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ABSTRACT 

Vortex-induced vibration (VIV) response can occur when a structure interacts 

with a fluid flow, resulting in fatigue damage. The use of multiple cylinders during 

drilling operations worsens the situation due to the flow interference between the 

cylinders, and the response may become more complex than with a single-cylinder. 

The industry has been challenged to minimise the effect of flow interference on the 

structure, which is highly dependent on the separation distance between the cylinders. 

The purpose of this study is to investigate the VIV on two spring supported cylinders 

in the tandem configuration besides examining the performance of helical strakes in 

reducing the cylinders’ vibration. A series of experiments were conducted in the water 

flume using circular cylinders, where both cylinders were free to oscillate in the cross-

flow direction only under subcritical Reynolds number. The flow interference test was 

performed with separation distances of 3.5, 4.0, and 4.5D, where D is the cylinder’s 

diameter, and the critical separation distance was identified. The experimental results 

including the displacement response, frequency response, and power spectral density, 

were compared to those of the cases involved with the single-cylinder. The influence 

of different helical strakes’ arrangements was examined using the same method as in 

bare cylinders. The experimental results showed that the amplitude response of 

cylinders in tandem grew continuously as the reduced velocity increased for all 

separation distances, indicating the presence of wake-induced vibration (WIV). The 

lower branch of amplitude response, which was usually present in a single-cylinder, 

was discovered to be absent. The results also proved that when multiple cylinders were 

used, the cylinders would vibrate stronger than when the single-cylinder was used. The 

trailing cylinder vibrated slower than the leading cylinder for all separation distances 

due to the shielding effect of the leading cylinder. Additionally, the critical separation 

distance was determined at 3.5D, where the bistable regime existed. During this 

regime, two flow patterns appeared intermittently, with a flow transition between 

vortex formation from the leading cylinder and reattachment of boundary layer, 

leading to a considerable oscillation amplitude. Meanwhile, the helical strakes 

successfully reduced the oscillation amplitude for both cylinders at the critical 

separation distance. However, the effectiveness of the helical strakes was highly 

dependent on the strakes’ arrangements. The present study found that the strakes had 

a significant suppressive effect when installed at the leading cylinder (arrangement of 

leading straked and trailing bare cylinders (LS+T)) or both cylinders (arrangement of 

two tandem straked cylinders (LS+TS)). The novelties of the study are: (1) the 

investigation of two cylinders’ responses that both can move in the CF direction, which 

is new in the literature and (2) the evaluation of the suppression performance of helical 

strakes in critical separation distances for tandem rigid cylinders at different 

arrangement of strakes. Since most of the risers in offshore industries are not in a fixed 

condition, investigating the VIV of the oscillating cylinders is feasible. The findings 

are valuable to offshore engineers to forecast the VIV phenomenon of the oscillating 

cylinders, especially in a critical condition. 
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ABSTRAK 

Tindak balas getaran vorteks induksi (VIV) akan berlaku apabila struktur 

berinteraksi dengan aliran bendalir, mengakibatkan kerekahan. Penggunaan beberapa 

silinder semasa operasi penggerudian memburukkan keadaan kerana kewujudan 

gangguan aliran di antara silinder, dan tindak balas menjadi lebih kompleks 

berbanding dengan silinder tunggal. Industri mengalami kesukaran untuk 

meminimumkan kesan gangguan aliran ini ke atas struktur, yang mana berkait rapat 

dengan jarak pemisahan di antara silinder. Tujuan kajian ini adalah untuk mengkaji 

getaran vorteks induksi pada dua silinder yang disokong menggunakan spring dalam 

kedudukan selari selain menguji prestasi jaluran heliks dalam mengurangkan getaran 

silinder. Ekperimen ini dijalankan dalam saluran air menggunakan silinder bulat, di 

mana kedua-dua silinder bebas bergetar dalam arah aliran silang sahaja dalam nombor 

Reynolds subkritikal. Ujian gangguan aliran dilakukan pada jarak pemisahan 3.5, 4.0 

dan 4.5D, di mana D ialah diameter silinder, dan jarak pemisahan kritikal telah dikenal 

pasti. Keputusan ekperimen, termasuk tindak balas amplitud, tindak balas frekuensi, 

dan ketumpatan kuasa spektrum, dibandingkan dengan silinder tunggal. Pengaruh 

susunan jaluran heliks yang berbeza telah diuji menggunakan kaedah yang sama 

seperti silinder kosong. Penyelidikan ini mendapati bahawa tindak balas amplitud 

silinder dalam kedudukan selari terus meningkat apabila halaju meningkat untuk 

semua jarak pemisahan, menunjukkan kehadiran getaran gelombang induksi (WIV). 

