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ABSTRACT 

Magnetorheological elastomer (MRE) is an emerged smart material in which 

its responsive moduli in term of mechanical and rheological properties are influenced 

by the presence of an external magnetic field. However, the low mechanical properties 

of existing MREs have limited its use in some engineering applications, and 

temperature is one of the most influential factors affecting the performance of 

elastomer matrix in MRE which deteriorates the required properties of MREs. 

Previous studies have utilized silica as a reinforcing filler around polymer composite. 

Furthermore, silica is also being used as one of coating material to the magnetic 

particle in MRE to improve the mechanical properties and thermal stability of the base 

material. However, the use of silica as an additive in the thermal stability of MRE has 

not been explored. Thus, in this study, the effect of different content of silica on the 

mechanical and rheological properties of ethylene propylene diene monomer (EPDM)-

based MREs under various operating temperatures is investigated by using 30 wt.% 

carbonyl iron particles (CIPs). The microstructure analysis was examined by using 

field-emission scanning electron microscopy, while the thermal characterizations were 

studied by using a thermogravimetric analyser and differential scanning calorimetry. 

The tensile properties were conducted by using Instron Universal Testing Machine in 

the absence of magnetic field at various temperatures. Meanwhile, the rheological 

properties were analysed under oscillatory loadings in the influence of magnetic field, 

using a rotational rheometer at 25 to 65 C. The experimental results revealed that the 

temperature diminished the molecular chains of elastomer matrix and caused the 

interfacial defects between filler and matrix, thus affecting the properties of MRE, in 

which the tensile strength and MR effect decreased with increasing temperature. 

However, the presence of silica has improved the thermal stability of MRE, thus 

reducing the interfacial defects when under the influence of temperature. The 

distribution of silica within the EPDM matrix and the adhesiveness of silica into the 

CIPs surface that occupied the gaps between distributed CIPs within the matrix 

enhanced the interfacial interactions between filler and matrix. Consequently, the 

addition of 11 wt.% silica improved the tensile strength by 344% and maintained the 

MR effect compared to MRE without silica at room temperature condition. The similar 

trends were also observed when MRE under the influence of temperatures; the MRE 

containing silica had higher tensile strength compared to MRE without silica, while 

the presence of silica maintained the MR effect under various operating temperatures. 

The incorporation of silica nanoparticles as an additive in EPDM-based MRE has the 

potential to sustain the properties of MRE devices in various temperature conditions. 

Thus, the study on the temperature-dependent mechanical and rheological properties 

of MRE is necessary, particularly regarding its practical applications.  
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ABSTRAK 

Elastomer reologi magnet (MRE) ialah bahan pintar yang muncul, di mana 

modulus responsifnya dari segi sifat mekanikal dan reologi dipengaruhi oleh kehadiran 

medan magnet luaran. Walau bagaimanapun, sifat mekanikal yang rendah bagi MRE 

sedia ada telah mengehadkan penggunaannya dalam beberapa aplikasi kejuruteraan, 

dan suhu adalah salah satu faktor paling berpengaruh yang mempengaruhi prestasi 

matrik elastomer dalam MRE yang merosotkan sifat MRE yang diperlukan. Kajian 

terdahulu telah menggunakan silika sebagai pengisi pengukuhan dalam bidang 

komposit polimer. Tambahan pula, silika juga digunakan sebagai salah satu bahan 

salutan kepada zarah magnet dalam MRE untuk meningkatkan kestabilan haba pada 

MRE. Walau bagaimanapun, penggunaan silika sebagai bahan tambahan dalam 

kestabilan haba dalam MRE belum diterokai. Oleh itu, dalam kajian ini, kesan 

kandungan silika yang berbeza terhadap sifat mekanikal dan reologi MRE berasaskan 

