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ABSTRACT 

Colorectal cancer is one of the most diagnosed malignant diseases in the world. 

The green-based, multifunctional, and highly biocompatible polysaccharide-based 

magnetic nanocomposites (PMNCs) as smart drug carriers can satisfy targeted cancer 

treatments to circumvent off-target cytotoxicity from conventional chemotherapy. This 

comprehensive research has sought to introduce five different green-based 5-Fluorouracil 

(5-FU) drug carriers, including Fe3O4 nanoparticles stabilized with Punica granatum fruit 

peel extract (Fe3O4/P. granatum/5-FU), rice straw cellulose fiber (CF/5-FU), magnetic 

cellulose fiber (MC/5-FU), cellulose nanocrystals (CNC/5-FU), and chitosan-coated 

magnetic CNC (CH/MCNC/5-FU) bionanocomposites. For this aim, spherical Fe3O4 

nanoparticles was produced by a facile co-precipitation technique and using four different 

weight percentages of Punica granatum fruit peel extract as a green stabilizer. Then, the 

rod-shaped CF was isolated from rice straw waste by employing bleaching and alkali 

treatments. Fe3O4 nanoparticles were supported onto the CF matrix to fabricate MC 

nanoocmposites. The needle-like CNC was isolated from rice straw cellulose by the acid 

hydrolysis process. In addition, the ionic gelation method and the sodium 

tripolyphosphate cross-linker were used to fabricate layer-by-layer bionanocomposites of 

CH/MCNC/5-FU. The successful fabrication of the samples with desired physiochemical 

properties was indicated by X-ray powder diffraction (XRD), Fourier-transform infrared 

spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron 

microscopy (TEM), energy dispersion X-ray spectroscopy (EDX), dynamic light 

scattering (DLS), thermogravimetric analysis (TGA), vibrating-sample magnetometry 

(VSM) of the swelling analysis, and ultraviolet-visible (UV) spectroscopy. The use of 2 

weight % extract as stabilizer and capping agent appropriately decreased the size of 

spherical Fe3O4 NPs with enhanced stability and anticancer effects. Compared to CF/5-

FU formulation, CNC/5-FU showed higher crystallinity, smaller size, and prolonged drug 

release at targeted pH media. The PMNCs samples of MC/5-FU and CH/MCNC/5-FU 

showed multifunctional physiochemical properties and also magnetic and heat-

responsive manner. The use of chitosan coating in CH/MCNC/5-FU improved drug 

encapsulation efficiency and controlled drug release at various pH and heat induction 

conditions. From images of TEM and SEM, the size of all the synthesized samples was 

estimated to be below 80 nm, showing their potential usage in nanodrug delivery systems. 

In in vitro anticancer assay, the fabricated Fe3O4/P. granatum/5-FU, CF/5-FU, and 

CNC/5-FU desirably exhibited negligible damage against CCD112 normal cells and 

appropriate anticancer actions against HCT116 colorectal cancer cells. MC/5-FU with 

magnetic targeting and heat induction improved the anticancer effects, guide ability, and 

tolerable toxicity in targeted drug delivery systems. Further, CH/MCNC/5-FU showed 

not only high biocompatibility but also caused enhanced selectivity and elimination of 

the cancer cells. In conclusion, the fabricated the fabricated Fe3O4 nanoparticles, 

polysaccharides, PMNCs as innovative, low-cost, and topical nanodrug formulations 

could offer promising potential to tackle most, if not all, of the conventional drug delivery 

issues in colorectal cancer therapy. 
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ABSTRAK 

