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ABSTRACT 

The prediction of magnetorheological elastomer (MRE) dynamic modulus 

behavior is a challenging process because of the material’s highly nonlinear nature. 

This problem becomes apparent while considering various possible material’s 

fabrication parameters selection. Previously, parametric modeling techniques such as 

Kelvin Voigt and Maxwell's models were applied to simulate the viscoelastic behavior. 

Nevertheless, it required parameter identification or data fitting for each applied 

magnetic field which is less efficient and becomes more complex when considering 

various material responses. In other words, parametric modeling method’s 

performance was limited in the change of input-output data, especially for larger-scale 

cases involving vast databases. Consequently, prediction model construction using a 

non-parametric approach such as machine learning has gained much attention in recent 

years. The advantages of machine learning techniques, such as to identify complex 

patterns or trends, and the ability to handle multi-variety of data, allow its potential to 

be utilized in material science study. Therefore, this research presents a data-driven 

approach prediction model using machine learning techniques for predicting the 

dynamic viscoelastic modulus of MRE. The multiple input multiple output-dependent 

dynamic modulus models were formulated using two feedforward neural network 

approaches called backpropagation artificial neural network (BP-ANN) and extreme 

learning machine (ELM). In this research, the MRE samples were synthesised under 

various compositions to undergo dynamic testing using a rheometer for data collection 

purposes. For the basic model design, three inputs variables were considered which 

were the shear strain, magnetic flux density, and input frequency. On the output side, 

storage and loss modulus were the targeted material dynamic properties. Meanwhile, 

for extended model design, fabrication effects such as filler concentration and 

distribution were also considered as additional input to predict dynamic modulus. To 

optimize the model configuration, sensitivity analysis was conducted. Here, the 

hyperparameters such as a number of hidden nodes and types of activation functions 

were varied in the training process. Thereafter, hyperparameters for optimized model 

configuration were selected based on the training accuracy performance. Next, the 

models were evaluated by utilizing the testing data sets for generalization purposes. 

Evaluation results showed that the ELM model had produced higher prediction 

accuracy, particularly at the linear viscoelastic (LVE) region where the achieved root 

mean square error (RMSE) and coefficient of determination (R2) were 0.0021 MPa 

and 0.994 respectively. Moreover, in terms of material’s fabrication effect, the ELM 

model also had demonstrated promising performance in forecasting the unlearned filler 

concentration where a relatively small RMSE of 0.0096 MPa was recorded. It is 

concluded that the ELM model had shown its potential to be as an accurate, flexible, 

and fast prediction modeling platform. The establishment of this non-parametric 

approach to replace the parametric model in predicting material dynamic properties is 

expected to contribute towards a time-efficient and cost-effective strategy for the 

MRE-based device development process. 
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ABSTRAK 

Meramal kelakuan modulus dinamik elastomer reologi magnet (MR) adalah 

proses yang mencabar kerana sifat bahan yang tak lelurus. Masalah ini menjadi 

semakin jelas dengan adanya pelbagai kemungkinan pemilihan parameter untuk 

pembikinan bahan. Sebelum ini, teknik pemodelan berparameter seperti model Kelvin 

Voigt dan Maxwell telah digunakan untuk selaku kelakuan likat-anjal. Namun begitu, 

ia memerlukan pengenalpastian parameter atau pemasangan data untuk setiap medan 

magnet yang digunakan di mana ianya kurang cekap dan menjadi lebih kompleks jika 

kepelbagaian tindak balas bahan diambil kira. Dalam erti kata lain, prestasi kaedah 

pemodelan berparameter adalah terhad kepada perubahan data masukan-keluaran, 

terutamanya untuk kes berskala besar yang melibatkan pangkalan data yang luas. 

Disebabkan itu, pembinaan model ramalan tak-berparameter seperti pembelajaran 

mesin telah mendapat banyak perhatian dalam beberapa tahun kebelakangan ini. 

