
POLYIMIDE BASED MIXED MATRIX NANOFILTRATION MEMBRANE FOR 

REFINING PALM OIL 

LIM KI MIN 

UNIVERSITI TEKNOLOGI MALAYSIA



POLYIMIDE BASED MIXED MATRIX NANOFILTRATION MEMBRANE FOR 

REFINING PALM OIL 

LIM KI MIN 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of 

Doctor of Philosophy 

Malaysia-Japan International Institute of Technology 

Universiti Teknologi Malaysia 

APRIL 2022



iv 

DEDICATION 

This thesis is dedicated to my father, who taught me that the best kind of 

knowledge to have is that which is learned for its own sake. It is also dedicated to my 

mother, who taught me that even the largest task can be accomplished if it is done 

one step at a time. 



v 

ACKNOWLEDGEMENT 

In preparing this thesis, I was in contact with many people, researchers, 

academicians, and practitioners. They have contributed towards my understanding and 

thoughts. In particular, I wish to express my sincere appreciation to my main thesis 

supervisor, Dr. Mohd Nazlee Faisal Md Ghazali, for encouragement, guidance, critics 

and friendship. I am also very thankful to my co-supervisor Dr. Tan Lian See and Dr. 

Mariam Firdhaus Mad Nordin for their guidance, advices and motivation. Without 

their continued support and interest, this thesis would not have been the same as 

presented here. 

I am also indebted to Universiti Teknologi Malaysia (UTM) for funding my 

Ph.D study. Laboratory technicians in UTM also deserve a special thanks for their 

assistance during various unforeseen events in the laboratory. 

My fellow postgraduate student should also be recognised for their support. 

My sincere appreciation also extends to all my colleagues and others who have 

provided assistance at various occasions. Their views and tips are useful indeed. 

Unfortunately, it is not possible to list all of them in this limited space. I am grateful 

to all my family member. 



vi 

ABSTRACT 

The purification of vegetable oil is an important process to obtain purified 

vegetable oil for various applications. However, conventional processes in vegetable 

oil purification, such as deacidification, require a huge amount of energy which is not 

only costly, but also contributes to a high rate of carbon footprints. To improve the 

current state of purification, the capability of membrane technology in purifying 

vegetable oil was investigated. The main objective of this study is to investigate the 

potential of polyimide-based mixed matrix membrane (MMM) in refining palm oil by 

nanofiltration. To achieve the objective, preliminary investigations on the performance 

of commercially available membranes were made. Subsequently, polyimide-based 

MMM with different additives loadings were fabricated and characterized. 

Additionally, membrane transport models were used to describe and predict the 

membrane separation process and a suitable multistage configuration was also 

proposed. The structural and physical characteristics of the fabricated membranes were 

studied. The separation performances of the fabricated membranes were investigated 

by using a dead-end stirred cell and ethyl acetate as the diluting solvent for palm oil. 

From the membrane characterization, it was found that MMM with 0.5wt% of β-

cyclodextrin functionalized multi-walled carbon nanotubes (βCD-fMWCNT) achieves 

the highest separation of palmitic acid from the feed diluted palm oil at 3.84 LMH/bar. 

The rejection of palmitic acid was found to be 60% and tocopherol, carotene and 

triglyceride at 94.43%, 98.74%, and 95.18% respectively. The membrane separation 

process was found to be best described by using the Solution-Diffusion model. 

Additionally, a theoretical study by using different multistage configurations found 

that the separation process can be further improved. The proposed multistage 

configuration was able to yield triglyceride with 99.28% purity with only 9.8% of oil 

loss in the purified permeate stream with a 41% of solvent recovery rate. Therefore, 

from this study, it is proven that membrane separation technology is a promising 

purification alternative and mixed matrix polyimide membrane has the potential in 

improving the conventional palm oil purification process.  
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ABSTRAK 

Penulenan minyak sayuran adalah proses yang penting untuk mendapatkan 

minyak sayuran yang tulen untuk pelbagai aplikasi. Walau bagaimanapun, proses 

deasidifikasi minyak konvensional, memerlukan jumlah tenaga yang tinggi yang 

bukan sahaja mahal, malahan menyumbang kepada jejak karbon dalam kadar yang 

tinggi. Untuk menambahbaik proses penulenan pada masa kini, keupayaan teknologi 

membran dalam pemprosesan minyak sayuran telah dikaji. Objektif utama 

penyelidikan ini adalah untuk menyiasat potensi membran matriks campuran (MMM) 

