded because the plant to be modelled (the laboratory) at the campus was not 

accessible due to the multiple movement control orders (MCOs) during the COVID-



 

6 

19 pandemic. This additional data will be recorded in the future for models’ 

improvement. 

Fifth, even though some of the wall surfaces of the plant to be modelled (the 

laboratory) has a few doors, windows, and ventilation fans, all these items are 

incorporated into the walls and assumed to be part of the walls with uniform heat 

conductivity rate to maintain the models simplicity – instead of having multiple 

mathematical terms to represent the heat conductivity characteristic through multiple 

types of surface (the surfaces of the walls, doors, windows, and ventilation fans), the 

number of the mathematical terms representing the heat conductivity through the 

surface are reduced when the doors, windows, and ventilation fans are incorporated 

into the walls and assumed to be part of the walls with uniform heat conductivity rate. 

Sixth, the surface areas of the outer walls of the plant to be modelled (the 

laboratory) are considered to receive either no solar radiation (0% radiated area) or 

complete solar radiation (100% radiated area), also to maintain the simplicity during 

the models’ development. There is a complex set of mathematical formula to calculate 

how much the surface of an area receives sunlight at a given time of the day based on 

the surface inclination, surface bearing, the sun inclination, the sun bearing, the 

position of nearby object(s) that can partially/fully block the direct sunlight to the 

surface, etc., but this calculation is not implemented in this research due to time 

constraint. 

Seventh, only three types of black-box models and three ensemble algorithms 

are implemented and investigated in this research due to time constraint. The three 

types of black-box models are: (1) the autoregressive–moving-average (ARMA) 

model; (2) the linear time-invariant transfer function (LTI TF) model; and (3) the 

nonlinear autoregressive exogenous (NARX) model. Meanwhile, the three types of 

ensemble algorithms are: (1) the weighted average (WA) ensemble model; (2) the least 

square technique (LST) / least square method (LSM) estimated ensemble model; and 

(3) the genetic algorithm (GA) estimated ensemble model. 
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Finally, the simulation models developed in this research only simulate output 

at every one-minute interval and produce output for one, five, and ten minute(s) ahead 

due to time constraint. 

1.5 Thesis Outline  

This thesis is organized into five chapters. Their contents are outlined as 

follows: 

1. Chapter 1 contains the introduction of the research, which includes brief 

executive summary information where the project’s scope is also discussed. It 

also explains the objectives of the research. The research’s significance has 

also been discussed in this chapter. 

2. Chapter 2 provides a literature review and briefly discusses modelling methods 

of dynamic systems. In particular, the autoregressive–moving–average 

(ARMA) model, the linear time-invariant transfer function (LTI TF) model, 

the nonlinear autoregressive network with exogenous inputs (NARX) model, 

and the ensemble learning will be introduced. Recent works on modelling and 

simulating the dynamic indoor hygrothermal behaviour of a building, focusing 

on hot and humid environments, will be reviewed next. Finally, the issues that 

remain in this area will be discussed, highlighting research gaps and the 

possibility of improvements. 

3. Chapter 3 briefly explains the methodology for the research in every research 

stage. This chapter briefs the construction, testing, and optimisation processes 

for each type of simulation model utilised in this research. 

4. Chapter 4 presents the results and discussions of the research. This chapter 

presents the hygrothermal model’s simulation results, comparing the individual 

black-box models, the ensemble models, and the actual values obtained from 

the laboratory. The focus is on how the proposed ensemble learning improved 

the prediction output of the lab’s humidity and temperature. 
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5. Chapter 5 concludes the thesis by reviewing the objectives and their fulfilment, 

a summary of the work that has been accomplished, and the recommended 

future work. 

 



 

269 

REFERENCES 

[1] S. K. Verma, Y. Anand, N. Gupta, B. B. Jindal, V. V. Tyagi, and S. Anand, 

“Hygrothermal dynamics for developing energy-efficient buildings: Building 

materials and ventilation system considerations,” Energy Build., vol. 260, p. 

111932, 2022. 

[2] J. F. Feenstra, I. Burton, J. B. Smith, and R. S. J. Tol, “Handbook on Methods 

for Climate Change Impact Assessment and Adaptation Strategies (Version 

2.0),” 1998. 

