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ABSTRACT 

Our surrounding is containing high mixture of hazardous gases which had 

brought severe problem environment and human’s health. Recently, nanomaterial 

particularly graphene has been extensively studied as one of the promising materials 

due its excellent sensing capabilities. Nevertheless, due to the physisorption of 

adsorbates which lead to false alarm detection and the absence of bandgap in most of 

the graphene devices, nitrogen (N) heteroatoms substitution is introduced. The specific 

bonding configuration in N-Gr i.e., pyridinic-N is believed have predominant effect 

on chemisorption between CO and the surface due to the presence of single lone pair 

which resulting highly selective and sensitive CO sensors. Whereas, predominant 

pyrrolic-N is experimentally approved for enhancement of NO2 detection. The 

substitution of N atoms also will tune the band gap of the graphene. Thus, we report a 

viable method to produce nanocrystalline graphene films on polycrystalline nickel (Ni) 

with enhanced N doping at low temperatures by a cold-wall plasma-assisted chemical 

vapor deposition (CVD) method. The growth of nanocrystalline graphene films was 

carried out in a benzene/ammonia/argon (C6H6/NH3/Ar) system, in which the 

temperature of the substrate heated by Joule heating can be further lowered to 100 °C 

to achieve a low sheet resistance of 3.3 kΩ sq–1 at a high optical transmittance of 

97.2%. The morphological, structural, and electrical properties and the chemical 

compositions of the obtained N-doped nanocrystalline graphene films can be tailored 

by controlling the growth parameters. An increase in the concentration of atomic N 

from 1.42 to 11.28 atomic percent (at. %) is expected due to the synergetic effects of 

a high NH3/Ar ratio and plasma power (RF). The possible growth mechanism of 

nanocrystalline graphene films is also discussed to understand the basic chemical 

reactions that occur at such low temperatures with the presence of plasma as well as 

the formation of pyridinic-N- and pyrrolic-N-dominated nanocrystalline graphene. In 

this work, the N-doped nanocrystalline graphene films dominated by pyridinic-N and 

pyrrolic-N exhibit n-type semiconductor behaviour with a strong asymmetry in 

electron–hole conduction under ambient air conditions. The realization of 

nanocrystalline graphene films with enhanced N doping at 100 °C may open great 

potential in developing future transparent nanodevices. 
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ABSTRAK 

Persekitaran kita mengandungi campuran gas berbahaya yang tinggi yang  

membawa masalah kepada persekitaran dan kesihatan manusia. Yang terbaru, bahan 

nano khususnya grafin telah dikaji secara meluas sebagai salah satu bahan yang 

berpotensi kerana keupayaan mengesan yang sgt baik. Namun begitu, disebabkan oleh 

keupayaan serapan secara fizikal terhadap penjerap yang membawa kepada kesilapan 

pengesanan dan ketiadaan jurang tenaga dalam kebanyakan peranti grafin, kemasukan 

atom asing nitrogen (N) diperkenalkan. Konfigurasi ikatan khusus dalam N-Gr iaitu, 

pyridinic-N dipercayai membawa kepada serapan secara kimia di terhadap CO 

disebabkan oleh kehadiran pasangan tunggal yang menghasilkan alat pengesan CO 

yang sangat selektif dan sensitif. Manakala, pyrrolic-N yang dihasilkan dominan 

dalam eksperimen, berjaya meningkatkan pengesanan terhadap NO2. Kemasukan 

atom N juga akan merubah jurang tenaga pada grafin. Oleh itu, kami melaporkan 

kaedah yang baik untuk menghasilkan grafin berbentuk nano kristal pada Nikel (Ni) 

dengan peningkatan kemasukan atom N yang dihasilkan pada suhu rendah dengan 

kaedah pemendapan wap kimia (CVD) dengan bantuan tenaga plasma.  Pertumbuhan  

bahan telah dijalankan dalam sistem benzena/ammonia/argon (C6H6/NH3/Ar), di 

mana suhu substrat yang dipanaskan oleh tenaga Joule boleh direndahkan kepada 100 

°C dapat mencapai rintangan elektrik yang rendah iaitu sebanyak 3.3 kΩ persegi–1 

pada perpindahan optik yang tinggi sebanyak 97.2%. Morfologi, struktur, sifat elektrik 

dan komposisi kimia bahan ini yang diperolehi boleh diubah dengan mengawal 

parameter pertumbuhan. Peningkatan kemasukan atom N daripada 1.42 kepada 11.28 

at. % dijangka disebabkan oleh pendedahan NH3/Ar dan kuasa plasma yang tinggi. 

