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ABSTRACT 

Flood catastrophes are among the natural disasters that have occurred regularly 

around the world. Malaysia is one of the countries that experience flood disasters on a 

yearly basis, most notably during the monsoon season, which runs from November to 

January. This study developed a novel flood forecasting model through the application 

of advanced machine learning (ML), deep learning (DL), and natural language 

processing (NLP) for sentiment analysis and text classification before a flood event, 

during a flood event and after a flood event. The morphometric ranking approach 

(MRA) was used to identify flood-susceptibility areas.  Various data sources were 

collected including natural dimension such as rainfall intensity (mm), streamflow 

(cm/s), and water level (m) from Department of Irrigation and Drainage, and social 

dimension like text data extracted from Twitter platform. A digital elevation model 

(DEM) was used to process parameters for MRA with the application of  geographic 

information system (GIS) for identifying flood-prone areas. General ML pipelines 

were used before building the model such as data pre-processing, data exploration to 

detect outliers, and filling missing values.  The flood forecasting model used advanced 

machine learning and deep learning specifically long-short term memory (LSTM) 

which is suitable for time series data of rainfall and streamflow forecasting. 

Additionally, the model was developed using these three models: LSTM, ARIMA, and 

FB Prophet. The forecasting results indicated that the LSTM model has a root mean 

square error (RMSE) of 10.76, which is more accurate in comparison to the other 

models ARIMA and FB Prophet, which have RMSE values of 14.15, and 14.23, 

respectively. The accuracy of the model of text classification algorithm for predicting 

flood events is 0.87. Flood susceptibility mapping using MRA revealed that sub-

catchments 5, 24, and 25 were highly susceptible to flooding. These sub-catchments 

were located in Jeli, Kuala Krai sub-district, and Gua Musang sub-district, 

respectively. In sum, this flood forecasting model is vital to provide flood information 

for early warning system to enable flood managers or decision-makers to make more 

informed plans during the flood preparation and mitigation phases, thereby minimizing 

the impact of floods on people, property, and the environment. 
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ABSTRAK 

Bencana banjir adalah antara bencana alam yang kerap berlaku di seluruh 

dunia. Malaysia merupakan antara negara yang mengalami bencana banjir setiap 

tahun, terutamanya pada musim tengkujuh, yang berlangsung dari November hingga 

Januari. Kajian ini membangunkan model ramalan banjir baru melalui penggunaan 

pembelajaran mesin lanjutan (ML), pembelajaran mendalam (DL), dan pemprosesan 

bahasa semula jadi (NLP) untuk analisis sentimen dan klasifikasi teks sebelum 

kejadian banjir, semasa kejadian banjir dan selepas kejadian banjir. Pendekatan 

penarafan morfometrik (MRA) digunakan untuk mengenal pasti kawasan yang mudah 

terdedah kepada banjir.. Pelbagai sumber data dikumpul termasuk dimensi semula jadi 

seperti keamatan hujan (mm), aliran sungai (cm/s), dan paras air (m) daripada Jabatan 

Pengairan dan Saliran (JPS) dan dimensi sosial seperti data teks yang diekstrak 

daripada platform Twitter. Model ketinggian digital (DEM) telah digunakan untuk 

memproses parameter untuk MRA dengan aplikasi sistem maklumat geografi (GIS) 

bagi mengenal pasti kawasan yang terdedah kepada banjir. Saluran paip ML umum 

telah digunakan sebelum membina model seperti pra-pemprosesan data, penerokaan 

data untuk mengesan outlier dan mengisi nilai yang hilang. Model ramalan banjir 

menggunakan pembelajaran mesin lanjutan dan pembelajaran mendalam khususnya 

ingatan jangka pendek (LSTM) yang sesuai untuk data siri masa hujan dan  aliran 

sungai. Selain itu, model ini dibangunkan menggunakan tiga model ini: LSTM, 

ARIMA, dan FB Prophet. Keputusan ramalan menunjukkan bahawa model LSTM 

mempunyai ralat min kuasa dua punca (RMSE) sebanyak 10.76, yang lebih tepat 

berbanding model lain seperti ARIMA, dan  FB Prophet, yang mempunyai nilai RMSE 

masing-masing 14.15, dan 14.23. Ketepatan model algoritma pengelasan teks untuk 

meramal kejadian banjir ialah 0.87. Pemetaan kerentanan banjir menggunakan MRA 

mendedahkan bahawa sub-tadahan 5, 24, dan 25 sangat terdedah kepada banjir. 