Tindak balas amplitud cabang bawah, yang biasanya terdapat dalam silinder tunggal, 

didapati tidak muncul. Keputusan juga membuktikan bahawa penggunaan lebih dari 

satu silinder, silinder akan bergetar dengan lebih kuat. Silinder belakang bergetar lebih 

perlahan daripada silinder hadapan pada semua jarak pemisahan yang disebabkan oleh 

kesan perlindungan daripada silinder hadapan. Selain itu, jarak pemisahan kritikal 

adalah 3.5D, di mana bistabil telah wujud. Dalam keadaan ini, dua corak aliran muncul 

secara berselang-seli, iaitu peralihan aliran antara pembentukan vorteks dari silinder 

hadapan dan pelekatan semula lapisan bendalir, yang membawa kepada amplitud 

getaran yang besar. Sementara itu, jaluran heliks berjaya mengurangkan amplitud 

getaran untuk kedua-dua silinder pada jarak pemisahan kritikal. Walau bagaimanapun, 

keberkesanan jaluran heliks ini sangat bergantung pada susunan jaluran heliks. Kajian 

ini mendapati bahawa jaluran heliks mempunyai kesan pengurangan getaran yang 

ketara apabila dipasang pada silinder hadapan (susunan silinder hadapan berjalur 

heliks dan silinder belakang yang kosong (LS+T)) atau kedua-dua silinder (susunan 

dua silinder berjalur heliks (LS+TS)). Novelti kajian ini adalah: (1) kajian tentang 

tindak balas dua silinder yang bebas bergetar dalam arah aliran silang, adalah baru di 

dalam literatur dan (2) penilaian prestasi pengurangan getaran dengan menggunakan 

jaluran heliks pada jarak pemisahan kritikal untuk silinder tegar dalam kedudukan 

selari pada susunan jaluran heliks yang berbeza. Memandangkan paip gerudi dalam 

industri luar pesisir tidak berada dalam keadaan tetap, kajian VIV terhadap silinder 

bergetar perlu dilaksanakan. Penemuan kajian ini bermanfaat kepada jurutera luar 

pesisir untuk meramalkan fenomena VIV bagi silinder bergetar, terutamanya dalam 

keadaan kritikal. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research background 

Oceans are teeming with enormous oil and gas resources, necessitating an 

annual increase in industrial oil extraction. The extraction of oil and gas from the 

remains of marine algae and land plants began in the mid-19th century, with 147 billion 

tonnes of oil have been pumped from reserves around the world. The growth of oil and 

gas demand has increased prices due to the complex extraction process and expensive 

method used, especially as drilling oil and gas operations have moved to deeper water 

depths.  For instance, the Cheyenne gas field in the Gulf of Mexico remarks the deepest 

drilling operation of 2740 metres. The design and technology of offshore drilling have 

evolved to develop oil and gas reserves through thousands of metres of thick rock 

layers. 

A marine riser is critical in the offshore industry because it transports crude oil 

and natural gas produced by subsea oil wells to the surface processing facilities. There 

are two types of risers which are rigid and flexible. Additionally, the riser can be 

categorised into different configurations based on its application in the ocean, as 

shown in Figure 1.1. It can be a free-standing riser, top tensioned risers (TTRs), 

catenary risers, and hybrid riser towers (Miller, 2017). Some configurations allow 

installation with one or more risers, either rigid or flexible riser, or a combination of 

rigid and flexible risers. In these riser systems, all types of risers submerged in water 

can experience pressure differences on the pipe’s external surface due to current, 

resulting in hydrodynamic loads.  Furthermore, the riser must withstand expansion and 

fatigue damage caused by unexpected sea movements, which can lead to fracture 

failure due to the vortex-induced vibration (VIV).  
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Figure 1.1 Types of riser system configurations used in oil and gas production, 

namely (a) free-standing riser, (b) top-tensioned risers (TTRs), (c) catenary riser (lazy-

wave), and (d) hybrid riser tower, reproduced from Murai & Yamamoto (2010) 

