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ABSTRAK 

Karbon tiub nano (CNT) mewakili kelas baru bagi peranti nano berdasarkan 

titik kuantum (QD) kerana diameternya sekecil 10nm tidak dapat dibina oleh teknik 

piawaian litografi. Sifat mekaniknya yang unik seperti jisim yang ringan amat sesuai 

bagi penyalun yang berfrekuensi tinggi dengan keupayaan pengesanan ultrasensitif. 

Kajian ini menunjukkan satu proses yang boleh digunakan bagi membina penghalang 

terowong di karbon tiub nano multi-dinding yang terampai (MWCNTs) dengan 

menggunakan teknik pemindahan mekanikal untuk pertama kalinya. Teknik ini juga 

dapat membuka jalan untuk membina peranti berfungsi mekanikal berasaskan tiub 

nano. Rintangan dua terminal di setiap peranti diukur sebelum pembentukan 

penghalang terowong oleh sinar ion terfokus (FIB) iaitu sekitar 10kΩ hingga 20kΩ. 

MWCNT yang terampai kemudiannya diimbas menggunakan FIB. Sebanyak 5 

sampel dibina untuk setiap dos ion yang sama, iaitu dari 1.5 × 10¹⁶ ions/cm² hingga 

6× 10¹⁶ ions/cm² dan kesan perubahan rintangan setelah penyinaran akan dikaji. 

Hasil kajian ini menunjukkan bahawa rintangan meningkat dengan peningkatan dos 

Ga ion untuk tiub nano pada substrat dan tiub nano yang terampai. Menariknya, bagi 

kes tiub nano yang terampai, dos yang lebih tinggi diperlukan untuk meningkatkan 

rintangan berbanding dengan tiub nano pada substrat. Data dianalisis pada suhu 

rendah serendah 1.5 K dan graf Arrhenius telah di plot. Terdapat kecenderungan 

bahawa ketinggian penghalang mempunyai hubungan dengan rintangan yang 

meningkat setelah penyinaran yang dikendalikan oleh dos pancaran ion dan diameter 

tiub nano. SET telah dibina dalam MWCNT terampai dengan membentuk dua 

halangan. Dalam kajian ini, transistor elekton tunggal (SET) yang dibina dari 

MWCNT yang terampai telah berjaya di hasilkan menggunakan teknik yang mudah 

dan jimat dimana berlian Coulob dan ayunan Coulomb dapat di ukur.   



vii 

 

 

ABSTRACT 

Carbon nanotube (CNT) represents a new class of building blocks for 

quantum do (QD) based nanodevices and circuits due to its extremely small diameter 

of 10nm whereby the standard lithography technique cannot easily realize such 

dimension. In addition to their electrical and optical applications, their unique 

mechanical properties such as light mass and large stiffness are attractive for a high-

frequency resonator with a possible ultrasensitive mass sensing capability. This 

research demonstrates for the first time a reliable process to fabricate tunnel barriers 

in the suspended multi-wall carbon nanotubes (MWCNTs) by the mechanical 

transfer technique. This technique may also open a way to fabricate nanotube based 

mechanical functional devices. The two-terminal resistance of each device was 

measured before the formation of tunnel barriers ranging from 10kΩ to 20kΩ by 

focused ion beam (FIB). The suspended MWCNTs was then single scanned using 

FIB. More than 5 samples were fabricated for each ion dose from 1.5 × 10¹⁶ ions/cm² 

to 6 × 10¹⁶ ions/cm² and the effect of the resistance changed after irradiation was 

studied. This result showed that the resistance increased with rising Ga ion dose for 

both nanotubes on a substrate and the suspended nanotubes. Interestingly, for the 

case of the suspended nanotubes a higher dose was necessary to increase the 

resistance compared to the nanotube on a substrate. To analyse the data further, the 

sample was cooled down in a liquid helium refrigerator from room temperature to the 

lowest temperature of 1.5 K. The estimation of barrier height by Arrhenius plot 

obtained was then plotted as a function of resistance change after irradiation. There 

was a tendency that the barrier height correlated with the increased resistance after 

irradiation that was controlled by the dose of ion beam and diameter of the 

nanotubes. The single electron transistor (SET) was fabricated in suspended 

MWCNT by forming two barriers. The regular Coulomb diamonds and Coulomb 

oscillations were observed and some sample showed spike-like noise, superimposed 

on the regular Coulomb oscillations. It can be concluded that the SET was 

successfully fabricated in suspended MWCNT using simple and low-cost technique 

wherein Coulomb diamond and Coulomb oscillation were successfully observed.  
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Research background 