Kanser kolorektal adalah salah satu penyakit malignan yang paling banyak 
didiagnosis di dunia. Ini merupakan fakta yang telah dibuktikan dengan baik bahawa 
ketoksikan ubat kemoterapi luar sasaran seperti 5-Fluorouracil (5-FU) mempengaruhi 
tubuh dengan kesan goyah. Nanokomposit magnetik berasaskan polisakarida (PMDC) 
berasaskan hijau, pelbagai fungsi, dan sangat biokompatibel sebagai pembawa ubat pintar 
dapat memenuhi rawatan barah yang disasarkan untuk mengelakkan sitotoksik yang tidak 
disasarkan daripada kemoterapi konvensional. Penyelidikan komprehensif ini telah 
berusaha untuk memperkenalkan lima pembawa ubat 5-FU berasaskan hijau yang 
berbeza, termasuk nanopartikel Fe3O4 yang distabilkan dengan ekstrak kulit buah 
granatum Punica (Fe3O4/P. granatum/5-FU), serat selulosa jerami padi (CF/5-FU), serat 
selulosa magnetik (MC/5-FU), nanokristal selulosa (CNC/5-FU), dan bionanokomposit 
magnetik bersalut chitosan (CH/MCNC/5-FU). Untuk tujuan ini, nanopartikel Fe3O4 
sfera dihasilkan dengan teknik pemendakan bersama dan menggunakan empat peratusan 
berat yang berbeza dari ekstrak kulit buah granatum Punica sebagai penstabil hijau. 
Kemudian, CF berbentuk batang telah diasingkan daripada sisa jerami padi dengan 
menggunakan pelunturan dan rawatan alkali. Kemudian, CF berbentuk batang diasingkan 
daripada sisa jerami beras dengan menggunakan pelunturan dan rawatan alkali. 
Nanopartikel Fe3O4 telah disokong ke matriks CF untuk menghasilkan bionanokomposit 
MC. CNC seperti jarum telah diasingkan daripada selulosa jerami padi melalui proses 
hidrolisis asid. Di samping itu, kaedah gelasi ionik dan natrium tripolyfosfat cross-linker 
digunakan untuk menghasilkan lapisan demi lapisan bionanokomposit CH/MCNC/5-FU. 
Kejayaan fabrikasi sampel dengan sifat fisiokimia yang dikehendaki ditunjukkan oleh 
difraksi serbuk X-ray (XRD), spektroskopi Inframerah Transformasi Fourier (FTIR), 
pengimbasan mikroskopi elektron (SEM), mikroskop elektron penghantaran (TEM) 
sinar-X penyebaran tenaga spektroskopi (EDX), penyebaran cahaya dinamik (DLS), 
analisis termogravimetrik (TGA), magnetometri bergetar-sampel (VSM) analisis 
bengkak, dan spektroskopi ultraviolet-visible (UV). Penggunaan ekstrak 2 % berat 
sebagai penstabil dan ejen penutup dengan sewajarnya menurunkan saiz sfera Fe3O4 NPs 
dengan peningkatan kestabilan dan kesan antikanser untuk sistem penyampaian ubat 5-
FU. Berbanding dengan formulasi CF/5-FU, CNC/5-FU menunjukkan kristal yang lebih 
tinggi, saiz yang lebih kecil, dan pelepasan ubat yang berpanjangan pada media pH yang 
disasarkan. Sampel PMNCs MC/5-FU dan CH/MCNC/5-FU menunjukkan sifat 
fisiokimia pelbagai fungsi dan juga cara magnet dan responsif haba. Penggunaan salutan 
chitosan dalam CH/MCNC/5-FU meningkatkan kecekapan encapsulasi ubat dan 
pelepasan ubat terkawal pada pelbagai pH dan keadaan induksi haba. Daripada imej TEM 
dan SEM, saiz semua sampel yang disintesis dianggarkan di bawah 80 nm, menunjukkan 
potensi penggunaannya dalam sistem penghantaran nanodrug. Dalam ujian antikanser in 
vitro, Fe3O4/P. granatum/5-FU, CF/5-FU, dan CNC/5-FU yang dihasilkan dengan pasti 
menunjukkan kerosakan yang boleh diabaikan terhadap sel biasa CCD112 dan tindakan 
antikanser yang sesuai terhadap sel barah kolorektal HCT116. MC/5-FU dengan 
penyasaran magnetik dan induksi haba meningkatkan kesan antikanser, keupayaan 
panduan, dan ketoksikan yang boleh diterima dalam sistem penghantaran ubat yang 
disasarkan. Selanjutnya, CH/MCNC/5-FU menunjukkan bukan sahaja biokompatibiliti 
yang tinggi tetapi juga menyebabkan peningkatan dan penghapusan sel-sel barah. 
Kesimpulannya, nanopartikel Fe3O4, polisakarida, dan PMDC yang dibuat sebagai 
formulasi nanodrug yang inovatif, kos rendah, dan topikal boleh menawarkan potensi 
yang menjanjikan untuk menangani kebanyakan, jika tidak semua, masalah penghantaran 
ubat konvensional dalam terapi barah kolorektal. 
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CHAPTER 1  

 

INTRODUCTION 

1.1 Research Background 

Colorectal cancer causes the death of more than 600,000 patients every year 

[1]. It is attributed to colon, rectal, and bowel cancer and is developed inside polyps 

(adenoma) and formed within the bowel wall. Chemotherapy is the most prominent 

route in colorectal cancer therapy to prolong the life span of cancer patients. 