VIV is a fluid-structure interaction phenomenon that occurs when the vibration 

of a structure is induced by forces generated from the vortices shed off the structure, 

as illustrated in Figure 1.2. The vortex shedding produces the fluctuating forces, 

namely the lift and drag forces, which induce the cross-flow (CF) and in-line (IL) 

vibrations, respectively. When the vortex shedding frequency approaches the 

structure’s natural frequency, the lock-in (synchronisation) phenomenon will occur. 

The peak amplitude can be observed in the lock-in region. At this moment, the body’s 

motion controls the vortex shedding frequency in the lock-in region. The continuous 

high oscillating vibration amplitude can cause significant fatigue damage and shorten 

the fatigue life of the cylinder. The study of fluid-structure interaction phenomenon is 

significant for understanding to predict and avoid the VIV phenomenon in the future. 

 

Figure 1.2 The formation of vortex shedding behind a pipeline, reproduced from 

ATMOS International (2022) 
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The use of two or more cylinders has been increased due to the growth of 

engineering projects for energy extraction and generation, such as marine risers for 

deep-sea oil exploration. Hybrid riser towers typically comprise 4 to 12 risers to 

transport the produced hydrocarbon fluids, as shown in Figure 1.3. By using multiple 

risers, operation costs and time consumption can be reduced. Not only in oil and gas 

operations but most structures on land and in the ocean come in multiple forms. The 

VIV behaviour becomes more complex when a group of cylinders is involved in the 

application due to the flow interference between the cylinders. Cylinders can be 

arranged in tandem, side by side, or staggered configurations (Huera-Huarte et al., 

2016). Flow interference may affect the formation of vortex shedding in the flow. It is 

highly dependent on the separation distance between the cylinders, the number and 

configuration of the cylinders (Zdravkovich, 1988). A thorough understanding of the 

characteristics of fluid flow and vortex dynamics around a pair of two cylinders is 

crucial for having full knowledge and controlling the VIV phenomenon. 

 

Figure 1.3 The hybrid riser tower with more than one rigid riser, reproduced from 

Carpenter (2020) 
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Furthermore, it is essential to have a particular device to control the VIV, 

especially for this complex structural interaction. Maintenance budgets for the riser 

system connecting to the hydrocarbons wells increase, forcing the industry to consider 

using a suppression device for the riser. Suppression of VIV has been one of the most 

active research topics and patenting in fluid dynamics for many decades due to its 

significance in engineering applications. It is critical to remove and reduce vibration 

to extend the riser’s lifespan by reducing the fatigue damage of the structure. Vibration 

reduction can be obtained in various methods, which are passive, semi-active, active 

and hybrid. Physically, the role of vibration control is to break up the correlation 

vortices along the structure, which changes the structure’s natural frequency and 

dissipates vibration energy.  

Among these vibration control methods, the passive method offers a reliable 

and simple system at a low cost. These passive devices can be classified into two 

categories, namely near-wake stabiliser and surface-geometry modifier (Sumer & 

Fredsoe, 2006). Fairing, splitter plate, guided foil, and developed connected-C device 

are examples of near-wake stabilisers. Normally, that fairing installation and 

maintenance costs are high. Meanwhile, protrusions, grooves, and helical strakes are 

categorised as surface-geometry modifiers. These devices could control the boundary-

layer vorticity distribution and separation points over the vibrating structure via 

surface variation. Helical strakes are more cost-effective and powerful options for 

deepwater risers. 