[3] I. E. Agency, “Key World Energy Statistics 2021 – Statistics Report,” IEA 

Publ., pp. 1–82, 2021. 

[4] V. S. K. V. Harish and A. Kumar, “A review on modeling and simulation of 

building energy systems,” Renew. Sustain. Energy Rev., vol. 56, pp. 1272–1292, 

2016. 

[5] United Nations, Energy Statistics Pocketbook. 2021. 

[6] M. A. Hamdaoui, M. H. Benzaama, Y. El Mendili, and D. Chateigner, “A 

review on physical and data-driven modeling of buildings hygrothermal 

behavior: Models, approaches and simulation tools,” Energy Build., vol. 251, p. 

111343, 2021. 

[7] A. Mardiana-Idayu and S. B. Riffat, “Review on heat recovery technologies for 

building applications,” Renew. Sustain. Energy Rev., vol. 16, no. 2, pp. 1241–

1255, 2012. 

[8] E. Frühwald, C. Brischke, L. Meyer, T. Isaksson, S. Thelandersson, and D. 

Kavurmaci, “Durability of timber outdoor structures - modelling performance 

and climate impacts,” 2012. 

[9] M. Ali, M. O. Oladokun, S. B. Osman, S. A. Mohd Din, M. S. Ibrahim, and F. 

Yusof, “Hygrothermal performance of building envelopes in the tropics under 

operative conditions: Condensation and mould growth risk appraisal,” J. 

Teknol., vol. 78, no. 5, pp. 271–279, 2016. 

[10] Y. D. Aktas et al., “Outdoor thermal comfort and building energy use potential 

in different land-use areas in tropical cities: Case of Kuala Lumpur,” 

Atmosphere (Basel)., vol. 11, no. 6, pp. 1–17, 2020. 



 

270 

[11] W. Fatimah and M. Yusoff, “Initial assessment of indoor environmental 

condition and thermal comfort of Malaysia heritage mosque,” J. Kejuruter., vol. 

32, no. 2, pp. 271–280, 2020. 

[12] D. E. Seborg, D. A. Mellichamp, T. F. Edgar, and F. J. Doyle, Process 

Dynamics and Control. John Wiley & Sons Incorporated, 2010. 

[13] N. S. Nise, Control Systems Engineering, 3rd ed. John Wiley & Sons 

Incorporated, 2000. 

[14] P. Whitle, Hypothesis Testing in Time Series Analysis. Almqvist & Wiksells, 

1951. 

[15] G. E. P. Box and G. M. Jenkins, Time series analysis: forecasting and control. 

Holden-Day, 1970. 

[16] H. B. Demuth and M. H. Beale, Neural Network Toolbox 4 User’s Guide. The 

MathWorks, Inc., 2004. 

[17] D. Opitz and R. Maclin, “Popular Ensemble Methods: An Empirical Study,” J. 

Artif. Intell. Res., vol. 11, pp. 169–198, Aug. 1999. 

[18] R. Polikar, “Ensemble based systems in decision making,” IEEE Circuits Syst. 

Mag., vol. 6, no. 3, pp. 21–45, 2006. 

[19] L. Rokach, “Ensemble-based classifiers,” Artif. Intell. Rev., vol. 33, no. 1–2, pp. 

1–39, Feb. 2010. 

[20] A. van den Bosch, B. Hengst, J. Lloyd, R. Miikkulainen, H. Blockeel, and H. 

Blockeel, “Hypothesis Space,” in Encyclopedia of Machine Learning, C. 

Sammut and G. I. Webb, Eds. Boston, MA: Springer US, 2011, pp. 511–513. 

[21] L. I. Kuncheva, “Measures of Diversity in Classifier Ensembles and Their 

Relationship with the Ensemble Accuracy,” in DERA/IEE Workshop Intelligent 

Sensor Processing, 2001, vol. 2001, no. 50, pp. 10–10. 

[22] P. Sollich and A. Krogh, “Learning with Ensembles: How Over-fitting Can Be 

Useful,” in Proceedings of the 8th International Conference on Neural 

Information Processing Systems, 1995, pp. 190–196. 

[23] G. Brown, J. Wyatt, R. Harris, and X. Yao, “Diversity Creation Methods: A 

Survey and Categorisation,” Inf. Fusion, vol. 6, no. 1, pp. 5–20, Mar. 2005. 