The mechanical resonator is highly desirable in various applications to detect 

tiny amounts of mass in mass sensors [1-3], such as the high sensitivity detection of 

bacteria [4,5], monitoring air pollution [6,7], evaluating hydrogen storage capacity 

[8] and others. These applications have stimulated scientists to conduct intensive 

research to achieve the goals of scaling down the resonator and improving the 

measurement of devices. Since the principle of detecting vibration in the resonator is 

rather challenging, a new device structure and measurement technique should be 

developed. Several types of transducers - such as beam silicon carbide (SiC) [9-11], 

silicon nanowires [12,13] and carbon nanotubes (CNTs) [14,15] - have recently been 

explored to fabricate the mechanical resonator. However, SiC [16] and silicon 

nanowire [17] transducers cannot gain the high-resonance frequency that is crucial 

for the operation of devices.     

The carbon nanotube (CNT) represents a new class of building blocks for 

quantum dot (QD)-based nanodevices and circuits [18-20] due to its extremely small 

diameter, whereas the standard lithography technique cannot easily realise such 

dimensions. Although the diameter of a multi-wall CNT (MWCNT) is slightly larger 

than that of a single-wall CNT (SWCNT), the MWCNT seems to be more favourable 

because of its robustness in conventional semiconductor processing technology.  

In addition, the capability of a metal/MWCNT contact to sustain its ohmic 

characteristics, even down to liquid He temperature [21], makes the MWCNT an 

ideal channel material for the fabrication of QD-based nanodevices and circuits. 

CNTs have also been used to fabricate mechanical resonators that can operate at ultra 

high frequencies [3]. In addition, CNTs can also show ballistic electron transport and 

a Coulomb blockade [9]. 
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The coupling of the mechanical motion of the nanotube resonator and the 

electron transport will also offer an interesting functionality in devices.  

However, forming a tunnel barrier to function as a QD remains a difficult task. In 

previous studies, the fabrication of tunnel barriers in MWCNTs on a SiO2/Si 

substrate by Ar ion irradiation [22-24] was reported. However, Ga ion irradiation is 

more favourable because its resistance variation is far lower than that of Ar ion beam 

irradiation. Ga focused ion beam (FIB) was a useful technique for fabricating tunnel 

barriers in our structure.  In previous work, researchers claimed that the Ga ion has 

lower resistance variation than the Ar ion, probably due to the experimental setup 

using Ar ion irradiation, which needs a wide resists opening to expose the substrate 

because of the limitation of photolithography equipment. Section 2.7 will discuss the 

factors that contribute to resistance variation for the Ar ion beam.   

To fabricate mechanical vibration devices, the nanotube should be suspended; 

however, fabricating a suspended nanotube is still challenging. We have successfully 

demonstrated, for the first time, a reliable process of fabricating tunnel barriers in 

suspended multi-wall carbon nanotubes (MWCNT) by the mechanical transfer 

technique. This technique was modified from the transfer process commonly used to 

produce a van der Waals heterostructure using two-dimensional materials [25,26]. 

This technique seems to be a promising approach for fabricating a straight suspended 

CNT, compared to other techniques such as wet etching the underlying oxide layer 

below the nanotube using hydrofluoric acid [27]. The technique for fabricating  

a suspended nanotube is explained in detail in section 2.6. 

The yield of the suspended nanotubes from wet etching is relatively low due 

to the collapse of the nanotube on the substrate. Tunnel barriers in MWCNTs will be 

formed using FIB, since this technique is far more reliable than Ar ion irradiation, 

especially in forming the precise location of tunnel barriers to create small QDs.  