Tadahan kecil ini terletak di Mukim Jeli, Mukim Kuala Krai, dan Mukim Gua Musang. 

Kesimpulannya, model ramalan banjir ini adalah penting untuk menyediakan 

maklumat banjir untuk sistem amaran awal bagi membolehkan pengurus banjir atau 

pembuat keputusan membuat perancangan yang lebih termaklum semasa fasa 

penyediaan dan tebatan banjir, sekali gus meminimumkan kesan banjir terhadap orang 

ramai, harta benda dan persekitaran.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

Natural disasters have a severe impact on humans’ lives, properties, and the 

environment, resulting in the loss of the economy. Centre for Research on the 

Epidemiology of Disasters (CRED, 2017) revealed in its latest report published in 

September 2017 that 149 disasters have occurred in 73 countries in the first half of the 

year 2017. The impact of which resulted in 3,162 deaths, more than 80 million people 

affected, and more than US$ 32.4 billion in property damages. According to the report, 

the major disasters that occurred in Asia, South America, and Africa were floods and 

landslides. 44% of the events were flooded, accountable for 52% of deaths and 44% 

of economic damages - which make it the most expensive type of disaster. In addition, 

11% of the events were landslides and caused 25% of the total death. Therefore, flood 

is among the natural disasters that have been repeatedly occurring in almost every part 

of the world 

According to The ASEAN Risk Monitor and Disaster Management Review 

(ARMOR), the ASEAN country experienced a total of 1,604 disasters of varying 

magnitude between July 2012 and January 2019. Figure 1.1 shows that 85.17% of 

hydrological and meteorological disasters occur as a result of flooding, strong winds, 

tropical storms, and droughts. On the other hand, 14.83% are geophysical disasters, 

with the most severe landslides occurring in conjunction with earthquakes, volcanic 

eruptions, and relatively minor tsunami events. Additionally, the percentage of 

population exposed to flooding (by country) is highest in Malaysia, Vietnam, 

Cambodia, Lao People's Democratic Republic (Laos), Thailand, and Brunei 

Darussalam as indicated in Figure 1.2. 
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Figure 1.1 Types of disasters occur in ASEAN (Pang and Dimailig, 2019) 

 

 

 

Figure 1.2 Percentage of Population Exposed to Floods (by country) (Pang and 

Dimailig, 2019)  

 

Malaysia is among the countries in Southeast Asia suffering from flood 

disasters almost every year. Monsoon floods and flash floods are the two types of 

flooding that occur in Malaysia. Monsoon flooding is a result of the Northeast. The 

monsoon season lasts from early November to early March and brings torrential rains, 

particularly to Peninsular Malaysia's east coast states and western Sarawak. Flash 
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floods are typically associated with areas of rapid development, as they are 

characterized by a rapid rise in water level, high velocity, and a large amount of debris. 

Flooding in December 2014 can be classified as the worst flood in Peninsular 

Malaysia's history, affecting several states, the worst of which is Kelantan(Bari et al., 

2021; Buslima et al., 2018; Ismail and Haghroosta, 2018). The change in rainfall 

pattern and its uncertainty is the reason for flooding that brings heavy rainfall 

intensity(Ahmed et al., 2018; Bopi et al., 2016; Buslima et al., 2018; Schanze et al., 

2008; Taib et al., 2016) which result in prediction complexity(Bari et al., 2021). On 

top of that, the population increase along the river valleys and rapid changes in land 

use often seem to make it more difficult to escape flood effects(Bari et al., 2021). 