[24] J. J. Garcıa Adeva, U. Cervino Beresi, and R. A. Calvo, “Accuracy and 

Diversity in Ensembles of Text Categorisers,” CLEI Electron. J., vol. 8, no. 2, 

pp. 1–12, Dec. 2005. 

[25] S. Haykin, Neural Networks: A Comprehensive Foundation. I E E E, 1999. 



 

271 

[26] U. Naftaly, N. Intrator, and D. Horn, “Optimal ensemble averaging of neural 

networks,” Netw. Comput. Neural Syst., vol. 8, no. 3, pp. 283–296, Jan. 1997. 

[27] S. A. Jafari, S. Mashohor, and M. J. Varnamkhasti, “Committee Neural 

Networks with Fuzzy Genetic Algorithm,” J. Pet. Sci. Eng., vol. 76, no. 3–4, 

pp. 217–223, Mar. 2011. 

[28] A. Tatar, M. R. Yassin, M. Rezaee, A. H. Aghajafari, and A. Shokrollahi, 

“Applying a Robust Solution Based on Expert Systems and GA Evolutionary 

Algorithm for Prognosticating Residual Gas Saturation in Water Drive Gas 

Reservoirs,” J. Nat. Gas Sci. Eng., vol. 21, pp. 79–94, Nov. 2014. 

[29] S. Hashem, “Optimal Linear Combinations of Neural Networks,” Neural 

Networks, vol. 10, no. 4, pp. 599–614, Jun. 1997. 

[30] S. Geman, E. Bienenstock, and R. Doursat, “Neural Networks and the 

Bias/Variance Dilemma,” Neural Comput., vol. 4, no. 1, pp. 1–58, Jan. 1992. 

[31] R. T. Clemen, “Combining forecasts: A review and annotated bibliography,” 

Int. J. Forecast., vol. 5, no. 4, pp. 559–583, Jan. 1989. 

[32] A. A. Nadiri, E. Fijani, F. T.-C. Tsai, and A. Asghari Moghaddam, “Supervised 

committee machine with artificial intelligence for prediction of fluoride 

concentration,” J. Hydroinformatics, vol. 15, no. 4, pp. 1474–1490, Oct. 2013. 

[33] C.-H. Chen and Z.-S. Lin, “A committee machine with empirical formulas for 

permeability prediction,” Comput. Geosci., vol. 32, no. 4, pp. 485–496, May 

2006. 

[34] A. Gholami, H. R. Ansari, and S. Ahmadi, “Combining of intelligent models 

through committee machine for estimation of wax deposition,” J. Chinese 

Chem. Soc., vol. 65, no. 8, pp. 925–931, 2018. 

[35] B. a Pearlmutter and R. Rosenfeld, “Chaitin-Kolmogorov Complexity and 

Generalization in Neural Networks,” in Advances in Neural Information 

Processing Systems 3, 1991, vol. 3, pp. 925–931. 

[36] L. Rincón, A. Carrobé, M. Medrano, C. Solé, A. Castell, and I. Martorell, 

“Analysis of the thermal behavior of an earthbag building in Mediterranean 

continental climate: Monitoring and simulation,” Energies, vol. 13, no. 1, 2019. 

[37] R. A. Barrientos-González, R. E. Vega-Azamar, J. C. Cruz-Argüello, N. A. 

Oropeza-García, M. Chan-Juárez, and D. L. Trejo-Arroyo, “Indoor temperature 

validation of low-income detached dwellings under tropical weather 

conditions,” Climate, vol. 7, no. 8, 2019. 



 

272 

[38] M. Qin, P. Hou, Z. Wu, and J. Wang, “Precise humidity control materials for 

autonomous regulation of indoor moisture,” Build. Environ., vol. 169, no. 

November 2019, p. 106581, 2020. 

[39] M. D’Orazio and G. Maracchini, “An experimental investigation on the indoor 

hygrothermal environment of a reinforced-EPS based temporary housing 

solution,” Energy Build., vol. 204, p. 109500, 2019. 

[40] M. Qin, G. Walton, R. Belarbi, and F. Allard, “Simulation of whole building 

coupled hygrothermal-airflow transfer in different climates,” Energy Convers. 