This work presents and discusses the effects of control parameters such as irradiation 

dose and nanotube diameter on the tunnel barrier properties, namely nanotube 

resistance and barrier height, for suspended nanotubes. The basic characteristics of  

a fabricated single-electron transistor (SET) in a suspended nanotube are also 

presented.  
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1.2   Research motivation 

Electromechanical resonators are widely employed to detect tiny amounts of 

mass, which can be used to monitor the deposition rates from an evaporation source, 

air pollution and so forth. Since the principle used in the resonator for detecting 

vibration is rather challenging, a new device structure and measurement technique 

should be developed. The CNT represents a new class of building blocks that offers a 

unique attribute: a small diameter, which cannot be realised by the standard 

lithography technique. Its properties of light mass and stiffness make it ideal for 

ultrasensitive force detection. In addition, a CNT can also show ballistic electron 

transport and a Coulomb blockade at room temperature [28]. The coupling of the 

mechanical motion of the nanotube resonator and the electron transport will also 

offer an interesting functionality in the relevant devices. In particular, we expect that 

this coupling can be used to control the mechanical motion of nanoscale schemes 

[29]. With the advantage of the CNT being that can it be fabricated as an SET, such a 

structure can be fully utilised to demonstrate an electromechanical resonator.  

In this work, a QD on the suspended CNT will be fabricated using the FIB technique.  

This SET structure is expected to be able to control the mechanical vibration when it 

is applied as a resonator. This device is expected to be a powerful high-frequency 

resonator tool that would conceal novel research into using the electromechanical 

resonator system in classical and quantum regimes. 

1.3  Originality of this work  

Several research studies have been reported the fabrication of QDs in 

MWCNTs on a substrate. However, little research has reported the fabrication of 

QDs in suspended MWCNTs. Normally, researchers have fabricated the suspended 

nanotube using the wet etching technique. However, this technique has some 

disadvantages, whereby the yield production is relatively low because the nanotube 

collapses easily on the substrate.  

 

In this work, we introduce a new technique for fabricating suspended 

MWCNTs, using the mechanical transfer approach for the first time. We found that 
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this technique is more reproducible compared to the wet etching technique using HF. 

The mechanical transfer technique used in this work was modified from the transfer 

process commonly used to produce a van der Waals heterostructure using  

two-dimensional materials.   

 

It is still challenging to produce reproducible QDs on devices. In previous 

work, researchers successfully fabricated QDs on a substrate using Ar atom [30] and 

Ar ion [31] irradiation. However, they found that using Ar ion beam irradiation on 

the nanotube created too much damage, causing devices to break and fail. They also 

reported that the Ga ion beam is a promising technique for producing tunnel barriers 

in MWCNTs. However, they still observed some variation in the measured  

source-drain resistance, even though the same dose of ion beam irradiation was 

applied to the sample. They could not find the cause of the resistance variation, even 

though the same parameters were used in each experiment.   

 

In this work, we studied the fabrication of an SET in suspended MWCNTs 

and systematically investigated the cause of the resistance variation by carefully 

analysing each parameter during SET fabrication. The resistance variation comes 

from either the diameter of the nanotubes or the ion dose. An on-chip CNT was also 

fabricated as a reference to investigate how much Ga ion dose must be applied to the 

nanotube during irradiation, because fabricating a suspended CNT is more 

complicated than an on-chip CNT. Therefore, with the reference sample of the 

nanotube on the chip, we could estimate how much ion dose can be applied to the 

suspended carbon nanotube. The mechanical transfer technique was used to fabricate 

suspended MWCNTs, while Ga ion irradiation was the technique used to produce 

QDs in the MWCNTs. This will be a promising technique for fabricating  

a high-frequency mechanical resonator [32].   

 

 

1.4   Problem statement 

The development of a high-frequency mechanical resonator is promising for 

new applications, such as sensitive mass/gas sensors [1-3], biological imaging [33] 

and mechanical devices for high-frequency signals processing [34]. Since the 
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principle used in the resonator, which is the detection of vibration, is rather 

challenging, a new device structure and measurement technique should be 

developed. In a previous report, researchers used an AFM cantilever [35] to detect 

the vibration of nanotubes when current was applied to the electrode. However, it 

was very difficult to detect the vibration and the device was not sensitive enough, 

especially when it was applied as a high-frequency resonator. For a device to 

function as a high-frequency resonator, the selection of materials is crucial.  