Anticancer drug 5-Fluorouracil (5-FU) is widely used to treat colorectal cancer. 

However, it may cause harmful side effects and unwanted damages against normal 

cells. Since two decades ago, nanotechnology has advantageously gained its reputation 

in nanomedicine and various biomedical applications. Magnetic nanoparticles (MNPs) 

as smart nanoagent possesses numerous advantages such as low cost of preparation, 

magnetic and heat-responsive properties, guide ability, and low toxicity [2]. It can be 

used in different biomedical applications, including targeted drug delivery [3], 

magnetic hyperthermia and thermoablation [4], bioseparation [5], biosensing [6], 

cancer therapy [7], cell labeling [8], magnetic resonance imaging (MRI) [9], and 

targeting and immunoassays [10]. For therapeutic and biomedical applications, Fe3O4 

and γ-Fe2O3 are popular since these MNPs have small size and narrow size distribution 

as well as high magnetization [11]. An investigation analyzed the in vitro toxicity of 

copper, titanium dioxide, CuZnFe2O4, and Fe3O4 NPs at concentrations ranging 

between 20 to 100 μg/mL, which found no toxicity from the tested Fe3O4 NPs [12]. 

Despite this, the bare MNPs may exert weak colloidal stability, poor drug conjugation, 

low drug encapsulation efficiency, quick drug release, and undesired toxicity against 

normal cells [13]. 

The colloidal stability and biocompatibility of the MNPs can be improved by 

using green-based materials such as plant extract [13, 14], natural cellulose [15], and 

chitosan [16] as stabilizer, capping agent, or solid supports and coating agent. In 

addition green-synthesized nanocarrier system can trigger increased drug loading and 

sustained drug release for advanced cancer treatments, Therefore, MNPs have been 
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synthesized by using different plant extracts including calliandra haematocephal leaf 

[17] juglans regia fruit peel [18], couroupita guianensis Aubl fruit [19], mimosa 

pudica root [20], coffee waste [21], seaweed marine plant [22], syzygium cumini seed 

[23], and Arabic gum [24]. MNPs prepared by a combination of facile co-precipitation 

and green synthesis using stabilizer/capping agents of the plant extract can lead to 

obtaining green-based MNPs with enhanced anticancer effects [13, 25]. Interestingly, 

the peel of some fruits has higher antioxidant and anticancer activities than the pulp 

[26]. The extract of fruit peels such as Garcinia mangostana and Punica granatum (P. 

granatum ) are rich sources of antioxidants and anticancer [13, 14], due to their 

metabolite content of polyphenol or flavonoid subclass [27]. Although P. 

granatum fruit peel contains 30-40 % of the fruit protein, it is considered a waste 

material [28]. Polyphenols, including anthocyanins, may show structural modification 

at in vitro or in vivo evaluation, along with enhanced bioavailability and biological 

properties [29]. P. granatum caused remarkable effects against various cancer cell 

lines, including bladder T24 [30], cervical HeLa [31], prostate [32-34], breast cancer 

[35-38], and thyroid [39].  

Fascinating and enlightening studies on novel natural-based carriers are prone 

to assert solutions for many issues in global health and drug delivery systems. In this 

manner, insights into polysaccharide nanocomposites have eminently illuminated 

several authentic features for medical applications in the past few years that are linked 

to evidence of bias for developing sophisticated technologies to promote a healthy 

society [40]. As the most obtained polysaccharides, natural cellulose with a desirable 

structure, improved crystallinity or ordered regions, and also nano-dimensional scale 

can be isolated from various wood-based materials, including rice straw waste, which 

is the highest agro-waste material in South East Asia [41-43]. The polysaccharide-

based products advantageously can bind with various drugs and show desired swelling 