Manag., vol. 52, no. 2, pp. 1470–1478, 2011. 

[41] A. Romano, A. Bras, S. Grammatikos, A. Shaw, and M. Riley, “Dynamic 

behaviour of bio-based and recycled materials for indoor environmental 

comfort,” Constr. Build. Mater., vol. 211, no. 2019, pp. 730–743, 2019. 

[42] R. Z. Freire, G. H. C. Oliveira, and N. Mendes, “Development of regression 

equations for predicting energy and hygrothermal performance of buildings,” 

Energy Build., vol. 40, no. 5, pp. 810–820, 2008. 

[43] C. Rode and K. Grau, “Whole-building Hygrothermal Simulation Model,” in A 

S H R A E Transactions, 2003, vol. 109, no. 1, pp. 572–582. 

[44] M. Winkler, M. Pazold, A. Zegowitz, S. Giglmeier, and F. Antretter, “Use of a 

radiator for user-centric cooling - Measurement and Simulation,” E3S Web 

Conf., vol. 172, pp. 1–6, 2020. 

[45] R. Kramer, J. van Schijndel, and H. Schellen, “Simplified thermal and hygric 

building models: A literature review,” Front. Archit. Res., vol. 1, no. 4, pp. 318–

325, 2012. 

[46] F. Bruckmayer, “The Equivalent Brick Wall,” Gesundheuts-Ingenieur, vol. 63, 

pp. 61–65, 1940. 

[47] G. Mitalas and D. Stephenson, “Room Thermal Response Factors,” ASHRAE 

Trans., vol. 73, no. III.2, pp. 1–10, 1967. 

[48] J. Clarke, Energy Simulation in Building Design. Routledge, 2007. 

[49] J. A. Crabb, N. Murdoch, and J. M. Penman, “A simplified thermal response 

model,” Build. Serv. Eng. Res. Technol., vol. 8, no. 1, pp. 13–19, 1987. 

[50] S. Wang and Y. Chen, “A novel and simple building load calculation model for 

building and system dynamic simulation,” Appl. Therm. Eng., vol. 21, no. 6, pp. 

683–702, 2001. 

[51] E. H. Mathews, P. G. Richards, and C. Lombard, “A first-order thermal model 



 

273 

for building design,” Energy Build., vol. 21, no. 2, pp. 133–145, 1994. 

[52] L. Ljung, System Identification Toolbox 9 User’s Guide. The MathWorks, Inc., 

2014. 

[53] M. Benchekroun, S. Chergui, F. Ruggiero, and S. Di Turi, “Indoor Microclimate 

Conditions and the Impact of Transformations on Hygrothermal Comfort in the 

Old Ottoman Houses in Algiers,” Int. J. Archit. Herit., vol. 14, no. 9, pp. 1296–

1319, 2020. 

[54] A. H. Holm, H. M. Künzel, and K. Sedlbauer, “Predicting indoor temperature 

and humidity conditions including hygrothermal interactions with the building 

envelope,” ASHRAE Trans., vol. 110 PART I, pp. 820–826, 2004. 

[55] H. M. Künzel, A. Holm, D. Zirkelbach, and A. N. Karagiozis, “Simulation of 

indoor temperature and humidity conditions including hygrothermal 

interactions with the building envelope,” Sol. Energy, vol. 78, no. 4 SPEC. ISS., 

pp. 554–561, 2005. 

[56] M. Qin, R. Belarbi, and A. Aît-Mokhtar, “Modeling of simultaneous heat and 

moisture transfer in air-conditioned buildings,” J. Harbin Inst. Technol., vol. 

14, no. sup., pp. 72–76, 2007. 

[57] S. M. Cornick and M. K. Kumaran, “A Comparison of Empirical Indoor 

Relative Humidity Models with Measured Data,” J. Build. Phys., vol. 31, no. 3, 

pp. 243–268, 2008. 

[58] F. Antretter, F. Sauer, T. Schöpfer, and A. Holm, “Validation of a hygrothermal 

whole building simulation software,” Proc. Build. Simul. 2011 12th Conf. Int. 

Build. Perform. Simul. Assoc., pp. 1694–1701, 2011. 