As reported by Huang, a SiC [36] resonator was successfully fabricated with 

a resonance frequency that could reach 1 GHz. Mechanical resonators can also be 

fabricated using Si nanowires; however, the resonance frequency is only 94.7 MHz 

[37]. Other researchers used SiO [38] for making a mechanical resonator, but the 

frequency they measured was 5 MHz. We think that the MWCNT is suitable for 

fabricating a mechanical resonator because it has great mechanical strength and is a 

material with a light mass. In previous work, D. Garcia [35] reported the successful 

fabrication of an MWCNT resonator with a resonance frequency that could reach  

3.1 GHz. However, in this report, the researchers just studied the mechanical 

properties of the devices, stating that the mechanical resonator's vibration was hard to 

detect. As mentioned before, since the detection aspect of a high-frequency 

mechanical detector is very challenging, a new device structure and measurement 

technique should be developed. The SET coupling to the mechanical resonator can 

be an alternative way to overcome this challenge [39,40].   

According to the principle of fabricating the mechanical resonator,  

the nanotube should be suspended. However, it is still a challenging task to fabricate 

reproducible suspended nanotubes. There are several techniques for fabricating  

a suspended MWCNT. One is by making the trench using wet etching, normally with 

hydrofluoric acid, to etch the silicon under the nanotubes [41]. However, the 

nanotube easily lay down on the Si substrate when the trench was made using this 

technique. This would make the nanotube channel impossible to use as the resonator. 

Another technique for fabricating a suspended nanotube is to use the resists 

technique and tilt the metal deposition to make the nanotube become suspended [42]. 

However, nanotubes fabricated by the resists technique also laid down on the 
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substrate after deposition. Therefore, in this work, we introduced a new technique for 

systematically fabricating a reproducible suspended MWCNT, using the mechanical 

transfer technique for the first time. The mechanical transfer technique is far more 

reproducible because it simply picks any nanotube using an optical microscope and 

transfers it to any desired location. The nanotube was properly suspended when 

checked under an SEM.  

After fabricating the suspended MWCNT, we will create a barrier on the 

MWCNT. We need at least two barriers to form the QD, and the region between the 

two barriers will work as the QD. Various techniques can be used to fabricate tunnel 

barriers. One of these is the resists opening technique using Ar ion beam irradiation 

[31]. However, this technique is not reproducible, so the resistance value varies 

greatly from one sample to another, even though the same parameters might be 

applied for each sample. This is probably due to the low controllability of the 50 nm 

resists opening area or the resists resolution, which makes the Ar ion beam hit the 

nanotube inconsistently. As a result, the resistance varies considerably from one 

sample to another. To overcome the resists resolution problem, we used FIB Ga ion 

beam irradiation to fabricate the tunnel barriers to obtain a closer and more precise 

location. 

. 

1.5   Research objective 

The objectives of this study are as follows: 

i) To develop a reliable technique for fabricating suspended CNTs, using the 

mechanical transfer technique for the first time. 

ii) To demonstrate a reliable process of fabricating tunnel barriers in the suspended 

MWCNTs by Ga focused ion beam and to systematically study the effect of 

resistance changes during tunnel barrier fabrication. 

iii) To show that fabricated devices with suspended MWCNTs can be used as SETs. 
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1.6  Research scope 

This work involved the fabrication of the suspended MWCNTs, using the 

mechanical transfer technique for the first time. After successfully fabricating 

suspended MWCNTs using this technique, we studied a reliable process of 

fabricating tunnel barriers using Ga focused ion beam irradiation and investigated the 

cause of the resistance changes in the sample. In the process of fabricating the tunnel 

barriers, the size and ion dose of the nanotubes were important parameters. These 

were systematically studied to analyse the variations in resistance changes after ion 

beam irradiation. We also studied the relationship between the barrier height, the 

diameter of the nanotubes and the dose of Ga ion beam applied on the nanotubes in 

creating damage or tunnel barriers. The fabricated tunnel barrier in each suspended 

CNT was tested to determine whether it could be used as an SET. To observe the 

behaviour of the SET, we analysed its current-voltage characteristics and the 

conductance of the fabricated samples at cryogenic temperature. Finally, we 

demonstrated the SET and studied the possibility that it could be used as a resonator. 