etilena propilena diena monomer (EPDM) di bawah pelbagai suhu operasi disiasat 

dengan menggunakan 30 wt.% zarah besi karbonil (CIPs). Analisis mikrostruktur 

diperiksa dengan menggunakan Mikroskop Elektron Pengimbasan Pelepasan Medan 

(FESEM), manakala pencirian haba dikaji dengan menggunakan Penganalisis 

Termogravimetrik dan Kalorimetri Pengimbasan Pembezaan. Sifat tegangan 

dijalankan dengan menggunakan Mesin Pengujian Sejagat Instron tanpa medan 

magnet pada pelbagai suhu. Sementara itu, sifat reologi dianalisis di bawah beban 

berayun dalam pengaruh medan magnet, menggunakan rheometer putaran pada 25 

hingga 65 C. Keputusan eksperimen mendapati bahawa haba telah mengurangkan 

rantaian molekul matriks elastomer dan menyebabkan kerosakan antara muka di antara 

pengisi dan matriks, sekali gus menjejaskan sifat MRE, di mana kekuatan tegangan 

dan kesan MR berkurangan dengan peningkatan haba. Walau bagaimanapun, 

kehadiran silika mampu meningkatkan kestabilan haba MRE dengan meningkatkan 

interaksi di antara pengisi dan matriks, sekali gus mengurangkan kerosakan antara 

muka apabila di bawah pengaruh haba. Taburan silika dalam matriks EPDM dan 

kelekatan silika pada permukaan CIP yang memenuhi ruang antara CIP yang 

bertaburan di dalam MRE, telah meningkatkan interaksi antara muka di antara CIP dan 

matriks. Akibatnya, penambahan 11 wt.% silika telah meningkatkan kekuatan 

tegangan sebanyak 344% dan mengekalkan kesan MR berbanding MRE tanpa silika 

pada keadaan suhu bilik.Trend yang sama juga diperhatikan apabila MRE di bawah 

pengaruh suhu; MRE yang mengandungi silika mempunyai kekuatan tegangan yang 

lebih tinggi berbanding MRE tanpa silika, manakala kehadiran silika mengekalkan 

kesan MR di bawah pelbagai suhu operasi. Penggabungan nanozarah silika sebagai 

bahan tambahan dalam MRE berasaskan EPDM berpotensi untuk mengekalkan sifat 

peranti MRE dalam pelbagai keadaan suhu. Oleh itu, kajian tentang sifat mekanikal 

dan reologi MRE yang bergantung kepada suhu adalah keperluan, terutamanya 

berkenaan dengan aplikasi praktikalnya. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Development of controllable stimuli-responsive technology in engineering 

applications has invented various kinds of smart materials in recent years. 

Magnetorheological (MR) materials are among smart materials that have propitious 

future in terms of fast real-time response since their rheological properties can be 

continuously, rapidly and reversibly altered by an external magnetic field [1–4]. MR 

elastomers (MREs) are recognized as a solid-state analogue of MR fluid (MRF) and a 

new branch of MR materials, which composed of magnetic particles embedded in a 

non-magnetic elastomeric matrix. The responsive interactions between magnetic 

particles when subjected to external magnetic fields has resulted in field-dependent 

material property of MRE. Having unique properties such as controllable stiffness and 

fast response time as well as its capability to overcome the limitations in MRF, MRE 

has attracted growing interest in many engineering applications such as adaptive tuned 

vibration absorbers [5,6], stiffness tuneable mounts [7], vehicle suspension bushing 

[8], and tuneable spring components [9]. 

Realizing the importance and potential of MRE in real applications, many 

studies have been conducted by manipulating the parameters in MRE fabrication 

especially in material selections and compositions in order to enhance the performance 

of MREs. In terms of matrix materials selection, many variations have been used 

consisting of silicone rubber (SR) [10–13], natural rubber (NR) [14–17], polyurethane 

(PU) [18–20], polybutadiene [21,22], polyisobutylene [23], and ethylene-propylene-

diene monomer (EPDM) [24–26]. It is well known that rubber is a non-magnetic 

material, where the modulus is constant under any applied magnetic fields, however, 

with the presence of magnetic particles in MRE, the modulus can be changed 

tremendously according to the intensity of magnetic fields. Thus, in order to obtain the 
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largest changes in stiffness or known as MR effect, many researchers have employed 

the soft rubber matrix in MRE fabrication due to its flexible macromolecular chains 