[59] A. Bishara and R. Mujahn, “Development of a Model for the Prediction of 

Indoor Climate to Enhance Design Tasks in Southern Climates,” in 2nd 

International ASHRAE Conference Efficient Building Design: Materials and 

HVAC Equipment Technologies, 2016. 

[60] S. Salakij, N. Yu, S. Paolucci, and P. Antsaklis, “Model-Based Predictive 

Control for building energy management. I: Energy modeling and optimal 

control,” Energy Build., vol. 133, pp. 345–358, 2016. 

[61] N. Carbonare, T. Pflug, C. Bongs, and A. Wagner, “Simulative study of a novel 

fuzzy demand controlled ventilation for façade-integrated decentralized 

systems in renovated residential buildings,” Sci. Technol. Built Environ., vol. 

26, no. 10, pp. 1412–1426, Nov. 2020. 



 

274 

[62] D. Chung, J. Wen, and L. J. Lo, “Development and verification of the open 

source platform, HAM-Tools, for hygrothermal performance simulation of 

buildings using a stochastic approach,” Build. Simul., vol. 13, no. 3, pp. 497–

514, 2020. 

[63] H. E. Huerto-Cardenas et al., “Validation of dynamic hygrothermal simulation 

models for historical buildings: State of the art, research challenges and 

recommendations,” Build. Environ., vol. 180, no. March, p. 107081, 2020. 

[64] N. Grzegorz, S. Paweł, and M. Małgorzata, “Experimental Study of Thermal 

and Humidity Conditions in a Historic Wooden Building in,” pp. 1–14, 2020. 

[65] M. Pazold, M. Winkler, and F. Antretter, “Investigating overheating by 

measurement and simulation in classrooms,” vol. 3005, pp. 1–8, 2020. 

[66] E. Schito, P. Conti, L. Urbanucci, and D. Testi, “Multi-objective optimization 

of HVAC control in museum environment for artwork preservation , visitors ’ 

thermal comfort and energy efficiency,” Build. Environ., vol. 180, no. June, p. 

107018, 2020. 

[67] S. Wijesuriya, P. C. Tabares-velasco, K. Biswas, D. Heim, and O. Ridge, 

“Empirical validation and comparison of PCM modeling algorithms commonly 

used in building energy and hygrothermal software,” Build. Environ., vol. 173, 

no. November 2019, p. 106750, 2020. 

[68] I. Costa-Carrapiço, B. Croxford, R. Raslan, and J. Neila González, 

“Hygrothermal calibration and validation of vernacular dwellings: A genetic 

algorithm-based optimisation methodology,” J. Build. Eng., vol. 55, no. May, 

p. 104717, Sep. 2022. 

[69] M. Zhao, S. R. Mehra, and H. M. Künzel, “Energy-saving potential of deeply 

retrofitting building enclosures of traditional courtyard houses – A case study 

in the Chinese Hot-Summer-Cold-Winter zone,” Build. Environ., vol. 217, no. 

March, p. 109106, 2022. 

[70] I. Oubrahim, T. Duforestel, and R. Belarbi, “Integration of water sorption 

hysteresis for heat and mass transfer modeling,” Heat Mass Transf. und 

Stoffuebertragung, no. 0123456789, 2022. 

[71] R. Z. Freire, L. dos S. Coelho, G. H. dos Santos, and V. C. Mariani, “Predicting 

building’s corners hygrothermal behavior by using a Fuzzy inference system 

combined with clustering and Kalman filter,” Int. Commun. Heat Mass Transf., 

vol. 71, pp. 225–233, 2016. 



 

275 

[72] M. H. Benzaama, L. Rajaoarisoa, F. Boukhelf, and Y. El Mendili, 

“Hygrothermal transfer modelling through a bio-based building material: 

Validation of a switching-linear model,” J. Build. Eng., vol. 55, no. March, p. 

104691, 2022. 

[73] A. Tijskens, S. Roels, and H. Janssen, “Neural networks for metamodelling the 

hygrothermal behaviour of building components,” Build. Environ., vol. 162, no. 

June, p. 106282, 2019. 

[74] A. Ghofrani, S. D. Nazemi, and M. A. Jafari, “Prediction of building indoor 

temperature response in variable air volume systems,” J. Build. Perform. Simul., 

vol. 13, no. 1, pp. 34–47, 2020. 