Mekanisme pertumbuhan yang mungkin bagi bahan ini dibincangkan untuk 

memahami tindak balas kimia asas yang berlaku pada suhu yang begitu rendah dengan 

kehadiran plasma serta pembentukan konfigurasi ikatan pyridinic-N- dan pyrrolic-N. 

Dalam kerja ini, bahan ini yang didominasi oleh pyridinic-N dan pyrrolic-N 

mempamerkan tingkah laku semikonduktor jenis-n dengan asimetri yang kuat dalam 

pengaliran lubang elektron di dalam udara. Realisasi bahan ini dengan peningkatan 

kemasukan N pada suhu 100 °C boleh membuka potensi besar dalam membangunkan 

peranti nano telus  masa hadapan.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Overview 

In this new era, with the increasing demands of living standard, increasing 

number of manufacturing industry and the emphasis on the environment, the air around 

us is containing high mixture of hazardous gases known as primary pollutants and 

secondary pollutants that causing irrevocable environmental damage. The continuous 

release of various chemical pollutants from industry emission, household waste, 

vehicle exhaust and so forth brought severe problem not only to environment but also 

to human’s health. According to World Health Organization (WHO), long term 

exposure to certain pollutants could lead to to severe disease such as cancer and 

chronic respiratory disease [1].  They also indicate that, air pollution had caused of 

approximately 4.6 million deaths in 2016. Therefore, in this era, environmental safety 

is a concern topic among researchers, public and political communities.  

 

Various types of sensors or environmental detectors are available to 

continuously monitor these air pollutants to prevent environmental or human health 

deterioration. Gas chromatography-mass spectrometry (GC-MS) has been used widely 

for the detection of various type of hazardous gases and volatile disease biomarkers. 

These analytical techniques are sufficiently accurate with detection limit (DL) down to 

ppb (parts per billion) [2,3]. However, the major drawbacks for this system are high 

cost, importable and very complicated in gas analysis. Therefore, researchers have 

attempted to design an effective, cheap, high selectivity and sensitivity gas sensors for 

the effective qualifications of hazardous gases. Previously, there are several types of 

gas sensors that has been developed. Sensing technology is based on the physical 

properties of the sensing materials and alterations in these properties when exposed to 

gases. Thus, gas sensor can be classified into 4 main categories from resistive, optical, 

electrochemical, and catalytic. Among all, resistive gas sensors have been considered 



 

2 
 

attractive candidates since its cheap for higher production, easy to use and highly 

portable [4-5].  

 

Chemo resistive gas sensors based on nanomaterials particularly 

semiconductor metal oxides (MOS), are commonly introduced and have provides 

many advantages in term of sensitivity and selectivity. Over past decades, researchers 

have been working to improve the current technology of MOS. The reduction of grain 

size to nanoscale and introduction of dopants/modifiers are the effective strategies to 

enhanced the sensitivity of the MOS gas sensor [6,7]. However, due to high operating 

temperature, these sensors hold an obvious drawback, resulting in high power 

consumption, which in turn adversely affects the integration and long-term stability. 

Furthermore, high working temperatures may give rise to safety problems for 

measurements in environment where explosive gases may also exist. In comparison of 

MOS, the sensors based on conducting polymers have many improved characteristics 

such high sensitivity and selectivity which operated at room temperature (RT). 

However, these conducting polymers exhibit disadvantages such as unstable over long 

periods due to environmental condition and known as poor selectivity as gas sensors 

due to the resistance of the device is commonly influenced by the ambient factor and 

the contact resistance of the electrodes [8].   

 

Current research effort has been directed towards exploring new promising 

materials and improved the sensors response. Carbon based material such as pristine 

graphene [9], carbon nanotubes (CNT) [10], graphene oxides (GO) [11], and reduced 

graphene oxides (rGO) [11] were introduced and were extensively used for gas 

detection towards various types of toxic gases since the properties of these materials 

is remarkable unique in term of electrical, mechanical, optical and chemical. These 

materials were reported improved the response and were operated at RT [11]. 