1.2 Problem statement 

The exploration of offshore oil resources moves further offshore and deeper 

underwater. One of the main challenges related to the deepwater field is the design of 

the riser system. The riser system involves either a flexible or rigid riser. Flexible 

risers, that are long, slender, and large in aspect ratio, are primarily employed in 

deepwater field development to transfer oil from the seabed to the platform. However, 

flexible risers still have their limitation by water depth, with currently a few installed 

over 5000 ft. They require a higher up-front capex and replacement cost in comparison 
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to rigid risers’ system. Moreover, flexible risers are complex structures and tend to 

vibrate at more vibration modes than the rigid type. Hence, the industry prefers to use 

hybrid risers due to increased activity in the deep and ultra-deepwater areas. Hybrid 

risers utilise both flexible and vertical rigid risers to mitigate the effects of strong 

waves and the ocean current. In addition to providing flexibility for platform 

connection, the combination of these two risers can withstand the high hydrostatic 

pressures and the vertical weight of a deepwater riser. However, they are vulnerable 

to VIV and unprotected against fatigue damage, particularly deepwater. It is critical to 

minimise the possible risk of fatigue damage caused by ocean vibration to reduce the 

replacement costs and maintain field service life. 

Although the VIV can occur in airflows, the damage mostly occurs in the 

denser fluid such as water, especially in the ocean. This is because the ocean structure 

is designed with lower structural damping and a lower mass than those installed on 

land. As a result, the structure vibrates at a high amplitude, which causes fatigue 

damage if it vibrates for an extended period. In addition, by exposing the riser to the 

harsh environment of the deepwater area, the vibration of a low mass ratio riser can 

become much more complicated than that of a high mass ratio riser (Khalak & 

Williamson, 1999). 

The industry’s standard for hybrid user configuration is to bundle several riser 

pipes. Utilising two or more cylinders is preferable due to the cost and time savings 

associated with the operation. However, this application may result in proximity and 

wake interference between the cylinders if unappropriated separation distance is used. 

When cylinder structures are located in the wake of other structures, their dynamic 

responses become highly unusual compared to what would be expected if the 

structures were isolated. According to Sanaati (2012), multiple cylinders can cause the 

risk of collision between the adjacent cylinders. Therefore, most researchers are now 

aware of the importance of investigating the VIV behaviour of multiple cylinders. In 

addition, although many experimental and numerical methods are used to study the 

effect of the separation distance between the cylinders on VIV when using the rigid 

cylinder, the discussions focus exclusively on the trailing cylinder’s response. Less 

attention is given to the leading cylinder response. Due to the paucity of information 
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related to the mentioned matters, the effect of separation distance on cylinders is aimed 

to be clarified. At the same time, data on the critical separation distance for tandem 

configuration is still incomplete in the literature and would be useful to discover.  

Recently, many researchers have conducted experiments with two circular 

cylinders in tandem configuration. However, the data on the dynamic responses of 

both leading and trailing cylinders are still scarce in the literature. Previous literature 

has primarily concentrated on either leading or trailing behaviour, with no detailed 

comparison of both cylinders. Besides, the study of leading cylinder towards VIV in 

the literature is mostly in a stationary state, as a basic fundamental study for the flow 

interference between cylinders.  Although only a few studies have discussed the 

leading and trailing cylinders, configuration is based on the fix-vibrate or fix-fix rigid 

cylinder. The most recent study by Xu et al. (2018) explains the response of both 

oscillating cylinders, but the authors conducted the vibration experiment solely with 

flexible cylinders.  Despite the fact that flexible cylinders have been studied, rigid 

cylinders also are used in real-world hybrid risers and most offshore structures. In the 

case of rigid cylinders, Assi et al. (2010) and Korkischko & Meneghini, (2010) only 

discussed the trailing cylinder response. Their trailing cylinder which is free to move 

was subjected to the wake of a fixed leading cylinder. There has been no study has 

reported on the results of both rigid cylinders in tandem configuration that are free to 

move in the CF direction. This could be due to the complex response of the oscillating 

cylinders due to the VIV and the flow interference. Since most of the risers in offshore 

industries are not in a fixed condition, investigating the VIV of the oscillating rigid 

cylinders is feasible and significant to be studied. Therefore, the novelty of this study 