[75] X. Lü, T. Lu, C. Kibert, K. Vahtikari, M. Hughes, and Y. Zhao, “A dynamic 

modelling approach for simulating climate change impact on energy and 

hygrothermal performances of wood buildings,” Build. Simul., vol. 11, no. 3, 

pp. 497–506, 2018. 

[76] D. O. Woo and L. Junghans, “Framework for model predictive control (MPC)-

based surface condensation prevention for thermo-active building systems 

(TABS),” Energy Build., vol. 215, p. 109898, 2020. 

[77] E. L. Maxwell, “A quasi-physical model for converting hourly global horizontal 

to direct normal insolation,” Oct. 1987. 

[78] J. W. Spencer, “Fourier series representation of the position of the sun,” Search, 

vol. 2, no. 5, p. 172+, May 1971. 

[79] F. Kasten, “A new table and approximation formula for the relative optial air 

mass,” Arch. für Meteorol. Geophys. und Bioklimatologie, Ser. B, vol. 14, no. 

2, pp. 206–223, 1965. 

[80] K. Holbert and D. Srinivasan, “Solar energy calculations,” in Handbook of 

Renewable Energy Technology, World Scientific Publishing Co., 2011, pp. 

189–204. 

[81] A. W. Culp, Principles of Energy Conversion. McGraw-Hill, 1991. 

[82] M.-J. Chang et al., “A Support Vector Machine Forecasting Model for Typhoon 

Flood Inundation Mapping and Early Flood Warning Systems,” Water, vol. 10, 

no. 12, p. 1734, Nov. 2018. 

 



 

277 

LIST OF PUBLICATIONS 

Journals: 

[1] S. F. M. Hussein, H. Nguyen, S. S. Abdullah, Y. Lim, and Y. Tan, “Black Box 

Modelling the Thermal Behaviour of iHouse using Auto Regressive and 

Moving Average (ARMA) Model,” J. Teknol., vol. 78, no. 6–13, pp. 51–58, 

2016. 

[2] S. F. M. Hussein, N. B. Sharifmuddin, A. O. Al rabeei, A. Faruq, M. S. 

Noorazizi, S. A. Zaki, and S. S. Abdullah, “Black Box Modelling and 

Simulating the Dynamic Indoor Air Temperature of a Laboratory using 

Autoregressive–moving-average (ARMA) Model,” Indones. J. Electr. Eng. 

Comput. Sci., vol. 21, no. 2, pp. 791–800, Feb. 2021. 

 

Conference Proceedings: 

[1] S. F. M. Hussein, M. A. Abu Bakar, Y. Makino, H. Nguyen, S. S. Abdullah, 

Y. Lim, and Y. Tan, “Simplifying the Auto Regressive and Moving Average 

(ARMA) Model Representing the Dynamic Thermal Behaviour of iHouse 

Based on Theoretical Knowledge,” in 17th Asia Simulation Conference, 

AsiaSim 2017, Melaka, Malaysia, August 27 – 29, 2017, Proceedings, Part II, 

vol. 752, 2017, pp. 697–711. 

[2] S. F. M. Hussein, M. K. Mohd Fitri Alif, A. O. Al rabeei, A. Faruq, S. M. 

Zulkapli, M. S. Noorazizi, S. A. Zaki, and S. S. Abdullah, “Black Box 

Modelling and Simulating the Dynamic Indoor Relative Humidity of a 

Laboratory Using Autoregressive–moving-average (ARMA) Model,” IOP 

Conf. Ser. Mater. Sci. Eng., vol. 884, p. 012108, Jul. 2020. 

[3] S. F. M. Hussein, N. B. Sharifmuddin, M. K. Mohd Fitri Alif, A. O. Al rabeei, 

A. Faruq, S. M. Zulkapli, M. S. Noorazizi, S. A. Zaki, and S. S. Abdullah,, 

“Black Box Modelling and Simulating the Dynamic Indoor Air Temperature 

of a Laboratory Using the Continuous-Time Transfer Function Model,” in 

Proceedings of the Third International Conference on Separation Technology 

2020 (ICoST 2020), 2020, vol. 200, no. 2, pp. 146–157. 

 