Therefore, to avoid catastrophic flood events, it is critical to take prevention and 

precaution measures included in the field of flood disaster management. 

A common and systematic approach to flood disaster management covers four 

stages, Buslima et al. (2018) and Yusoff et al. (2018) identified the four stages which 

are (i) prevention or mitigation, (ii) preparedness, (iii) response and (iv) recovery. 

Prevention and preparation are the two stages that require actions to be taken before a 

flood disaster occurs, the third stage is response, the action taken during disaster and 

the last phase is disaster relief, rehabilitation and reconstruction activities carried out 

after disaster occurs. According to Baharuddin et al. (2015); Yusoff et al. (2018) the 

two stages of flood management such as prevention or mitigation and preparedness are 

the most important phases, and more attention should be given. Flood prevention and 

mitigation refer to activities that include structural and non-structural measures to 

protect areas that have been defined as flood area (Buslima et al., 2018). The primary 

purpose of flood prevention is to reduce the human and other impacts of floods(Khalid 

and Shafiai, 2015; Yusoff et al., 2018). A structural flood prevention plan refers to the 

processes for the implementation of infrastructure to mitigate flood disasters and to 

protect human settlements such as dam, levees, and embankments. While the non-

structural measure refers to pre-disaster planning which involves controlling human 

activities and communities with a view to reducing property damage(Schanze et al., 

2008).  
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Flood forecasting is another non-structural measure that aims to estimate and 

predict the flood magnitude such as future level and flows, timing, and duration of 

flooding. These outputs can help provide earlier warnings of the likelihood of flooding 

than is possible from observations alone, and with interpreting complex situations. 

Flood forecasting is one of the most demanding and difficult hydrology problems, 

Nevertheless, it is also one of the most important hydrological problems because of its 

vital contribution to the reduction of economic and life losses (Jain et al., 2018).  

Developing flood prediction for early forecasting could reduce the impact of 

future floods by enabling decision makers to plan and make proper decision before 

flood.  Department of Irrigation and Drainage (DID) Malaysia received warning 

advisory from Metrological Department of Malaysia (MED) on weather forecasting 

that measures rainfall intensity for potential location. The data is used together with 

hydrological data in order to analyse flood forecasting. However, the model developed 

by DID is based on physical theory-based model that include models based on the 

principles of physical processes such as  rainfall-runoff model(Fernández-Pato et al., 

2016; Piman and Babel, 2012), hydrodynamic model (Teng et al., 2017), these model 

are naturally complex and required knowledge from hydrologist expertise. Recently, 

DID is developing National Flood Forecasting and Warning System (NaFFWS), the 

project timeline has started from year 2015 to 2022.  The system is targeted to improve 

forecasting from 1 day to 7 days ahead and improve waring dissemination from 6 hours 

to 2 days before flood.  

For the process of flood forecasting model, DID is using commercial software 

so called InfoWork ICM for 2D approach and DHI MIKE 11 for 1D and MIKE 21 for 

2D. DID adopted Sugawara’s tank model for Kelantan River, Pahang River and 

Terengganu River to simulate the flood in InfoWork software. However, the current 

flood prediction approach used by DID is physical theory based model that is 

categorized into lumped models and distributed physically based models (Solomatine 

and Ostfeld, 2008) which is more complex and require human expertise and 

computation capability (Devia et al., 2015).  
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Due to these major issues of traditional physical theory-based model that has 

been developed and fixed parameters based on the govern equation(s), data driven 

model (DDM) is more flexible for applying various parameters and data types. Hence, 

it is used to explore the related and available features for flood prediction that rely 

upon the methods of computational intelligence and Machine Learning (ML) approach 

to improve the accuracy and reliable flood prediction model that design to find the 

influential natural parameters such as rainfall, streamflow and social parameters such 

as  text data at the study area which highly correlated to flooding and perform flood 

prediction analysis.  Such a new developed model will enable decision makers or water 

manager to evaluate future flood situations and make early decisions for their 

countermeasures against the possible disaster. 