[25]. Nevertheless, the requirement of high tensile strength and good MR effect in 

some industries have limited the application of soft rubber based MREs due to its low 

stiffness and strength [15,27]. In the meantime, NR-based MREs have been effectively 

implemented in industry especially in automotive applications due to its excellent 

mechanical properties. However, due to weak ageing behavior of NR [24], the 

presence of magnetic particles in NR-based MRE will accelerate the oxidative ageing, 

thus weaken the properties as well as shorten its usage. Therefore, the development of 

other alternative elastomeric matrices that has good thermal and aging resistance, and 

at the same time possess good tensile and fatigue strength will be the ideal approach 

for MRE applications in automotive industry. Among those listed matrices, EPDM is 

getting more attention recently in MRE’s fabrication due to high strength, good 

resistance to temperature, ageing, oxidation and atmosphere, easier processing steps 

and low production cost compared to NR [24,25].  

Aside of matrix materials selection, composition of magnetic particles in MRE 

fabrication is another crucial factor to determine the performance of MRE. Carbonyl 

iron particles (CIPs) are mostly considered as main magnetic particles in MRE 

fabrication compared to magnetite [28–30], nickel [31,32], iron sand [33,34] and 

cobalt [32] due to high permeability, high magnetic saturation and low remnant 

magnetization, which can contribute to actively tuned and fast respond towards the 

magnetic fields [2,35]. Previous studies have reported that the ideal concentration of 

magnetic particles in MRE fabrication was about 30 vol% (~70 wt.%) as the higher 

the particles content, the higher the storage modulus and MR effect [13,15,36]. 

Though, too high amount of particles would lead to aggregation of particles, and 

degradation of mechanical properties and durability [15,26,27,28]. In addition, high 

damping ratio and very high stiffness caused poor vibration suppression, which was 

not applicable for absorber and suspension applications [24,37]. Thus, some 

researchers have manipulated the composition of magnetic particles as low as 10 to 20 

vol% (40 to 60 wt.%) to enhance the mechanical properties of MRE. Based on their 

findings, the optimum mechanical properties of MRE could be achieved by reducing 

the magnetic particles concentrations as low as 20 wt.% [10,11]. 
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The interfacial interaction between filler and matrix is crucial in an MRE as 

the difference in surface characteristics between elastomer matrix and magnetic 

particles may weaken the required properties of MREs. In other words, the dispersion 

of hydrophilic magnetic particles inside MRE will get worse due to nonpolar surface 

properties of matrix, thus resulted in inhomogeneous dispersion of magnetic particles 

[6,38]. It will consequently deteriorate the mechanical properties and increase the 

damping properties of MRE [38–40]. Moreover, the weak filler-matrix interactions 

will lead to the loss of magnetic interactions at the gaps between filler and matrix, 

diminishing the filed-dependent properties of MRE [40]. In the meantime, the modulus 

and strength of elastomer matrix itself are low and tend to degrade when expose to 

various operating temperatures. The weakened polymer molecular chains caused by 

the temperature will initiate the interfacial defects between filler and matrix, resulting 

in the decrement of the MRE’s properties. Therefore, to overcome the weak 

interactions between filler and matrix, few studies on the surface modification of 

magnetic particles have been conducted to improve the filler-matrix interfacial 

interactions and thermal stability of the MRE [6,25,41]. On the other hand, additive 

utilization in MRE is another alternative that has been proposed by many researchers 

[14,15,17,27,33,38,42,43], mainly to strengthen the interfacial interaction between 

particles and matrix, to enhance the dispersion of magnetic particles as well as to 

improve the properties of MRE.  