However, due to physisorption of pristine graphene that leads to false alarm detection, 

researchers have proposed a way to enhanced the adsorption of graphene in which 

introducing defects, functional groups or dopants in the graphene lattice [12-15]. Later, 

various dopants have been reported and successfully enhanced the performance of the 

gas sensors [16]. Besides that, the utilization of graphene in most nanoelectronics 

application is restricted due to its gapless states [17,18].  To exploit possible 
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modifications or tailoring its properties, it is, therefore, necessary to control the charge 

carrier concentration by tuning the Fermi level (EF). The method applied for band gap 

tuning in graphene is through doping such as surface transfer doping, substitutional 

doping, or chemical doping [19].  

 

Substitutional doping of heteroatoms such as boron (B) or nitrogen (N) in the 

graphene is one of the most investigated methods since it is inherently stable due to 

the covalent bond linkage of the dopant into the graphene lattice [20]. Among B and 

N atoms, N substitution in graphene is most preferable due to its excellent properties 

such as comparable atomic size and possession of five valence electrons [21]. 

Particularly, N-doped graphene has three common bonding configurations known as 

pyrrolic-N, pyridinic-N, and graphitic-N. Pyridinic-N refers to a N atom that 

substitutes within the two carbon (C) atoms at the edges or defects of graphene and 

contributes one p electron to the π system, while pyrrolic-N refers to a N atom that 

substitutes into the five-membered ring and contributes two p electrons to the π 

system. However, graphitic-N refers to a N atom that substitutes for C atoms in the 

hexagonal rings [22]. For instance, these bonding configurations have a significant 

effect on the charge distribution of the carbon network and may work as activation 

sites on the graphene surface, i.e., pyridinic-N is believed to be associated with carbon 

monoxide (CO) detection due to the availability of a single lone pair of the electron, 

which is considered as an active catalytic centre [23] while graphene doping with high 

number of pyrrolic-N, experimentally enhanced the selectivity towards nitrogen 

dioxide (NO2) detection [24,25].  

 

Direct synthesis through the chemical vapor deposition (CVD) method is 

widely used to produce N-doped graphene because of its economic efficiency, 

scalability, and acceptance by the semiconductor industry. A typical CVD route to 

produce N-doped graphene has been reported using various carbon precursors such as 

methane, acetylene, or pyridine at high temperatures in the range of 800–1050 °C [26-

29]. In most cases, high-temperature processes (optimum) mostly result in dominant 

graphitic-N configuration over the large-area graphene while when its overheating, 

pyrrolic-N and pyridinic-N will be predominant [26, 30]. It is speculated due to the 

break of C-C bonds at the graphene lattice, resulting low coverage of N-doped 

graphene over the substrate. Besides that, high temperature growth was reported lead 
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to insufficient of N atoms concentration in the graphene lattice. It is difficult to realize 

since there’s competition between the formation of C-C and C-N network to achieve 

at minimum internal energy [31].   

 

At the same time, great deal of effort is always required in limiting the high-

temperature processes due to severe physical damage to the substrates or devices, 

especially during the integration of graphene onto the nanoelectronics platform. 

Therefore, low-temperature growth of graphene is highly desirable as it is a more 

economical and convenient process on any low-temperature substrate. To achieve this, 

Ni and alloy metals have been reported as suitable catalysts for further reduction of the 

growth temperature while maintaining the same graphene quality as compared to that 

obtained by high-temperature processes [32,33].   

 

On the other hand, one promising way to realize the low-temperature growth 

of N-doped graphene is employing plasma-assisted CVD [34-48]. It is believed that 

the plasma does not only further lower the temperature for the growth of N-doped 

graphene but also can provide substantial free radicals for highly efficient N 

substitution in the direct growth of nanographene films. Meanwhile, several groups 

have demonstrated that the reduction of the growth temperature can be achieved using 

polyhalogenated aromatic compound [miza, 26] or heteroatoms containing carbon 

sources such as pyridine [39,40]] that possess a similar structure to benzene for 

producing high-quality graphene [40]. A few studies have also been demonstrated that 

the growth temperature of N-doped graphene can be lowered to 435 °C, in which the 

N atoms are mainly incorporated in the pyridinic-N form [36,37]. Meanwhile, at a 

much lower temperature of 300 °C, a recent study of N-doped graphene grown on Cu 

foils using liquid pyridine via two-step CVD demonstrated high-quality graphene 

films with dominant graphitic-N, but the N atomic concentration was low at around 