1.2 Problem Statement 

Flood disaster is the most significant disaster affecting every part of the world 

including Malaysia.  In Malaysia, flood is also the most frequent disaster that has been 

severely damaging the society (Chan, 2015; Weng Chan, 1995). Every year, the 

relevant government agencies and organizations hold a meeting before the monsoon 

season in order to discuss the action plan to be enforced against the coming flood. 

Getting flood prediction information beforehand can help water manager and decision 

maker to plan in advance and be ready to take proper action. Hence, it is essential to 

have flood forecasting and prediction information in advance. In such situation with 

inevitable uncertainties, early flood prediction is needed to provide accuracy 

information on flood.  

Hydrological modelling mainly used for predicting behaviour and helps to 

understand hydrological process. Two types of on-going research on hydrological 

modelling such as physical theory based model that is required large number of 

parameters describing the physical characteristics of the catchment (Devia et al., 2015; 

Dibike et al., 2001) such as soil moisture content, initial water depth, topography, 

topology, dimensions of river network etc. On the other hand, empirical model or data 

driven based model are considered as observation-oriented model which take only the 
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information from the existing data without considering the features and processes of 

the hydrological system. Mathematical equations is involved and simultaneously 

derived input and output time series and not from the physical processes of the 

catchment. Hence, many ML techniques are applicable in this method. 

 InfoWork ICM and MIKE models are examples of the physically-based model 

currently used by DID. These models require extensive physical parameters and 

describe diverse hydrological cycle processes such as precipitation, 

evapotranspiration, interception, river flow, saturated groundwater flow, unsaturated 

groundwater flow, etc. These complex processes help in the application of flood 

forecasting and water management. However, the physical process of the hydrological 

cycle is complex and requires extensive physical parameters as model input, but some 

parameters are limited and would not be available all the time; hence, it is difficult to 

set up the model. Besides, to understand the complex process of the hydrological 

model, the requirement of proper knowledge of the water cycle, such as the rainfall-

runoff process, consists of depth understanding of each process (as mentioned in the 

earlier paragraph) and hydraulic characteristics. This knowledge is necessary; 

otherwise, it will adversely affect the prediction model.  

The research on the advancement of flood prediction has started for the past 

two decades which aims to reduce the effect of flooding such as reduction of the loss 

of human life, and property and environmental damage associated with flood. To 

imitate the complexity of mathematical expressions of physical processes of floods, 

ML methods contributed highly to the advancement of prediction systems providing 

better performance and cost-effective solutions (Abrahart et al., 2004; Dawson and 

Wilby, 2001; Sušanj et al., 2016).  

Due to ML's vast benefits and potential, its popularity dramatically increased 

among hydrologists. By introducing novel ML methods and hybridizing existing ones, 

researcher aims to discover more accurate and efficient prediction models while 

exploring and applying different types of data. In this regard, there is a need to develop 

a flood forecasting model to support flood decision-makers in making proper plans 

and activities to reduce the impact of floods. On top of that, implementing the ML 
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approach to process and build the models of using different data types would provide 

better performance with intelligent computational ability and a cost-effective process.  

1.3 Research Aim and Objectives 

The aim of this research is to introduce a novel flood forecasting model and 

flood mapping by using advanced ML approach and analyse flood susceptibly and 

mapping. This study provides early flood information to support decision makers to 

make proper plans and activities before flood occurs so that the impact of flood can be 

reduced.    

In order to achieve the aim, the following research objectives are defined. 

1. To investigate flood prediction approaches and parameters using Systematic 

Literature Review (SLR) approach. 

2. To analyse and develop flood prediction model for flood forecasting. 

3. To validate the models’ performance using RMSE and MAE for flood 

forecasting using time series data, confusion matrix to evaluate text 

classification model, and DID historical record used to validate MRA for flood 

susceptibility mapping. 

The research questions of this research focus on the accuracy and reliability of 

future flood information. Therefore, the following research questions must be 

identified. 

1. Which flood prediction approach and parameters are necessary for predicting 

flood model? 