There are many types of additives that have been applied into MREs including 

plasticizers [15,20,27,44], silane coupling agents [33,34] and nanoparticles 

[14,17,42,45,46]. Additives have been used to enhance the properties of MRE by 

altering the mechanism of matrix and/or by modifying the surface properties of 

magnetic particles. The inclusion of nano-sized powdered additives in MRE are 

remarkably enhanced the mechanical properties of MRE as it can improve the bonding 

between filler and matrix. The nano-sized additives are adsorbed on the surface of 

magnetic particles, thus improves the filler-matrix interactions by occupying the gaps 

at the interface. Until now, the nano-sized additives such as carbon black 

[14,17,24,37], graphite [47,48] and carbon nanotubes [38,42] have been studied in 

MRE fabrication to enhance the mechanical and rheological properties in dynamic 

automotive applications such as vibration absorbers and suspension bushings. 

Meanwhile, numerous studies on the polymer composite  have demonstrated that the 
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reinforcement of silica nanoparticles could improve the mechanical and thermal 

stability of the polymer material [49–54]. Therefore, the additives manipulation using 

silica nanoparticles should be considered to cater the issue related to interfacial 

interactions between its raw materials and low thermal stability of MRE under various 

operating temperatures.  

1.2 Motivation of Research 

Previous studies have utilized nanoparticles additive such as carbon black, 

carbon nanotube and graphite to improve the mechanical and rheological properties of 

MRE by strengthening the interfacial interactions between filler and matrix. However, 

the demand on high stiffness and tensile strength with good thermal stability of MRE 

has attracted attention from MRE potential applications and has become an emerging 

research topic [1,3,4,35]. MREs normally operated in the multiple ranges of frequency, 

strain amplitude, magnetic field and temperature, where the temperature is considered 

as one of the most influential factors affecting the performance of elastomer matrix in 

MRE [55–57]. The temperature changes in MRE may cause by the environmental 

temperature variations and/or internal temperature rise during energy dissipation 

[25,57,58], which can tremendously affect the MRE performance. Few studies on the 

temperature-dependent rheological properties of MRE have reported that the initial 

storage modulus and MR effect decreased with increasing temperature owing to the 

relative movement between polymer molecular chains and rotation of the particle 

chains inside the MRE [22,25,55–60]. In addition, the most critical factor that affecting 

the stiffness of  MRE under temperature intervention is the interaction between the 

magnetic particles and elastomer matrix, showing that the temperature would 

significantly affect the properties of elastomer matrix in MRE [59]. Thus, it is crucial 

to investigate the effect of temperature on the mechanical and rheological properties 

of MRE in order to meet the requirements of their practical applications.  

Realizing the significant effect of temperature on the performance of MRE, Qi 

et al. [25] has utilized a good thermal resistance elastomer matrix like EPDM rubber 

as a polymer blend with SR-based MRE to enhance the tensile strength and thermal 
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stability of MRE. The results revealed that the incorporation of EPDM has improved 

the tensile strength with excellent temperature stability, while maintaining high MR 

effect. Even though the incorporation of EPDM as polymer blend has significantly 

improved the mechanical, rheological and thermal stability of SR-based MRE, but 

somehow the interfacial interactions between its raw materials is still a concern that to 

be studied. Due to that limitation, the surface of CIP has been modified with silica 

coating to improve the interfacial interaction and dispersion of CIP in elastomer 

matrices, while the silane coupling agent was added to improve the compatibility 

between its raw materials. In fact, the precipitated silica has been used as one of the 

ingredients, but the effect of precipitated silica as an additive on the properties of MRE 

was not fully investigated. Hence, the usage of silica as an additive in MRE fabrication 

should be studied as an alternative to enhance the interfacial interactions between filler 

and matrix, so that the prior properties will be improved without additional surface 

treatment on magnetic particles.  