behavior, pH gradient behavior, and high biodegradability for innovative antitumor 

drug delivery systems [44]. Each property has its particular pros and cons for 

developing a topical nanodrug formulation with improved stability and therapeutic 

effects [45]. The vitality of drug-loaded polysaccharides is a consequence of its 

potential to deliver a sufficient amount of drugs to cancer cells without significant 

effects against normal cells to decrease medical malpractice derived from the drug 

alone [45, 46]. The disadvantages of side-effects of chemotherapy have been alleviated 
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by loading a sufficient dosage of chemo-drugs onto various polymer and 

polysaccharide-based carrier systems, for instance, poly(2-vinyl pyridine)-b-

poly(ethylene oxide) nanomicelles [47], chitosan microspheres [48, 49], 

carboxymethyl cellulose [50], and crystalline nanocellulose to name a few [51]. 

Further, curcumin was loaded onto crystalline nanocellulose and caused almost three 

times higher colorectal cancer cell death than that of curcumin alone [52]. Gao et al. 

in a different report used rice husk to extract acid hydrolyzed nanocellulose and then 

analyzed its phytochemical bioactivities [41]. Thus, with the immense demand for 

using biocompatible nanocarriers in anticancer drug delivery systems, natural 

polysaccharides should be explored as a treatment for killing colorectal cancer cells.  

The use of polymer blends leads to fabricating innovative composites with 

enhanced drug encapsulation efficiency and prolonged drug release. In drug delivery 

applications, chitosan is the second most popular biopolymer after cellulose, with a 

production of over 100 million tons per year [16, 49]. It may be derived from chitin 

and is a cationic linear and natural amino-polysaccharide containing-(1-4)-linked d-

glucosamine and N-acetyld-glucosamine in deacetylated and acetylated form, 

respectively. Among diverse methods to synthesize layer-by-layer chitosan-based 

composites, the ionic gelation approach is an organic solvent-free solution, 

straightforward, and a facile method with minimal toxicity [53]. In this method, the 

phosphate groups of sodium tripolyphosphate (TPP) may act as a physical crosslinking 

agent, which has advantages over emulsifying and chemical crosslinking agents, such 

as less toxicity to the organs and no destruction to the structure of the loaded-drugs in 

chitosan nanocomposites. In addition, the crosslinking procedure might considerably 

improve physiochemical properties of the polymer composites. In medically-related 

applications, the most popular antimicrobial coating agent on cellulose is currently 

chitosan to synthesize composites with suitable biocompatibility and water-rich 

structures to encapsulate both hydrophilic and hydrophobic drugs. Furthermore, the 

bionanocomposites of chitosan and cellulose possess intermolecular interactions, 

owing to H-bonds and Van der Waals forces [54]. Most importantly, chitosan/cellulose 

bionanocomposites may possess a tremendous swelling capacity, water absorption 

ability, and pH-sensitivity to release the drug at the targeted cells [55]. Therefore, the 

biocompatibility and physiochemical properties of both cellulose and chitosan can be 
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modified by using cellulose as a reinforcement or solid support and chitosan as a 

coating agent to synthesize double polysaccharide composites. 

Polysaccharides-based nanocomposites with desired pH-responsive structures 

could be a promising nanodrug system for future cancer treatment. However, changing 

pH in the human body is required a long time with incapability to be adjusted 

externally. This issue can be tackled via using polysaccharides as solid supports or 

coating agents for MNPs as fillers to fabricate multifunctional, biocompatible, and 

biodegradable polysaccharide-based magnetic nanocomposites (PMNCs) to obtain 

remotely controlled drug delivery systems, combination therapy of heat induction and 

magnetic targeting, switchable synthetic cell surfaces, and magnetothermal therapy 

[56, 57]. Numberless studies indicated the fabrication of different magnetic 

nanocomposites (MNCs) and PMNCs (with various size ranges) by using, for 

example, chitosan coated MnFe2O4  (18 nm) [58], dextran coated Fe3O4 (21 nm) [59], 

cellulose matrix (87.12 nm)/Fe3O4 fillers (11.01 nm) [15], PEG coated NiFe2O4 (16 

nm) [60], phosphate coated Fe3O4 (14 nm) [61], tetraethyl orthosilicate coated 

MnFe2O4 (14 nm) [62], Zn0.9Fe0.1Fe2O4 (11 nm) [63], stevioside coated Fe3O4 (3 nm) 

[64], citric acid coated MnxFe3-xO4 (34 nm) [65], aminosilane coated Fe3O4 (100 nm) 

[66], and oleic acid coated Fe3O4 (45 nm) [67]. 