berasaskan poliimid dalam penulenan minyak sawit. Untuk mencapai objektif utama, 

siasatan awal dengan menggunakan membran komersial telah dijalankan. Seterusnya, 

penghasilan and pencirian MMM berasaskan poliimid turut dilakukan. Pemerihalan 

proses pengasingan menggunakan membran telah dijalankan melalui model 

pengangkutan membran (MPM). Malahan, konfigurasi untuk nanofiltrasi secara 

bertingkat yang bersesuaian juga telah dicadangkan dalam kajian ini. Ciri-ciri 

struktur dan fizikal membran yang dibuat telah dikaji. Prestasi proses pengasingan 

melalui MMM telah dijalankan dengan menggunakan sel pengaduk hujung mati dan 

etil asetat sebagai bahan pelarut minyak sawit. Dari pencirian membran, adalah 

didapati bahawa MMM dengan 0.5% gabungan nanotiub karbon dinding-berganda 

berfungsikan beta siklo dekstrin (βCD-fMWCNT) mencapai kadar pengasingan asid 

palmitik yang tertinggi dari minyak sawit dalam kadar 3.84LMH/bar. Kajian ini juga 

mendapati bahawa penyingkiran asid palmitik, tokoferol, karotena, dan trigliserida 

adalah masing-masing pada kadar 60%, 94.43%, 98.74% dan 95.18%. Tambahan 

pula, dari segi perbandingan MPM, adalah didapati bahawa model resapan-larutan 

adalah model yang paling sesuai dalam perihalan proses nanofiltrasi minyak sawit 

dalam larutan etil asetat. Selain itu, dengan menggunakan nanofiltrasi secara 

bertingkat, pengumpulan semula bahan pelarut pada kadar 41% dan peningkatan 

ketulenan minyak sawit tulen (99.28%) dapat dicapai. Dari kajian ini, adalah terbukti 

bahawa teknologi membran adalah sesuai sebagai teknologi alternatif untuk 

menggantikan proses penulenan minyak sayuran yang konvensional. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Research 

Vegetable oils such as oil palm, soybean, rapeseed, and sunflower oil have 

been studied widely for their production processes since the early years of this century 

due to their wide availability and uses. The processed oil from plants can be used in 

fields such as in food products, supplement and nutrition products, beauty products, 

and most recently biofuels (Pal and Pratap, 2017; Panchal et al., 2017). Vegetable oil 

processing involves the removal of undesirable components such as phospholipids, 

free fatty acids (FFA), sterols, trace metals, and oxidation products from edible oil 

which affects the taste and texture of the vegetable oil. The main stages in conventional 

vegetable oil processing are solvent extraction, evaporation, degumming, 

deacidification, bleaching, dewaxing, and deodorization (Gupta, 2008). Although 

these stages have been used widely in the industry, it possesses some major drawbacks 

which can be improved by current technology (de Morais Coutinho et al., 2009; 

Vaisali et al., 2015). Some of the highlighted drawbacks are high energy usage, oil 

losses, and contaminated effluents produced during the processes (de Morais Coutinho 

et al., 2009; Vaisali et al., 2015). As Malaysia and Indonesia primarily produce palm 

oil with approximately 84% of the world’s production, the technological enhancement 

in the palm oil production industry would potentially bring about a significant cost-

saving and improved energy-efficiency in obtaining refined oil which is aligned with 

the current efforts of reducing carbon footprints. 

Membrane technology is one of the promising alternatives for the industrial 

processing of vegetable oil (as can be seen in Figure 1.1) and it has been studied 

extensively by researchers on a lab-scale to industrial scale (Vaisali et al., 2015).  In 

the field of vegetable oil processing, this technology is capable of removing 

undesirable products and retrieve valuable components from crude vegetable oil 
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(Marchetti et al., 2014; Priske et al., 2016). Besides that, the solvent used during the 

filtration process can also be recovered. Moreover, the membrane technology is 

relatively energy efficient as compared to conventional approaches such as distillation. 

Various studies on membrane-aided vegetable oil purification have been published by 

researchers in the recent years (Azmi et al., 2015; Firman et al., 2017a; Shi et al., 2019; 

Werth et al., 2017a). From their studies, it was found that vegetable oil needs to be 

diluted to allow a better permeation flux and separation. As organic solvent can 

dissolve polymers through solvent diffusion and chain disentanglement, membrane 

polymer with high solvent-resistance properties is usually used in the study 

(Gugliuzza, 2015; Lim et al., 2017). Solvent-resistant polymers such as 

polybenzimidazole (PBI), polyimide (PI), and poly (ether ether) ketone (PEEK) were 

some of the polymers used for the fabrication of membrane (Galizia and Bye, 2018). 

The use of solvent-resistant membranes was found to be successful in rejecting 

triglycerides at high rate of rejection with acceptable solvent permeation fluxes.  