is to explore the response of two rigid cylinders that are allowed to move in the CF 

direction simultaneously. For a better understanding the set-up of the cylinder in 

tandem configuration, an illustration of the set up-are drawn in Figure 1.4. Figure 1.4 

shows the cylinders in the fix-fix configuration have been supported by the fix 

supported rod, which prevent them from moving in any direction. For the fix-vibrate 

configuration, a fix support rod is only installed at the leading cylinder, while the 

spring is installed at the trailing cylinder. Meanwhile, the cylinders that both allowed 

to move at CF direction are supported by the spring for both leading and trailing 

cylinders.  
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Figure 1.4 Definition sketch of different cylinder’s set-up in tandem configuration. 

(a) fix- fix, (b) fix- vibrate, and (c) vibrate-vibrate cylinder 

 

On the other hand, a suitable suppression device is needed to reduce the vortex 

shedding, leading to the fatigue damage of the risers. Helical strakes are commonly 

used to suppress the vibration. Most studies on helical strakes focus on the strakes’ 

pitch and height. However, the interaction of two cylinders fitted with helical strakes 

receives scant attention. The relationship between a pair of rigid cylinders fitted with 

helical strakes is still unknown. Additional investigations into reducing the VIV of two 

rigid cylinders using strakes are sorely needed and warrant further exploration due to 

the little attention funnelled to the interaction of two cylinders fitted with helical 

strakes. The main problem for two cylinders in the water flow is the interference that 

can affect the flow characteristics around the cylinders fitted with helical strakes.  

To the author’s best knowledge, no study on the effects of different helical 

strake arrangements between the cylinders has been published in the literature for rigid 

cylinders in tandem configuration. In the most recent study, Xu et al. (2018) 

investigated the performance of helical strakes in different arrangements on the two 

flexible cylinders. Therefore, in the present study, the performance of helical strakes 

on rigid cylinders is discussed and a detailed discourse of both cylinder responses is 
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presented. Additionally, helical strakes were tested in various arrangements at the 

critical separation distance determined in this study. This critical separation distance 

was identified during VIV testing on two bare cylinders. The current literature does 

not contain data on cylinder responses towards the VIV at the critical separation 

distance for different helical strake arrangements among the rigid cylinders. These data 

are crucial for offshore engineers to forecast the VIV phenomenon in a critical 

condition. Hence, the present study is also interested in the relationship between 

adjacent bare/straked cylinders towards the VIV at the critical separation distance. 

1.3 Research objectives 

Based on the problem statements, this research work has the following 

objectives: 

i) To characterise the VIV response of adjacent cylinders with various separation 

distances through the amplitude, frequency response, spectral density analysis, 

and phase difference in tandem configuration.  

ii) To identify the critical separation distance of VIV for two adjacent cylinders 

in tandem configuration. 

iii) To examine the effect of helical strakes on rigid cylinders at the critical 

separation distance in tandem configuration. 

1.4 Research scope 

This research work is designed to focus on the following scopes: 

a) The study only focuses on low mass ratio rigid cylinders in tandem 

configuration.  
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b) The study’s variables are the separating distance and the helical strakes 

arrangements. 

c) The cylinder is attached to the three-start helical strakes with a height of 0.15D 

and a pitch of 10.0D. 

d) A high damping experimental rig is used. 

e) Cylinders are allowed to move in a cross-flow direction only.  

f) The cylinder risers are subjected to uniform flow with different speeds ranging 

from 0.1 to 0.58 m/s, which is within the subcritical Reynolds number range. 

g) The measurements of interest are the amplitude response, frequency response, 

spectral density analysis, and phase difference. 

h) Other properties such as water density, water temperature, water level, and 

turbulence intensity will remain constant. 