The use of various natural counterparts and coating agents such as 

polysaccharides for MNPs can lead to synthesize PMNCs with increased 

multifunctional properties, biocompatibility, and free magnetic ions onto the target 

organ causing oxidative stress and toxicity against target cancer cells. In this manner, 

the therapeutic nature of PMNCs with arsenal of magnetothermal drug delivery 

systems have manifested several advantages over the conventional cancer therapy 

methods due to their low damage to normal cells and ability to deliver sufficient drug 

dosage to the tumor. Thus, anticancer drug-loaded PMNCs under heat induction and 

external magnetic field (EMF) can perform a desired multifunctional cancer therapy. 

In addition to the high drug loading capacity, pH sensitivity structure of PMNCs, 

intervention of both EMF and heat inductions are capable of remotely switchable on-

demand drug release and precisely steering the magnetothermal effects for local 

ablation of cancer cells in future colorectal cancer therapy. Most importantly, the 
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green-based nano-magnetic carrier systems using for example plant-extract, cellulose 

and chitosan can show sophisticated, biocompatibility, biodegradability, colloidal 

stability and different physiochemical to obtain increased drug loading and desired 

cancer treatments. 

1.2 Problem Statement 

Cancer statistics from over 185 countries have demonstrated 18.1 million new 

cancer cases from 36 different types of cancers in just 2018 alone. Colorectal cancer 

is the second and third most diagnosed cancer for males and females, respectively, 

globally. Anticancer drug 5-FU has been the top-choice chemotherapy drug in both 

adjuvant and advanced colorectal cancer treatment for over six decades. Despite this, 

chemo-drugs possess issues of morbidity and harmful side-effects due to their lack of 

bioavailability and consequent high doses. In addition, 5-FU is poorly water-soluble 

that can cause a weak and heterogeneous distribution of drugs in tumors and thereby 

therapeutic failure. 

The peel of P. granatum has higher antioxidant activities than the pulp, but it 

is considered a waste material. MNPs fabricated without stabilizer or capping agent 

undesirably show low colloidal stability and poor biodegradability. Further, the bare 

MNPs in drug delivery systems are no longer welcome because of their low drug 

loading capacity and undesired biocompatibility. It is worth to mention that coating 

MNPs with non-biodegradable and synthetic materials could be costly and toxic to the 

environment. 

Over the years, rice straw has been the second and first highest agro-waste in 

the world, causing toxicity and the reduction in landfill space. Rice straw waste 

contains a high ratio of natural cellulose to be used in advanced biomedical 

applications. Yet, rice straw cellulose has not been used in drug delivery applications 

and colorectal cancer treatments. Untreated natural cellulose possesses some 

drawbacks, including low thermal stability, undesired crystallinity, poor crease-

resistance, and low solubility in solvent fluids. Although it has obtained success in 
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some cases, cellulose-based single-modality with pH-sensitive carrier structure may 

not be externally guided for the multi-stage drug release procedures. 

Chitosan alone as a drug carrier shows only single-functionality. It can be 

considered that chitosan-based composites without a crosslinking agent indicate 

inappropriate physiochemical properties and weak intermolecular interactions. 

Uncoated magnetic natural nanocellulose composites can display pH, magnetic, and 

heat responsive properties, but with lower drug encapsulation efficiency and faster 

drug release compared to that containing a coating agent. However the synthesis of 

polymer-based drug delivery systems using chemical and physical methods so far has 

been great, the synthesis of low-cost polysaccharide-based magnetic Fe3O4 

bionanocomposites as smart drug carriers for targeted cancer therapy is still beginning 

and limited. Many questions remain unanswered about production methods, the ratio 

among MNPs, type of polysaccharide as solid support and coating agent, and the 

loaded-drug, along with the mechanisms of the components in the synthesis of PMNCs 

as 5-FU carriers for effective colorectal cancer treatments. Above all, the green-based 

carrier formulations can be fabricated via novel and low cost materials such as example 

plant-extract, cellulose and chitosan due to their biocompatibility, biodegradability, 

stability, and great conjugation with various anticancer drug to produce natural-based 

nanodrug formulation for targeted colorectal cancer therapy. 