Kelebihan teknik pembelajaran mesin, seperti mengenal pasti corak atau arah aliran 

yang kompleks, dan keupayaan untuk mengendalikan data pelbagai jenis, 

membolehkan potensinya digunakan dalam kajian sains bahan. Oleh itu, kajian ini 

mempersembahkan model ramalan melalui pendekatan didorong oleh data 

menggunakan teknik pembelajaran mesin untuk meramal modulus dinamik likat-anjal 

elastomer MR. Model modulus dinamik berbilang masukan  berbilang keluaran 

dirumus menggunakan pendekatan dua rangkaian saraf suap depan iaitu rangkaian 

neural tiruan perambatan balik (BP-ANN) dan pembelajaran mesin lampau (ELM). 

Dalam kajian ini, sampel MRE telah disintesis dalam pelbagai komposisi untuk 

menjalani ujian dinamik menggunakan reometer bagi tujuan pengumpulan data. Untuk 

rekabentul model asas, tiga pembolehubah masukan telah diambil kira iaitu, terikan 

ricih, ketumpatan fluks magnet dan frekuensi. Di bahagian keluaran, sifat dinamik 

bahan yang disasarkan adalah modulus storan dan modulus kehilangan. Sementara itu, 

untuk rekabentuk model lanjutan, kesan pembikinan seperti kepekatan dan agihan 

zarah pengisi juga diambil sebagai masukan tambahan untuk meramal modulus 

dinamik. Untuk mengoptimumkan tatarajah model, analisis sensitiviti telah dijalankan. 

Di sini, hiperparameter seperti bilangan nod terlindung dan jenis-jenis fungsi 

pengaktifan telah dipelbagaikan dalam proses latihan. Kemudian, hiperparameter yang 

sesuai untuk tatarajah model yang dioptimumkan telah dipilih berdasarkan prestasi 

kejituan latihan. Seterusnya, model telah dinilai menggunakan set data ujian untuk 

tujuan pengitlakan. Dapatan penilaian menunjukkan bahawa model ELM telah 

menghasilkan ketepatan ramalan yang lebih tinggi terutamanya di rantau likat-anjal 

linear (LVE) dimana ralat purata kuasa dua akar (RMSE) dan pekali penentuan (R2) 

masing-masing mencapai nilai 0.0021 MPa dan 0.994. Selain itu, dari segi kesan 

pembikinan bahan, model ELM juga telah menunjukkan prestasi yang 

memberangsangkan dalam meramalkan data kepekatan zarah yang tidak dipelajari 

oleh model sebelum ini dimana RMSE yang kecil secara perbandingannya telah 

direkodkan iaitu sebanyak 0.0096 MPa. Dapat disimpulkan bahawa model ELM telah 

menunjukkan potensinya sebagai platform pemodelan ramalan yang tepat, boleh suai, 

dan pantas. Pengenalan kepada pendekatan tak-berparameter bagi menggantikan 

model berparameter dalam meramal sifat dinamik bahan ini dijangka dapat 

menyumbang ke arah strategi meningkatkan kecekapan masa dan penjimatan kos 

untuk proses pembangunan peranti berasaskan MRE.  
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CHAPTER 1   

 

 

INTRODUCTION 

1.1 Research background 

Magnetorheological (MR) material is an intelligent materials with tuneable 

properties exposed to external magnetic fields [1] in which MR fluid (MRF) was the 

first established of MR material having controllable viscosity. Nowadays, researchers 

have focused on MR elastomer (MRE) due to drawbacks on MRF such as undergo 

sedimentation and agglomeration [2]. In addition, MRE having the advantages of 

locking up  the magnetic particle commonly used micron-sized such as carbonyl iron 

particles (CIPs) [3,4] as the filler in the matrix element (e.g., silicone rubber, natural 

rubber) [5–10]. Moreover, the viscoelastic behavior in which the properties of elastic 

and viscous can be changed in the presence of magnetic fields [6,11].   

The changes of dynamic viscoelastic properties such as storage and loss 

modulus on effect of magnetic field is called MR effect. The storage modulus indicates 

the ability to store energy elastically while loss modulus indicates the energy dissipated 

as heat. In the meantime, the loss factor represents the damping capability of the MRE. 