The research on the mechanical resonator referred to other previously reported work. 

The current work mainly focused on experimental work to fabricate an SET in 

suspended CNTs. Modelling or other theoretical works were beyond the scope of this 

study as they are typically developed after the success of experimental measurement.  

 

 

1.7  Research activities  

The implementation of this study has been summarised as a flowchart, as 

shown in Figure 1.1. This study focuses on the SET fabrication in suspended CNTs 

for mechanical resonator application. This work involved several steps: first, the 

fabrication of the suspended CNTs using the mechanical transfer technique for the 

first time; then, the fabrication of the double barrier on the nanotubes by Ga ion 

beam irradiation; and, finally, a demonstration of the SET.  

The first step of this work was to deposit Palladium (Pd) as the source and 

drain electrode on the substrate before fabricating the suspended nanotubes.  
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Pd, a metal used to deposit the electrode for a device, is normally used in all device 

fabrication processes. However, we chose Pd compared to other metals because the 

contact resistance between Pd and a CNT is quite low, around 10 kΩ, which is 

crucial for SET fabrication. Hence, we can modulate the resistance of the nanotube to 

create a tunnel barrier or damage on the nanotube by FIB. Using the standard lift-off 

process, the electrode was fabricated at the desired thickness and gap using the 

standard lithography technique. Then, the nanotube was transferred to the top of the 

electrode using the mechanical transfer technique. The sample was characterised 

using a scanning electron microscope (SEM) and probed to check its current flow.  

If the sample had a good current flow, the resistance should be around  

10 kΩ - 20 kΩ, and the next step would be to form a tunnel barrier using the Ga FIB 

technique. If the current flow was not good - being higher or lower than that range 

(10 kΩ - 20 kΩ) - the device fabrication had to be restarted from the beginning. 

Finally, the sample was characterised in liquid He at a temperature of 1.5 K to check 

its barrier height and SET functionalities. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Research activities 

 

Figure 1.1  Research activities 

 

 

Fabrication of the electrode using standard lithography technique 

Fabrication of tunnel barriers and SETs in suspended MWCNTs 

Nanotube transfer process and check the current flow at room 

temperature and SEM images will be taken 

Formation of tunnel barrier using Ga FIB technique 

Characterization of tunnel barrier in a cryostat at low temperature of 

1.5K and analyses its SET functionalities 
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1.8  Overview of thesis organization  

This thesis is organised into six chapters. Chapter 1 gives an overview of the 

research background and the motivation for the study. The originality, objectives, 

scope and research activities of the current work are also presented. 

Chapter 2 gives an overview of the basic properties of CNTs and their 

possible electronic application. The chapter discusses, in brief, the principle of SETs 

and the possibility of coupling electron transport and mechanical motion. The 

challenge of fabricating suspended nanotubes and the formation of tunnel barriers are 

also discussed in this chapter.  

In chapter 3, the fabrication process, characterisation technique and work to 

test the fabricated devices are described. In this work, suspended MWCNTs were 

fabricated using the mechanical transfer technique, which is demonstrated for the 

first time. The formation of tunnel barriers and the measurement setup are also 

explained in this chapter.  

Chapter 4 describes the properties of the fabricated devices, using a  

single-barrier sample. This chapter discusses in detail the IV curve after irradiation at 

room temperature, the dose dependence at room temperature, the IV curve at low 

temperature, the estimation of barrier height by Arrhenius plot, the effect of barrier 

height on dose dependence and the diameter of the nanotubes.   

In Chapter 5, the SET demonstration with a double-barrier sample is 

discussed. In this chapter, the Coulomb oscillation, the grey-scale plot of differential 

conductance, the instability in the suspended nanotube and the possible reasons for 

this instability were investigated.  

Finally, Chapter 6 concludes the contribution of the present work and 

discusses future research directions.    
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