2. How to design and develop flood forecasting model, and what are the 

techniques that can be implemented? 
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3. To what extend the proposed model and the output result can be used for 

supporting flood decision maker?  

 

1.4 Scope of the Study 

This research is designed to develop a novel flood forecasting model using 

different techniques in the field of AI that is ML for flood forecasting that apply time 

series data, Natural Language Processing (NLP) for sentiment analysis and text 

classification to classify flood event based on Twitter text data. Flood susceptibility 

and mapping based on morphometric approach is implemented to identify the flood 

prone area.  

1. Data gathering and preparation are the primary part that were carefully 

investigated.  

2. Data pre-processing of hydrological data such as rainfall streamflow and text 

data were done by using python and opensource library. Flood susceptibility 

analysis and mapping was done by using ArcMap 10.4.1. 

3. This study focuses on advantage of utilizing different types of dataset by 

advanced ML model. Study scope does not include hydrological process 

models such as rainfall-runoff process. 

4. The study area in this research is the Kelantan watershed. Observation data 

such as rainfall, water level, and streamflow measured at stations within 

Kelantan watershed were collected from DID. Text data scraped from Twitter 

platform that contains information of selected keyword. Finally Digital 

Elevation Model (DEM) is used to extract parameters related to flood 

susceptibility analysis and mapping.   

5. In line with the current National NaFFWS by DID, the forecasting targeted is 

7 days in advance. Therefore, this research used daily rainfall, water level time 

series to forecast the next future days. 
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1.5 Significance and Contribution of the Study 

The contribution of this research will be the theoretical justification that the 

new model for flood forecasting that applying different data types will produce 

meaningful flood prediction information to decision maker in taking precaution and 

making appropriate action before flood. 

A multidisciplinary study in which knowledge of multiple fields is integrated 

to establish the effective and practical flood prediction system. The integrated 

knowledge will include flood disaster prevention and preparation and Artificial 

intelligence that involved the field of ML and NLP that is popular in computer science, 

together with morphometric approach that applied for developing a new flood 

prediction model and mapping.  The output of prediction model will be display in the 

form of information visualization that will be able to evaluate the accuracy of the 

forecasting and lead time of the flood event based on the input parameters.  

1.6 Thesis outline 

This thesis comprises 5 chapters, which are briefly outlined below. 

Chapter 1: Introduction 

This chapter discusses the background of the study, problem statement, aim 

and objectives of the study, significance and contribution of the study. 

Chapter 2: Literature Review 

In this chapter, the significance of flood disaster and its negative impact to the 

world, the Asian region, and the selected study area are highlighted. Disaster 

management cycle is presented and non-structural measure is discussed as the main 

focus of this study. Besides, previous studies of flood prediction models using related 

approach and parameters are reviewed.   
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Chapter 3: Research Methodology 

This chapter mainly discusses on research process of flood forecasting model 

using different data types applied for different approaches. Times series data is used 

to predict rainfall and water level, Long-Short Term Memory (LSTM), Autoregression 

integrated moving average (ARIMA), and Facebook Prophet (FB Prophet) are the 

models discussed for flood prediction pipeline. Text data which extracted from Twitter 

platform is used for text classification to classify flood events through classification 

algorithm such as Random Forest (RF), Support Vector Machine (SVM), and Logistic 

Regression (LR). Adopted Morphometric Ranking Approach (MRA) was discussed 

for the process of implementing flood susceptibility analysis and develop flood 

mapping.  

Chapter 4: Result and discussion  

Development of flood prediction model using advanced ML approach for the 

prediction of rainfall intensity and water level using observation data at multiple points 

was presented. Followed by sentiment analysis and flood event classification using 

text data that extracted from Twitter platform. Lastly, flood susceptibility and mapping 

using MRA to identify flood risk area at Kelantan watershed are presented. Models 

performance were compared and evaluated. Flood report from DID was used to 

validate flood susceptibility and mapping. 

Chapter 5:  Conclusion and recommendation  

This chapter summarized the conclusion of each research objectives, followed 

by the statement of limitations and future works. 
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