1.3 Objectives 

The main objective of this study is to introduce plant-mediated MNPs, 

polysaccharides, and PMNCs as novel, low-cost, facile, and advanced drug delivery 

systems for potential colorectal cancer treatments. Based on the background and 

problem statement, the following objectives are derived: 

(a) To synthesize and evaluate physiochemical properties of various anticancer 

drug delivery systems including magnetic Fe3O4/P. granatum/5-FU, rice straw 

cellulose fiber (CF/5-FU), magnetic cellulose fiber (MC/5-FU), cellulose 

nanocrystals (CNC/5-FU), and chitosan-coated magnetic cellulose 

nanocrystals (CH/MCNC/5-FU) bionanocomposites. 
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(b) To determine the drug loading and release of Fe3O4/P. granatum/5-FU, CF/5-

FU, MC/5-FU, CNC/5-FU, and CH/MCNC/5-FU bionanocomposites. 

(c) To assess colorectal cancer effects of Fe3O4/P. granatum/5-FU, CF/5-FU, 

MC/5-FU, CNC/5-FU, and CH/MCNC/5-FU bionanocomposites. 

1.4 Scope of Study 

To complete all the objectives in this project, the research scopes for this study 

are: 

The co-precipitation method and green stabilizer are used to synthesize 

magnetic Fe3O4 NPs, in which P. granatum peel extract (1, 2, 4, and 8 wt %) and the 

sodium hydroxide are served as a stabilizer and a reducing agent, respectively.  The 

reason to use P. granatum peel as agro-waste materials is due to the presence of the 

phenolic compounds in the extract.  The plant extract improves the colloidal stability, 

biocompatibility, and anticancer effects of the green-synthesized Fe3O4 NPs. The 

Fe3O4 NPs mediated with 2 wt % extract is ideally selected for drug loading 

procedure.  

CF as natural polysaccharide is extracted from rice straw waste using a series 

of procedures, including bleaching, delignification, and alkali treatments. CF shows 

the rod-shaped structure, desired purity, and physiochemical properties. The obtained 

rice straw cellulose is loaded with the 5-FU drug to obtain a pH-sensitive and green-

based drug delivery system.  

CF as solid support collects the cluster of magnetic Fe3O4 NPs as fillers to 

fabricate MC bionanocomposites, indicating both pH-sensitive and magnetothermal 

responses for a 5-FU carrier system. In addition, the CF matrix increases the 

biocompatibility and multifunctionality of the magnetic bionanocomposites. Since CF 

is also served as a stabilizer, the use of another stabilizer such as extract is unnecessary.  



8 

 

For isolation of CNC, acid hydrolysis treatment on CF removes the amorphous 

regions and liberates the crystalline regions. Compared to CF, the hydrolysed CNC 

with a needle-like structure indicates smaller nanodimension. CNC is also effectively 

loaded with 5-FU for a pH-sensitive drug delivery system. 

CNC matrix and Fe3O4 nanofillers are used for the synthesis of magnetic CNC 

bionanocomposites. To improve drug encapsulation efficiency and prolonged drug 

release, double polysaccharide-based magnetic bionanocomposites of CH/MCNC/5-

FU is fabricated using cross-linked chitosan coater, CNC reinforcement or solid 

support, and Fe3O4 nanofillers to not only obtain enhanced pH-sensitive, but also 

magnetothermal responses for novel and advanced 5-FU carrier system. Thus, the fruit 

peel, the rice straw and chitosan are natural materials with their specific properties to 

fabricate green-based and low-cost nanocarrier systems. 

Physicochemical properties of all the synthesized samples are evaluated by 

various characterization methods, such as, X-ray powder diffraction (XRD), Fourier 

transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), 

transmission electron microscopy (TEM), energy dispersive spectroscopy (EDX), 

dynamic light scattering (DLS), thermogravimetric analysis (TGA), vibrating sample 

magnetometer (VSM), and swelling analysis. Ultraviolet (UV)-visible spectroscopy 

estimates the drug encapsulation and release of all the synthesized samples. The 

potential targeted drug delivery systems and in vitro cancer treatments of all the 

fabricated samples are carried out against colorectal cancer and normal cell lines. 

