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ABSTRACT 

Thin plates are being used in many engineering applications. However, thin plate-like 

structures face vibration problems and are exposed to high temperature in the different 

operational conditions. These conditions can cause degradation, and seriously affect 

the structural integrity, safety, and stability of the structure. Hence, it is extremely 

important to identify the dynamic characteristics and vibration power flow of the thin 

structure at different temperatures that indicates the transmission path, position of 

vibration sources, and sinks. This study examined the potential changes in the dynamic 

characteristics and vibration power flow of the thin structure at different temperatures. 

In the first step, experimental and numerical studies of dynamic characteristics and 

vibration power flow for thin plate were conducted. The thin plate was modelled in 

Patran software, and modal analysis was performed using MSC Nastran software. 

Then the experimental modal analysis was conducted to validate the results of the 

numerical analysis. In the second step, the effects of temperature changes on the 

dynamic characteristics and vibrational power flow were investigated. A climate 

chamber room was used to investigate the temperature effect on the dynamic 

characteristics and power flow. Finally, vehicle exhaust system, actual complex 

structure, was used for actual life application of vibration power flow at different 

temperatures. Based on the results, the visualization of vibration power flow and 

transmission paths were generated at its first four natural frequencies. The changes of 

vibration power flow of the plate and the exhaust system at different temperatures were 

generated. The data from both experiment and simulation show a good agreement. The 

high temperature shifts the natural frequencies to lower frequencies. At 90℃, the first 

and second modes shifted about 3 Hz, and the third and fourth modes shifted about 5 

Hz, lower than those at the normal temperature. The finding indicates the higher the 

temperature, the lower the frequency shifted. At higher mode, the power flow pattern 

changed at a certain temperature. In addition, the temperature effect on the dynamic 

characteristics of the exhaust system is not significant at the lower modes. At the 

higher mode, the natural frequency is shifted to about 2 Hz when the temperature 

reaches 270℃. Due to the hanger isolators, the vibration power of the exhaust system 

reduced overall 19%. The maximum total powers were at 180℃ of the exhaust system 

(without hanger) and 150℃ of the exhaust system (with hanger). The results showed 

that the boundary conditions of the exhaust system could lower the temperature at 

which the maximum power flow occurs. In sum, the findings on the effect of 

temperature on dynamic characteristics and vibration power flow are useful to those 

concerned with minimizing vibration level in engineering components to consider for 

their design criteria or maintenance process. 
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ABSTRAK 

Plat nipis digunakan dalam pelbagai aplikasi kejuruteraan. Walau bagaimanapun, 

struktur seperti plat nipis berhadapan dengan masalah getaran dan terdedah kepada 

suhu tinggi dalam pelbagai keadaan operasi. Keadaan ini boleh menyebabkan 

degradasi dan mendatangkan keparahan kepada keutuhan struktur, keselamatan dan 

kestabilan struktur. Oleh itu, sangat penting untuk mengenal pasti ciri dinamik dan alir 

kuasa getaran plat nipis pada suhu berbeza yang menunjukkan laluan penghantaran, 

kedudukan sumber getaran, dan sinki. Kajian ini mengkaji potensi perubahan ciri 

dinamik dan alir kuasa getaran plat nipis pada suhu berbeza. Kajian eksperimen dan 

kaedah berangka ciri dinamik dan alir kuasa getaran plat nipis dijalankan sebagai 

langkah pertama. Plat nipis dimodelkan menggunakan perisian Patran dan analisis 

mod dijalankan menggunakan perisian MSC Nastran. Kemudian analisis mod 

eksperimen dijalankan untuk mengesahkan keputusan analisis berangka. Dalam 

langkah kedua, kesan perubahan suhu terhadap ciri dinamik dan alir kuasa getaran 

telah dikaji. Bilik kebuk iklim digunakan untuk mengkaji kesan suhu terhadap ciri 

dinamik dan alir kuasa getaran. Akhirnya, sistem ekzos kenderaan, struktur kompleks 

sebenar, digunakan sebagai aplikasi dunia nyata alir kuasa getaran dengan variasi 

suhu. Berdasarkan dapatan, pembayangan alir kuasa getaran dan laluan penghantaran 