1.6 at. % [40]. Although the growth of N-doped graphene has been reported 

previously, none of the systematic studies were focused on achieving nanographene 

films with high N doping concentration with high number of pyridinic N or pyrrolic-

N at low temperatures, particularly below 200 °C for cost-effective advanced 

electronic applications such as sensors [41].  
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In this study, we report a viable method to extend the growth capabilities of N-

doped nanocrystalline graphene films with enhanced N doping at low temperatures as 

low as 100 °C using a cold-wall plasma-assisted CVD system. This is the lowest 

temperature that has been reported to date for the growth of N-doped nanocrystalline 

graphene. In this method, we combine Joule heating and the plasma-assisted growth 

process at low-temperature regimes and use a mixture of benzene/ammonia/Argon 

(C6H6/NH3/Ar) system to produce large-area N-doped nanocrystalline graphene films 

on a polycrystalline Ni catalyst in a shorter time as compared to the existing hot-wall 

CVD method. The influences of the NH3/Ar ratio and RF on the morphological, 

chemical composition, structural, and electrical properties of N-doped nanocrystalline 

graphene films are systematically studied. The findings suggest that the strong 

synergetic effects of the NH3/Ar ratio and RF are key to this synthesis route and offer 

fine-tuning control over macroscopic features to enable substantial N doping into the 

graphene lattice. The possible growth mechanism with pyridinic-N- and pyrrolic-N-

dominated nanocrystalline graphene at low-temperature regimes is also discussed to 

demonstrate the tunability of N doping concentration. 

 

 

1.2 Problem Statement 

Graphene is a novel nanomaterial with two-dimensional form of carbon packed 

in hexagonal lattice. Due to its unique properties in terms of mechanical, chemical, 

optical and electronic, it has received great attention among researchers as sensing 

elements in chemo resistive gas sensors [16].  However, due to physisorption of 

pristine graphene that leads to false alarm detection, researchers have proposed 

defects, functional groups or dopants in the graphene lattice for strong adsorption as 

reported in theoretical studied [12-15]. Besides that, the utilization of graphene in most 

nanoelectronics application is restricted due to its gapless states [17,18]. To exploit 

possible modifications or tailoring its properties, it is necessary to control the charge 

carrier concentration by tuning the Fermi level (EF). The method applied for band gap 

tuning in graphene is through doping such as surface transfer doping, substitutional 

doping, or chemical doping [19]. N atoms substitution in graphene is most preferable 

due to its excellent properties such as comparable atomic size and possession of five 

valence electrons [21]. Particularly, N-doped graphene has three common bonding 
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configurations known as pyrrolic-N, pyridinic-N, and graphitic-N. Among these 

bonding configurations, pyridinic-N is believed to be associated with CO detection 

due to the availability of a single lone pair of the electron, which is considered as an 

active catalytic centre [23] while N-doped graphene with high number of pyrrolic-N, 

experimentally enhanced the selectivity towards NO detection [24,25].  

 

A typical CVD route to produce N-doped graphene has been reported using 

various carbon precursors such as methane, acetylene, or pyridine at high temperatures 

in the range of 800–1050 °C [26-29]. In most cases, high-temperature processes 

(optimum) mostly result in dominant graphitic-N configuration over the large-area 

graphene while when its overheating, pyrrolic-N and pyridinic-N will be predominant 

[26, 30]. It is speculated due to the break of C-C bonds at the graphene lattice, which 

had resulting low coverage of N-doped graphene over the substrate. Besides that, high 

temperature growth was reported lead to insufficient of N atoms concentration in the 

graphene lattice. It is difficult to realize since there’s competition between the 

formation of C-C and C-N network to achieve at minimum internal energy  

[31].  

  

            At the same time, great deal of effort is always required in limiting the high-

temperature processes due to severe physical damage to the substrates or devices, 

especially during the integration of graphene onto the nanoelectronics platform. 