Meanwhile, the silica has been recognized as one of the effective coating 

materials to magnetic particles in order to improve the interfacial interactions between 

magnetic particles and elastomer matrix in MRE fabrication. According to Malecki et 

al. [41], the coated CIPs exhibited a higher mechanical, thermal stability and MR effect 

than pure CIPs in the styrene ethylene butylene styrene (SEBS)-based MRE. The 

strong affinity between CIPs surface and silica has led to a good adhesion between 

CIPs and matrix, which consequently increased the mechanical properties and thermal 

stability of MRE as also reported elsewhere [6,25]. In the meantime, the used of silica 

as the reinforcing filler has been recognized by referring to the growing number of 

publications in rubber processing [49–54,61–64]. Generally, when using silica with 

elastomers, the resultant material would have unique characteristics such as improved 

hardness, mechanical strength, and thermal stability along with the process ability and 

the interfacial interaction between filler and matrix itself. Mokhothu et al. [50] has 

reported that the addition of 30 wt.% of treated nano-silica had improved the thermal 

stability by 10 °C and 23% in tensile strength. Based on the findings, it could be 

concluded that the utilization of silica as coating material and reinforcing filler 

managed to enhance the mechanical and thermal stability of the base materials where 

it could be an indicator to study the temperature dependent properties of MRE. 

Moreover, the characteristics of nano-sized particles were believed could 
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simultaneously improve the interactions between magnetic particles and elastomer 

matrix even under the influence of temperature. Therefore, a comprehensive study on 

the effect of silica nanoparticles as an additive in EPDM-based MRE would be 

worthwhile in providing very useful guidelines on the proper selection of MRE with 

good tensile strength and thermal stability while maintaining appropriate MR effect.  

1.3 Problem Statement 

Many studies have utilized various kinds of nano-sized additives to improve 

the interfacial interactions between filler and matrix, resulting in the properties 

enhancement of MRE. However, the findings on the enhancement in mechanical and 

rheological properties of MRE under various operating temperatures are rather limited. 

Generally, temperature is considered as one of the most influential factors that affects 

the modulus of elastomer matrix in MRE, thus decreases the properties of MRE. Due 

to that concern, the effect of temperature on the properties of MRE should be 

considered for further studies as the MRE devices commonly operate in multiple 

temperature ranges, which require MRE materials to undergo repetitious loadings 

under various working environment [55–58]. Meanwhile, the utilization of silica as 

reinforcing filler in polymer composite, in general, has demonstrated an improvement 

in mechanical, as well as thermal stability of polymer composite. Despite that, silica 

has also been implemented as a coating material in MRE to improve the interfacial 

interactions and thermal stability of the MRE. However, the use of silica as an additive 

in thermal stability of MRE has not been fully discussed and needs to be explored more 

for further understanding of its influence on the temperature dependent properties of 

MRE. The addition of silica nanoparticles in MRE not only can increase the 

mechanical properties by improving the interfacial interactions between filler and 

matrix, but compared to other additives, it can also enhance the thermal stability of 

MRE [65]. Therefore, the introduction of a good thermal resistance material like silica 

as an additive in MRE will improve the thermal stability of MRE, thus increase the 

tensile strength and maintain the MR effect of MRE when under the influence of 

temperature.  
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1.4 Research Objectives 

 The aim of the research is to enhance the tensile strength and maintain MR 

effect of EPDM-based MRE at various temperatures by using silica nanoparticles. The 

following are the specific objectives for this research: 

 

(a) To characterize the physicochemical properties of EPDM-based MRE in terms 

of morphological, magnetic, mechanical and thermal properties.  

(b) To analyse the rheological properties of the EPDM-based MRE for dynamic 

shear under absence and presence of various magnetic fields. 

(c) To evaluate the temperature-dependent on mechanical and rheological 

properties of EPDM-based MRE under various operating temperatures. 

1.5 Research Scopes 

The scopes of this study are specified on the experimental investigation of 

silica as an additive in EPDM-based MRE as well as comprehensive characterization 

to evaluate the resultant properties to be utilized in potential practical applications. The 

scopes in this study include: 

(a) The fabrication of MRE consists of EPDM rubber with constant amount of 30 

wt.% CIP and various silica contents (0, 3, 6, 9, and 11 wt.%). 