dijana pada nilai empat pertama frekuensi tabii. Perubahan alir kuasa getaran plat dan 

sistem ekzos pada perubahan suhu telah dihasilkan. Data dari kedua-dua eksperimen 

dan simulasi menunjukkan keserasian. Suhu tinggi menganjak frekuensi asli kepada 

frekuensi lebih rendah. Pada suhu 90C, mod pertama dan kedua dianjak sebanyak 3 

Hz, mod ketiga dan keempat dianjak sebanyak 5 Hz, lebih rendah dari nilai yang 

didapati pada suhu purata. Penemuan dari kajian ini menunjukkan semakin tinggi 

suhu, semakin rendah frekuensi teranjak. Pada mod tinggi, corak alir kuasa getaran 

berubah pada suhu tertentu. Di samping itu, pengaruh suhu pada ciri dinamik sistem 

ekzos tidak begitu ketara pada mod yang lebih rendah. Pada mod tinggi, frekuensi asli 

beranjak sebanyak 2 Hz apabila suhu mencapai 270C. Disebabkan oleh penggantung 

pemencil, kuasa getaran sistem ekzos berkurangan sebanyak 19%. Jumlah maksimum 

kuasa adalah pada suhu 180C di sistem ekzos (tanpa penggantung) dan suhu 150C 

di sistem ekzos (dengan penggantung). Keputusan kajian menunjukkan bahawa 

keadaan sempadan sistem ekzos boleh menurunkan suhu ketika alir kuasa maksimum 

terhasil. Kesimpulannya, penemuan berkenaan kesan suhu pada ciri dinamik dan alir 

kuasa getaran sangat berguna kepada mereka yang berkenaan dengan mengurangkan 

aras getaran dalam komponen kejuruteraan untuk dipertimbangkan bagi kriteria reka 

bentuk atau proses penyelenggaraan. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

Nowadays, a developed and modern city is usually associated with various 

mechanical systems, transportation systems and engineering structures, such as 

manufacturing plants, long-span bridges, rotating machinery, railway systems, 

automobiles, aircraft, and power generation systems. These structural systems are 

designed and built according to the industries' requirements and society for national 

interests such as the infrastructure projects, including production industries that utilize 

different kinds of machinery, other materials in various forms, and several buildings 

for production and assembly processes. 

In the designing process, the structural systems must be satisfied specific 

criteria to provide a safe application and management. Generally, making a new 

structure or product is very time-consuming and cannot be replaced economically. The 

critical factor is that the designed structure can be utilized within their intended 

environment and design basis service life. Besides that, the existing structures or 

machines usually need to be examined for noise, vibration, and harshness (NVH) 

performance or maintenance or other preventive actions to avoid failure and its 

aftereffects. 

With the advancement of technology, plates with various thickness used in civil 

work, mechanical, aerospace, naval architecture, and marine engineering applications. 

However, structures exposed to vibration in several frequencies ranges due to external 

dynamic loadings such as road surface condition and engine operation for automobiles, 

railway track conditions for trains, waves for ships, aerodynamic loading, and engine 

loading for aircraft spacecraft. Thus, it is essential to study the plate's vibration 

behavior or structure to avoid resonance excited by external forces. 
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If the structure vibrates at a frequency which is closed to its natural frequency, 

the vibration amplitude grows significantly. This condition could lead the undesirable 

consequences such as fatigue, NVH performance deficiency, system malfunctioning, 

wear, and destruction of mechanical equipment. Therefore, it becomes necessary to 

understand the dynamic characteristics of the structure such as natural frequency, 

frequency response function, and mode shape. 

Structure-borne sound is the vibrational energy that passes through the 

dynamically loaded mechanical systems. This energy spread as noise into an acoustic 

medium. In the study presented by Wohlever and Bernhard [1], vibrational energy 

travelled along the aeroplane's wing to the main body and radiated into the cabin as 

sound. Thus, vibrational energy flow becomes an important issue of great interest to 

engineers concerned with minimizing vibration or noise levels [2]. 