 

It should be noted that there were some limitations in the experiments 

conducted. This present study is focused on the rigid cylinders as the test model for 

the riser in deepwater applications. During the experiment, small aspect ratio of the 

cylinder was used to ensure that the cylinder was rigid enough and fitted in the water 

flume. A full-scale offshore riser cannot be achieved for the purpose of the 

experimental work in the laboratory. Although the complex and unpredictable ocean 

current in real condition is unable to be reproduced in the laboratory’s work, the 

uniform current throughout the entire structure, which is the most critical condition, is 

tested in the present study. Besides, the parameter of the physical system such as the 

mass ratio, damping and aspect ratio are implemented. As a fundamental study, the 

assumption in scaling the test model for the real application is by categorised the 

responses of the cylinder based on the parameter’s range. For instance, the cylinder’s 

responses for the parameter of aspect ratio and mass ratio should be within the 

specified range that has been standardised. 
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1.5 Significance of knowledge 

• Through this research, it could help the offshore engineer in predicting a 

suitable separation distance for multiple risers to minimise the undesired 

harmful oscillation and ensure safe operation. The value of critical separation 

distance of multiple rigid cylinders, which contribute to a strong cylinders’ 

oscillation is identified. 

• The VIV response of multiple cylinders that free to move is successfully 

explored, which has yet to be discovered due to the complex response of flow 

interference between the cylinders. 

• The study of flow interference of rigid cylinders is necessary, not only on 

flexible cylinders because the offshore industry today prefers to use hybrid 

cylinder for deepwater area that include multiple rigid cylinders in the system. 

• Due to the high rate of fatigue damage of deepwater drilling riser, the 

suppression device is crucial to be installed in order to increase the riser’s 

lifespan. Through this study, the effectiveness of helical strakes in reducing the 

cylinder’s vibration is well explored on the multiple rigid cylinders, which has 

yet to be studied. 

• The comparison between rigid and flexible cylinder is important because rigid 

cylinder’s results have been used extensively by the offshore industry to predict 

the VIV performance of a long flexible marine riser. 

1.6 Thesis outline 

This thesis is divided into five chapters, including this chapter. The current 

chapter lays the introduction to the thesis and an overview of the research background. 

The outline of the research problem is briefly described in detail. This chapter also 

outlines the objectives, scopes, significance of knowledge, and thesis structure. 
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In Chapter 2, a thorough review of the available related research studies is 

provided. This chapter starts with introducing vortex-induced vibration (VIV). It 

includes a review of the important parameters for the VIV analysis and the 

phenomenon of vortex-induced vibration on a single cylinder. The following section 

contains the study of VIV on multiple cylinders, which mainly focuses on the cylinders 

in the tandem configuration. The previous literature findings regarding the separation 

distances between the cylinders are discussed to determine the suitable values to be 

implemented in this research. The final section reviews the study of VIV using 

suppression devices such as the helical strake. 

Chapter 3 details the experimental design and set-up of the present study. The 

experiment was conducted using a water flume at the National Hydraulic Research 

Institute of Malaysia (NAHRIM). All equipment needed in the experiment is addressed 

and the schematic diagram of the test rig set up is displayed. A new experimental rig 

is designed, and this mentioned process takes months to complete. The measurement 

techniques are explained in detail. This chapter also described the free decay test to 

obtain the natural frequency of the cylinder and the damping value. Lastly, a discussion 

on the result of the response of a single rigid cylinder is presented. A detailed 

comparison was made using the previous study data to validate the experimental 

method. This chapter also describes the VIV characteristics to understand better how 

a rigid cylinder will behave in terms of amplitude, frequency response, and spectral 

density analysis. 

Chapter 4 elaborates the discussion of flow interference between two rigid 

cylinders in tandem configuration at different separation distances. The results of the 

amplitude, frequency response, spectral density analysis, and phase difference have 

been presented and discussed. This chapter will also identify the critical separation 

distance between the cylinders, which will be one of the main focuses.  Comparison 

with the straked cylinders’ case has been made to evaluate the performance of helical 

strakes in reducing the vibration of the cylinder. The evaluation has been performed at 

the critical separation distance determined through the bare cylinders’ case. Different 

arrangements of helical strakes have been used for the cylinders in tandem to 
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determine the effectiveness of the helical strakes. The straked cylinders are measured 

using the same techniques as the previous tests. 

Finally, Chapter 5 summarises the main findings and contribution of the 

present study. Recommendations for future work are also made to suggest the potential 

investigations of the present study. 
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