However, research on the separation of free fatty acids and nutritional 

compounds from vegetable oil are still on-going due to the difficulty of separating 

compounds of similar sizes with acceptable solvent permeability (Vaisali et al., 2015). 

In the study by Shi et al. (2019), they had performed the separation of linoleic acid 

from glyceryl trilinoleate by using commercial solvent-resistant membranes. It was 

found the DuraMem 500 was able to reject glyceryl trilinoleate and linoleic acid at 

around 86% and 35% respectively at acetone permeation of 1.02 LMH/bar. In another 

study, Werth et al. (2017a) have investigated the separation between rapeseed oil and 

oleic acid by using PuraMem 280 membrane. They have discovered that the membrane 

was able to reject 97% and 34.7% of rapeseed oil and oleic acid respectively at 0.1135 

kg m-2h-1bar-1 of ethanol permeation. From the investigation by the researchers, it is 

proven that polymeric membrane is capable of separating compounds in vegetable oil. 

Nevertheless, more investigations are needed to improve the permeation flux of the 

solvent without compensating the membrane selectivity and rejection performances. 

In recent decades, nanoparticles have been employed in different fields of 

industry such as paint, surface coating, and polymer products (Stark et al., 2015). The 

nano-size particles were found to enhance the properties of the materials and products 
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when a certain composition (of nanoparticles) was added to the base material (Nazari 

and Riahi, 2011; Stark et al., 2015; Sun et al., 2011). In the field of membrane 

technology, nanoparticles such as metal oxides, carbon molecular sieves, carbon 

nanotubes, and zeolites have been studied (Cheng et al., 2018). In the research by 

Soroko and Livingston (2009), it was found that titanium dioxide was able to improve 

the structural stability of the membrane. In another study, carbon nanotubes were used 

as the filler which improves the permeation flux of the fabricated membrane (Farahani 

et al., 2018). From these studies, the addition of nanoparticles was found to have 

positive effects on the performance of the fabricated membranes. 

Figure 1.1 Comparison between conventional oil refining method and membrane 

refining method (Cheryan, 2005). 

The prediction of membrane separation performance on the other hand can be 

performed through the use of membrane transport models as proposed by researchers 
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(Marchetti and Livingston, 2015). There are various membrane transport models 

available, such as the widely known solution-diffusion model, pore-flow model, and 

irreversible thermodynamic models. Through the correlation of experimental data to a 

certain membrane transport model, the mathematical description of a certain 

separation process can be obtained (Peshev and Livingston, 2013). The correlation of 

data to the model will require the estimation of model parameters which can be 

obtained through non-linear regression of data to the selected model. Besides that, the 

performance of the separation process can be further improved by employing 

multistage nanofiltration (Renouard et al., 2018). By using a selected multistage 

configuration, the separation process could be more effective in separating solutes as 

well as enabling the recovery of solvents. 

1.2 Problem Statement 

The refining of vegetable oil is indeed important for the production of different 

consumable products in our daily life. However, the conventional refining process of 

vegetable oil particularly stages that involve high energy requirements such as steam 

distillation during the deacidification stage and winterization during the dewaxing 

process should be improved (Shi et al., 2019; Werth et al., 2017b). According to the 

researchers, the current refining process also resulted in the unnecessary loss of oil 

from the hydrolysis process, production of low-value soap stocks, and highly cost 

explosion-proof equipment (Vaisali et al., 2015). Therefore, an alternative way to 

remove the undesirable compounds from the vegetable oil is desired. Membrane 

technology is a preferable way to separate the compounds as it has low energy 

requirement, the ability to recover compounds in their natural state, as well as the 

capability to recover solvents (Marchetti et al., 2014). Although there are studies on 

the use of membranes to separate oil compounds, their results were either low in 

selectivity or low in permeation flux which makes them unsuitable for industrial 

applications (Shi and Chung, 2020; Werth et al., 2017a). In the recent decades, there 

is an emerging technology known as nanoparticle technology which can improve the 

overall structure and performance of materials. There are already studies on the use of 

nanoparticles in the fabrication of membrane, which resulted in mixed matrix 

membrane (MMM) or thin-film nanocomposite (TFN). However, to our best of 
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knowledge, there is a lack of study on the fabrication of MMM for the separation of 

vegetable oil (Abdellah et al., 2019; Ali et al., 2021; Shi and Chung, 2020). Therefore, 

through different formulations of polymer dope solution, the fabrication of suitable 

MMM for vegetable oil purification can be obtained in this study.  