For structural integrity, minimizing vibration level, dynamic characteristics, 

and vibrational power flow which indicates power transmission path, positions of 

sources, and sinks in the structure play an essential role in design and manufacturing 

processes. Some researchers examined the dominant transfer path to reveal the failure 

of mechanism [3-6] and to reduce the vibration or noise level [7, 8] based on power 

flow. Moreover, the vibrational power flow can be used for structural diagnostics such 

as crack or damage detection and mounted stiffness identification.  

The power flow refers to the prediction and measurement of the propagating 

vibration power within a structure which is defined as the product of the generalized 

force with the in-phase part of the velocity in the same direction [9]. The power flow 

can be depicted as a vector which represents magnitude and direction. By utilizing that 

vector, the power flow map can be plotted. It shows power flow patterns which 

indicates the location of the power source and sink together with the transmission path. 

After the power flow has been investigated, the structure can be designed or optimized 

or controlled the dissipated power as required. Therefore, the vibration power flow 

becomes the advantageous technique to solve the NVH problems. 
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In real situations, some structures such as aircraft, space vehicles and 

automobiles etc., are bearing dynamic loading or external forces and exposed thermal 

environments across their service life. For instance, high-speed aircraft structures such 

as wing and rudder bear prolonged severe vibration and harsh aerodynamic heating 

during long and high-speed flights [10]. Another example is vehicle exhaust systems 

which are vibrating due to engine operation and road surface condition. After the 

engine operates a few hours or travels some distance, the vehicle exhaust system 

becomes hot due to the hot exhaust emission. For most engineering material, increased 

temperature decreases the structural ability to carry the load by reducing elastic and 

failure strength properties. The high temperature changes the structure materials' 

properties, including the modulus of elasticity, Poisson's ratio, and stiffness. These 

material properties variations may change the structure's dynamic characteristics, such 

as natural frequency, vibration mode, and vibration power flow. Sattar Mohammadi 

Esfarjani et al. [11] conducted the first concurrently study of evaluating the effect of 

temperature changes and considerable damages on the natural frequency. Modal 

changes produced by environmental temperature can be equivalent or greater than 

those produced by damage [12]. Therefore, the temperature effect on the dynamic 

characteristic and power flow of the structure should be investigated numerically and 

also experimentally.  

Since the dynamic characteristics and power flow of the structure is important, 

obtaining experimental data at high temperature and intense vibration environments 

becomes necessary for the structure's dynamic characteristic analysis and safety 

design. However, measuring the structure's vibration parameters in a high-temperature 

environment or at various temperature conditions is difficult. 
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1.2 Problem Statement 

Nowadays, the various thickness plates are being used in many engineering 

applications. However, thin plate-like structures face vibration problems and are 

exposed to high temperature in the different operational conditions such as an engine 

exhaust-washed structure of the aircraft which are exposed the hot exhaust gas and 

dynamic loading. These conditions can seriously affect the structural integrity, the 

safety, and the stability of the structure. Therefore, the accurate determination of the 

structure's dynamic characteristics at a different temperature or elevated temperature 

is essential.                                               

To solve the vibration problem of the structure, modal analysis has been 

usually conducted in the field of vibration research to investigate dynamic 

characteristics of the structure. Besides, the vibration power flow becomes the recent 

interest of the most researchers because it can evaluate the location of vibration sources 

and sinks. It can confirm the vibration transmission paths. Therefore, dynamic 

characteristics and vibration power flow become important to engineers concerned 

with structural integrity.  Since the power flow can be visualized as the vector plot, 

clear power flow visualization is required to understand the changes in the power 

transmission path and identify the location of sources and sinks. 

A few researchers have performed the experimental measurement of 

temperature effect on the dynamic characteristic of the structure using the conventional 

heating method. The quartz lamp and aluminium box were used in their studies as a 

heater and  an oven [10, 13]. The measuring sensors were hanging from the specimen 

by the poles. This kind of the experimental setup lessens the accuracy of the frequency 

response measurement. In addition, it also remains to evaluate the effect of temperature 

changes on the structure's vibration power flow. Therefore, it becomes current research 

interest to investigate the temperature effect on the dynamic characteristic and power 

flow of the plate structure. Moreover, this research is extended to the complex structure 

(vehicle exhaust system) as a case study to examine the temperature influences on the 

vibration power of the exhaust system which travels to the vehicle body. 