(b) The morphological, elemental, magnetic and thermal analysis of EPDM-based 

MRE were conducted using FESEM, EDX, VSM and TGA/DSC, respectively.  

(c) The rheological test was performed in the absence and presence of magnetic 

fields under oscillatory shear mode loadings. The experiments include input 

parameters of strain sweep and magnetic fields sweep to investigate the effect 

of storage modulus, loss factor and MR effect changes upon different contents 

of silica in EPDM-based MRE.  
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(d) The studies regarding chemical reaction between EPDM and silica polar 

functional groups with magnetic particles or other additives are not included as 

the aim of this research focuses more on mechanical and field-dependent 

rheological properties of EPDM-based MRE under various operating 

temperatures. 

(e) The investigation on mechanical properties of EPDM-based MREs including 

only tensile strength and elongation at break, while the tensile modulus, tear 

strength and compression are not included in this study. 

 

1.6 Significance of the Research 

This fundamental study is believed to contribute to the development of MRE 

material, which possess better tensile properties while maintaining the MR effect, 

particularly for applications under various operating temperatures. In reviewing the 

literature, many studies reported on the enhancement in mechanical and rheological 

properties of MRE by utilizing the nano-sized additives through various 

characterization methods and mathematical modelling. However, limited studies have 

focused on the employment of good thermal resistance nano-sized additive that could 

provide the enhancement in interfacial interaction between its raw materials and at the 

same time could improve the thermal stability of MRE under the influence of 

temperature. Thus, the utilization of silica nanoparticles is believed to cater on the 

major issues related to interfacial interactions between its raw materials and 

deterioration of MRE properties caused by various operating temperatures. 

 

In addition, the present study provides important findings and gaining an 

attention to the importance of considering nano-sized additive instead of 

implementation of additional processing steps such as coating method to magnetic 

particles in order to improve the interfacial interaction between magnetic particles and 

elastomer matrix in MRE fabrication. This study also delivers additional evidence to 

the current literature and has gone some way towards enhancing understanding of raw 

materials selection and fabrication subjected to better MRE performance in MRE 

applications that often work in various operating temperatures. Therefore, it is 
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significant to utilize the silica nanoparticles in MRE fabrication as an additive to 

enhance the tensile strength while maintaining appropriate MR effect of MRE under 

various operating temperatures to meet the requirements of their practical applications.  

1.7 Research Outlines 

This research consists of five chapters including this introduction chapter. The 

relevant information, achievements and findings are highlighted in each chapter and 

end with a brief summary. The outline of the chapters is established as below: 

Chapter 1 introduces the idea of research by providing the general information related 

to the research background, motivation of the research, problem statement and 

significance of the research that clearly identifies the gap, objectives and scopes of 

research.  

Chapter 2 is the literature review related to previous research work of MR materials 

especially on the development of MREs. The literature review covers on MRE 

materials, additives, fabrication, characterization, and applications. Several scientific 

published and patented of potential applications are also summarized. The feasibility 

studies on EPDM and silica are explained in detail. 

Chapter 3 represents the methodology and experimental section. A brief explanation 

is given on the step-by-step procedures of the research to achieve the objectives. This 

chapter also describes the materials and detailed fabrication of the isotropic EPDM-

based MREs. The experimental setup involved in the MRE characterizations and 

rheological examinations are also clearly explained, including facility details. 

Chapter 4 describes the results and discussions of physicochemical characterizations 

and rheological properties. Physicochemical characterizations include morphological 

observation, elemental determination, magnetic properties, mechanical properties and 

thermal properties analysis. Rheological properties as functions of several parameters 
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which include strain amplitude, magnetic field and temperature are explained based 

on dynamic loadings.  

Chapter 5 concludes and summarizes on the experimental findings that answered the 

objectives of this research. In addition, the contributions of this research towards real 

engineering applications also mentioned in this chapter. The future works for this 

research also proposed at the end of this chapter to further explore and enhance the 

existing issue arise in this research. 
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