1.5 Significance of Research 

Colorectal cancer is one of the significant reasons of death, globally. The 

significance of this study is to use agro-waste materials in developing five new 

anticancer drug delivery systems for colorectal cancer treatments. Fe3O4 NPs 

stabilized with P. granatum peel extract or rice straw cellulose trigger enhanced 

physiochemical properties, biocompatibility, biodegradability, and tolerable toxicity. 

The use of plant-mediated MNPs, chitosan, and CF and CNC extracted from rice straw 

(as the highest agro waste in South East Asia) to fabricate various nanodrug delivery 



9 

 

systems are prone to assert solutions for colorectal cancer that are linked to evidence 

of bias for developing sophisticated nanomaterials to promote a healthy society. 

Magnetic chitosan and cellulose-based drug delivery systems with great swelling 

property, well biocompatibility, and targeted actions can decrease the issues of 5-FU 

chemotherapy such as diarrhea, stomatitis, and gastrointestinal mucosal injury. In 

addition, the use of nanopolysaccharide-based magnetic composites for combination 

therapy of heat treatment, tumor pH targeting, and magnetic targeting offer promising 

potential to tackle issues of single-modality drug delivery systems.  

Thus, polysaccharide-based magnetic bionanocomposites are exceptional in 

smart and remotely guided drug delivery systems due to not only their magneto effects 

and guide-ability, but also their heat capacity develops thermal-stimuli and on-demand 

drug release performance and subsequent thermo-chemosensitisation. This research 

would show fabrication and characterizations of various MNPs, polysaccharides, and 

magnetic polysaccharide bionanocomposites to achieve affordable scale-up of natural-

based drug delivery systems and advanced colorectal cancer treatments to assist 

attainment of cancer survivors' aims. 

1.6 Outline of Thesis 

This thesis consists of five chapters. 

Chapter 1 is the introduction of the thesis to explain background, problem 

statement, objectives, scope, and significance of this research. This chapter indicates 

the knowledge required to tackle the issue, hypothesis, scope and limitation, 

conceptual framework, aims, and significance of this research. 

Chapter 2 is the literature review to indicate findings of the previous studies. 

This chapter identifies gaps on why mpolysaccharide-based magnetic nanocomposites 

for targeted drug delivery systems have yet to fulfil reliable magnetothermal 

chemotherapy for colorectal cancer. Given the presumed important role magnetic 

nanocomposites (MNCs) and polysaccharide-based magnetic nanocomposites 

(PMNCs) as well as their synthesis methods, surface modifications, and coating, it 
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presents recent studies on targeted drug delivery systems for development of 

inexpensive, minimal invasiveness, and advanced cancer therapy.  

Chapter 3 contains the research materials, fabrication methods of Fe3O4/P. 

granatum/5-FU, CF/5-FU, MC/5-FU, CNC/5-FU, and CH/MCNC/5-FU 

bionanocomposites as green-based drug delivery systems for colorectal cancer 

treatments. The physiochemical analysis of the samples is explained using various 

techniques, including XRD, FTIR, SEM, TEM, EDX, DLS, TGA, VSM, and swelling 

analysis. The drug loading and release study for all synthesized drug carrier systems 

are indicated using UV-visible spectroscopy. Cytotoxicity and anticancer effects of the 

synthesized samples are explained using colorectal normal and cancer cell lines. 

Chapter 4 discusses the obtained results of various physiochemical properties 

for Fe3O4/P. granatum/5-FU, CF/5-FU, MC/5-FU, CNC/5-FU, and CH/MCNC/5-FU 

bionanocomposites. This chapter indicates the drug loading and release performance 

of the synthesized samples. In addition, results of cytotoxicity assays and anticancer 

effects of the samples are explained to indicate the potential use of the fabricated drug 

nanocarrier systems for colorectal cancer treatments.  

Chapter 5 presents summary of the obtained results in this project. This chapter 

shows the research conclusion for synthesis of Fe3O4/P. granatum/5-FU, CF/5-FU, 

MC/5-FU, CNC/5-FU, and CH/MCNC/5-FU for colorectal cancer therapy, followed 

by the recommendation for future works in smart drug delivery systems. 
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