The properties of MRE have two primary responses, which are linear response 

(commonly used to measure the MR effect) and non-linear response known as linear 

viscoelastic (LVE) and nonlinear viscoelastic (NLVE) region, respectively.  These 

regions can be observed from the storage modulus-shear strain relationship. 

Furthermore, the LVE region can be shortern and NLVE region can be wider as 

increased the magnetic field, occurred due to Payne effect [12].  

Many studies have proposed various methods to improve MR effect, 

particularly the essential fabrication process-parameters, such as the variations of filler 

concentration [9,13–17] magnetic field [15,18–20] and the particle shapes and sizes 

[18,21,22]. As discussed in recent works [19,23], different curing conditions can affect 
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material properties by changing the dispersion or distribution condition and distance 

between magnetic particles during  curing process. The curing condition classification 

can be anisotropic and isotropic with chain like-alignment in existence and arbitrary 

alignment in the absence of magnetic fields, respectively [24]. 

While the effect of each fabrication process-related parameter is quite 

predictable, the pattern exhibits by MRE dynamic behavior becomes more challenging 

to be modelled if two or more parameters are considered [25]. Moreover, in terms of 

predicting the dynamic viscoelastic properties in LVE and NLVE region, the pattern 

along the LVE region can be considered easy to predict. However, on NLVE region, 

the storage modulus, is overlapping at the various magnetic fields (e.g. B1 and B2) 

which is difficult to predict, as illustrated in Figure 1.1. Therefore, it is quite a 

challenge to duplicate the behavior of MRE at LVE and NLVE region. Hence, a 

thorough studies should be done to find a proper approach to replicate the complex 

and nonlinear MRE dynamic viscoelastic behavior. 

 

Figure 1.1 Illustration of the viscoelastic behavior on NLVE region 

1.2 Motivation of study 

Various MRE viscoelastic models were developed to fulfill the demands of 

researches [26–30]. The continuum mechanics-based model is one of the MRE based-

model where it theoretically coupled the elasticity and magnetism response which 

numerically structured based on the principle of strain energy function and 



 

3 

thermodynamics [31]. Several studies have developed continuum mechanics-based 

MRE models [32–34]. Nevertheless, one of the disadvantages was it cannot distinguish 

the spatial particle distribution such as isotropic, anisotropic, and plane-like structures 

[35] due to the continuum assuming homogeneity of the media [36].  Aforementioned, 

the influence of spatial particle distribution was very significant on the MRE behavior 

[19,23].  

Then, the microscale-based model was introduced that able to distinguish 

between isotropic and anisotropic distribution. This model was developed by using a 

lattice network model in which the mechanism of microstructural was presented in 

detailed [29,33,37]. Furthermore, the model able to relate microstructural concept, 

such as dipole interaction towards the magnetic field interaction in which became the 

main cause of modulus changes [29]. Even so, it can only be applied to the quasi-static 

properties, not for dynamic properties. Limited studies on this issue might be due to 

difficulty of finding the best lattice network model. Therefore, microscale and 

continuum mechanics-based models were unable to predict the MRE material dynamic 

properties in which the MRE devices such as isolator is applicable in dynamic mode 

rather than quasi-static mode. 

Another model that is appropriate in predicting the dynamic behavior is called 

phenomenological-based parametric model [7,10,11,13,17,38,39]. This kind of model 

is more suitable for the use of MRE dynamic behavior prediction where the dynamic 

behavior is more relatable to the MRE device behavior compared to continuum-

mechanics and microscale-based model which focus on static behavior prediction.   

Used of elements such as spring, dashpot, and slider coulomb friction in 

phenomenological-based parametric model allowed the modelling structure explicitly 

explained for dynamic behavior. These elements allowed the inclusion of crucial 

responses such as strain amplitude, frequency, and magnetic field in predicting the 

dynamic behavior [7,10,13,40–42] where the physics law such as Hooke’s law and 

Newton’s law were utilized in the model development structure. 

Nevertheless, the parametric models were too dependent on a specific magnetic 

field. The parameter identification needs to be done on each value of magnetic field 
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intensity through a data fitting process which is acknowledged as a tedious procedure. 