 

5 

1.3 Aim and Objectives 

This research aims to investigate the effect of temperature on the dynamic 

characteristics and the vibration power flow of a thin structure due to the temperature 

changes. The following objectives can accomplish the desired goals: 

(1) To identify the thin plate's dynamic characteristics and power flow through 

numerical and experimental modal analysis. 

(2) To characterize the vibration power flow path of the thin plate with vector 

visualization.  

(3) To examine the thin plate's vibration power flow changes due to temperature 

changes numerically and experimentally.  

(4) To investigate the changes in vibration power flow of complex structure 

(exhaust system) at the high-temperature condition. 

1.4 Significance of Study 

In many practical circumstances, every structure's dynamic characteristics play 

an essential role in the structure's stability, integrity, durability, and system design. 

Since plates of various thickness with the advancement of technology are used in civil 

work, mechanical, aerospace, naval architecture and marine engineering applications, 

this study will help these industries. Then, vibration power flow indicates the 

vibrational transmission path, position of sources and sink of vibration in the structure. 

In this study, the power flow maps were plotted as a vector and streamline plot which 

can show not only the magnitude and direction of the power but also power 

transmission paths clearly. This can be used in many industries such as the car floor 

panel manufacturing to identify where the stiffer rail is required, etc. It can also be 

utilized for structural diagnostics such as crack or damage detection and mounted 

stiffness identification. 
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The temperature influences on dynamic characteristics and vibration power 

flow of structure are identified in this study. Some structures such as high-speed 

aircraft and automobile exhaust systems bear prolonged severe vibration and 

temperature variation during service life. This study evaluated the effectiveness of the 

hanger isolators of the exhaust system and the temperature effect on the power flow at 

the hanger locations. This method can also be used as a tool to determine hanger 

locations. The increased temperature decreases the structural ability of the structure by 

reducing both elastic property and failure strength. A design engineer or engineer who 

concerned with minimizing vibration or noise level can decide whether temperature 

effect is necessary to consider for their design criteria or maintenance process. It could 

benefit the manufacturing industries and the structure that is bearing dynamic loading 

and thermal loading simultaneously. Then, it would be the most significant 

contribution of this study. 

1.5 Scope of Study 

This study focusses on the temperature effect on the dynamic characteristic and 

power flow of the structure. The following are the scope of this study 

(a) The heat transfer process such as conduction, convection and radiation through 

the specimen or specimen and its surrounding were not calculated because the 

interest of this study is only the different temperature of the plate.  

(b) A thermal chamber was used to create the required temperature of the plate.  

(c) All materials used in this study were assumed as isotropic material.  

(d) The elevated temperature in the experiment was considered up to 90℃ to be 

safe of accelerometers and impendence sensor.  

(e) For the exhaust system, the effect of the flexible bellow and internal 

construction of the muffler were ignored.  
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1.6 Outline of Thesis 

This thesis consists of five chapters. In the first chapter, the background of the 

study is briefly discussed. Then, problem statement and objectives of the research are 

identified. After that scope and significances of the study are discussed. Chapter two 

mainly describes the literature review which consists of a review of earlier works of 

vibration power flow, temperature effect on dynamic characteristics, and automobile 

exhaust system. Besides, fundamental theory of vibration and power flow are 

discussed. In Chapter three, the research methodology of the present study is 

introduced. The experimental works which consist of the experimental apparatus, 

setup, and procedures are explained. Then, the numerical analysis which was 

performed in MSC Patran/Nastran is discussed. The results are discussed in Chapter 

four. In this chapter, the model validation of the plate and the exhaust system is 

described first. Then, the dynamic characteristics and power flow of the plate are 

discussed and follows the investigation of the temperature effect. In addition, the 

temperature effect on the dynamic characteristics and power flow of the exhaust 

system are examined. This evaluates how much power variation due to the increased 

temperature which travel to the vehicle body. Chapter five describe the conclusion 

which are drawn for the results of the present study. Then the significance contribution 

and the recommendations for future research presented. 
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