Therefore, low-temperature growth of graphene is highly desirable as it is a more 

economical and convenient process on any low-temperature substrate. A few studies 

have also been demonstrated that the growth temperature of N-doped graphene can be 

lowered to 435 °C, in which the N atoms are mainly incorporated in the pyridinic-N 

form [36,37]. Meanwhile, at a much lower temperature of 300 °C, a recent study of N-

doped graphene grown on Cu foils using liquid pyridine via two-step CVD 

demonstrated high-quality graphene films with dominant graphitic-N, but the N atomic 

concentration was low at around 1.6 at. % [40]. Although the growth of N-doped 

graphene has been reported previously, none of the systematic studies were focused 

on achieving nanographene films with high N doping concentration at low 

temperatures with tuneable bonding configurations (predominant pyridinic-N or 

pyrrolic-N), particularly below 200 °C.  
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1.3 Research Objectives and Scope 

In regard to the highlighted challenge, the objective of this study is to synthesize 

N-doped nanocrystalline graphene film at low temperature regime with high N-atoms 

concentration and tunable bonding configurations of pyridinic-N or pyrrolic-N by 

plasma-assisted CVD system.   

 

1) To investigate the effect of low temperature (100-400˚C), RF (10-50W) and 

NH3-Ar flow rates ratio towards the morphological, compositional, structural, 

optical and atomic properties of grown N-doped nanocrystalline graphene film.  

Scopes: Mixture of Ar, C6H6 and NH3 at 8: 1: 1 are exposed during growth 

process. Ni substrate is used as the metal catalyst.  

 

2) To propose the reasonable growth mechanism based on the obtained results. 

Scopes: The propose idea were based on the effect of temperature, RF and 

precursor concentration towards grown of N-doped nanocrystalline graphene 

sheet properties.  

 

3) To fabricate the back-gated N-doped nanocrystalline graphene field effect 

transistor (FET).  

Scopes: The fabrication process involved in designing mask, metal deposition, 

resist coating, exposure and development process of interdigitated electrodes’ 

(IDE) structure on 8-inch wafer and conventional wet transfer process of grown 

N-doped nanocrystalline graphene films on back-gated FET devices.   

 

4) To investigate the electrical properties of back-gated N-doped nanocrystalline 

graphene FET.  

Scopes:  It consist the investigation of sheet resistance of grown N-doped 

nanocrystalline graphene film, Ohmic contact, N atoms concentration (at. %) 

towards sheet resistance of the grown samples, the effect of N doping 

concentration towards electron density distribution, electron-holes mobilities 

of the devices, and types of the band-gap tuning.  
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1.4 Overview of Thesis Organization 

This thesis is organized into 6 chapters. Chapter 1 presents an overview of the 

research background and motivation. This chapter also provides the research objective 

and its scope of work.  

 

Chapter 2 provides an overview of the theoretical background and literature 

review for the work. The explanation focuses on types of gas sensors, sensing materials 

and its performances as well as the sensing mechanism towards various type of toxic 

gases. Recent development of the promising material, graphene with the substitution 

of heteroatoms of N is also explained in this chapter. The previous study on low 

temperature growth for N-doped graphene also are also well reviewed. 

 

Chapter 3 presents the growth process of N-doped nanocrystalline graphene 

film, characterization process and the equipment used. Next, the integration of N-

doped nanocrystalline graphene film onto back-gated FET also is well described in 

this chapter.  

 

Chapter 4 presents the result and discussion of the synthesis of N-doped 

nanocrystalline graphene film at low temperature regime with tunable of pyridinic-N 

and pyrrolic-N by cold-wall plasma assisted CVD. The result and discussion for 

annealing process and the effect of temperature towards growth of N-doped 

nanocrystalline graphene film from 500° C down to 100° C are presented. Then, the 

discussion on morphology, structural, elemental and atomic properties towards the 

lowest growth temperature of N-doped nanocrystalline graphene film also well 

discussed throughout this chapter. Finally, the result and discussion on the effect of 

NH3/Ar flow rates ratios and RF towards the formation of N bonding configurations 

(pyridinic-N and pyrrolic-N) are deliberated. Lastly, this chapter also described the 

proposed growth mechanism of the grown N-doped nanocrystalline graphene film.  

 

Chapter 5 presents the fabricated of standard back-gated N-doped 

nanocrystalline graphene FET. The quality of the transferred N-doped nanocrystalline 
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graphene film on IDE’ structure and the electrical properties of the devices based on 

the N-doped nanocrystalline materials are also presented and described.   

 

Chapter 6 concludes the main findings of the work and the direction for the 

future work is described accordingly.  
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