1.3 Research Objectives 

Based on the aforementioned issues, the following objectives were 

constructed: 

i) To formulate and fabricate integrally skinned asymmetric (ISA) membranes 

and mixed matrix membranes (MMM) with different additive loadings. 

ii) To perform membrane characterization on fabricated membranes and 

membrane performance study. 

iii) To predict the performance of selected fabricated membrane by using different 

membrane transport models. 

iv) To theoretically evaluate the selected membrane performance using multi-

stage nanofiltration configuration. 

1.4 Research Scope 

This study focuses on the separation of palmitic acid from synthetically 

prepared palm oil diluted in the organic solvent. Hence, the following scopes of the 

study were identified and listed as follows: 

• Membrane performance studies of commercial solvent-resistant membranes by 

solute rejections, solvent permeation fluxes, and selectivity of membranes 

towards different solutes (palmitic acid, tocopherol, carotene, triglyceride) in 

the solvent-diluted (acetone, ethyl acetate, isopropanol) synthetically prepared 

palm oil. 
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• Membrane swelling studies of the commercial solvent-resistant membrane in 

different solvents (acetone, ethyl acetate, isopropanol). 

• Solute-solvent-polymer interaction studies by using molecular modeling. 

• Membrane formulation by using polyimide P84 at different solvent/cosolvent 

ratios. 

• Membrane fabrication by using polyimide P84 as the polymer and beta-

cyclodextrin (β-CD) and beta-cyclodextrin functionalized multi-walled carbon 

nanotubes (βCD-fMWCNT) as additives. 

• Membrane performance studies of fabricated membranes by using solvent-

diluted synthetically prepared palm oil at different additive loadings. 

• Membrane characterization of fabricated membranes by using FESEM, AFM, 

FTIR, TGA, contact angle, pore size, wettability, and dye rejection. 

• Membrane performance prediction by using different membrane transport 

models, where parameter estimation was performed by using MATLAB. 

• Evaluation of different multistage nanofiltration configurations for improving 

membrane selectivity and solvent recovery. 

1.5 Significance to knowledge/ Contribution 

The technology for fractionating vegetable oil has been stagnant for the past 

30-50 years due to the successful separation of the oil through physical and chemical 

refining methods (Vaisali et al., 2015). However, in recent years, there is an increasing 

need to improve the conventional method due to its negative impact on the 

environment and equipment lifespan (Szekely and Zhao, 2022). The use of membrane 

separation technology was introduced in different industries that involve purification 

and separation. However, as of current, the vegetable oil refineries still rely on the 

conventional method due to the low permeation flux, low selectivity, and lack of 

studies on solvent-resistant membranes in fractionating vegetable oil components 

(Vaisali et al., 2015). There were several studies on the use of a membrane in vegetable 

oil purification, but the results were either low in permeation flux or low in the 

selectivity of desired vegetable oil constituents (Shi and Chung, 2020; Shi et al., 2019). 

This report is the first to describe the use of polyimide P84 nanofiltration membrane 
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with βCD-fMWCNT additives for the purification of palm oil. The present study found 

that the use of polyimide P84 membrane constructed through the use of DMF and 1,4-

Dioxane as solvent was able to separate palmitic acid from triglyceride at a high 

selectivity and permeation flux. The addition of βCD-fMWCNT additives at certain 

compositions also further improves the selectivity of palmitic acid/ triglyceride and 

permeation flux. Furthermore, it was found that the solution-diffusion model is the 

best to describe the nanofiltration of ethyl acetate-diluted palm oil. By using the data 

from the fabricated membrane, it was also found that the selectivity and solvent 

recovery of the nanofiltration process can be further improved through a proposed 

multistage configuration. From the findings, it is demonstrated that polyimide P84 

mixed matrix membrane is a promising candidate for vegetable oil deacidification 

applications. This work contributes to the development of membrane technology in the 

vegetable oil processing field, especially in the deacidification process. This work 

particularly provides useful data and information for the implementation of mixed 

matrix membrane in deacidifying vegetable oil. Besides that, through the use of 

different membrane transport models and multistage, this work can contribute to the 

future development of artificial intelligence (AI) models, in which the results from the 

experiments and nonlinear regressions can be used as part of the database. 

1.6 Thesis Outline 

This thesis consists of 5 chapters. Chapter one explains the background, 

objectives, scope and problem statement of this research. Chapter two provides 

literature review related to this research, which also includes the mathematical 

equations which are useful in describing and comparing the different experimental 

results. Chapter three outlines the methodology of the research. The methodology 

describes all the materials, equipment, experimental procedures, as well as process 

flow or description in obtaining related experimental results. Chapter four of this thesis 

provides explanation and discussion on the results obtained from the experiments. 

Finally, chapter five concludes the research and also summarizes the important 

findings of the study. Chapter five also include recommendations which describes the 

future directions of this study. 
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