Otherwise, the prediction accuracy would drop if a single model parameter was 

utilized for various magnetic fields. This led to less efficient, and the issue becomes 

aggravated when considering other variables related to material fabrication, such as 

the filler concentration effect. According to Vatandoost et al. [43], parameter 

identification from the measured data only valid in the vicinity of the condition used 

for experimental characterization. In addition, Leng et al. [44] described the parametric 

models could have too many parameters need to be identified which lead to unrealistic 

values (e.g. negative stiffness and damping). 

Hence, an approach that able to predict the MRE dynamic behavior without 

involving complex parameter identification while able to cover various magnetic fields 

in a simple model structure is needed and favorable. Rather than parametric approach, 

the nonparametric approach is more preferable because no prior assumptions with 

regards the functional relationship between inputs and targets are required [45]. 

Moreover, it is good at handling complex behavior [46] which suitable for MRE 

dynamic behavior as its exhibit nonlinear characteristics with respect to different 

magnetic field strength.  

Several studies have applied the nonparametric approaches using machine 

learning model to predict the rheological properties such as shear strength of soil [47] 

and tensile properties of rubber [48] with good prediction accuracy. There were also 

studies on the prediction of shear force on MRE isolator. Yu et al. [49]  proposed an 

adaptive neuro-fuzzy inference system (ANFIS) model having displacement at current 

and previous time, and also applied current as model inputs. The same author also in 

a different publication [50], had adopted support vector regression (SVR) model to 

predict the shear force. Here, the rate of change of the displacement (i.e. velocity) was 

added as model input along with input variables used in [49]. Meanwhile, neural 

network have been applied by Zhou et al. [51] and Vatandoost  [43] to predict the MRE 

isolator in shear-squeeze mode and forecast the MRE tensile strength, respectively. 

The advantages of neural network in solving multiple regression problem 

allowed its widespread utilization especially in viscoelastic material [52–54]. In 
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addition, neural network had demonstrated an acceptable capability in interpolation 

and extrapolation estimation, in the case where generalization data were either within 

or beyond the training data range, respectively [55]. Apparently, neural network-based 

model can be one of nonparametric approach potential solution for MRE dynamic 

viscoelastic behavior prediction.  

1.3 Problem statement 

Various MRE parametric models have been exploited since it is important to 

represent the dynamic properties which affected by numerous magnetic field 

intensities in real application. Nonetheless, the MRE parametric models are currently 

dependent on a specific magnetic field, resulting in inaccurate prediction accuracy 

once the single model parameter is applied at different magnetic field. Repetition in 

parameter identification process is needed to determine the model parameters at 

different magnetic fields which is deemed as pivotal. Furthermore, the parametric 

model development involved higher order differential equations, which are complex. 

Therefore, an approach that can simplify the MRE dynamic viscoelastic model 

development and able to predict at various magnetic field should be explored. 

1.4 Research objectives 

This research was embarked based on the following objectives: 

1. To design the MRE dynamic viscoelastic model for predicting the field-dependent 

modulus using the machine learning approach. 

2. To develop the MRE prediction model with the influence of fabrication effect by 

considering filler concentration and distribution as extended input. 

3. To analyze the model generalization through RMSE and R2 performance index. 
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1.5 Research scope 

• MRE fabrication process involves two main components: matrix element and 

magnetic particle used as a filler. The silicon rubber and CIP were utilized as 

matrix element and magnetic particle, respectively.  

•  The MRE were fabricated on two different distributions based on curing 

conditions which is isotropic distribution with the absence of magnetic field was 

applied to make it as homogenous. Then, anisotropic distribution was fabricated 

with the presence of 300 mT to make it in aligned chain. 

• The fabricated MRE has five different concentrations that vary by weight 

percentages of CIP, among which are 30%, 40%, 50%, 60% and 70%. These 

concentration ranges were selected because if the CIP concentrations less than 

30%, it brings forth to a narrow range of shear modulus with respect to magnetic 

field variation. Moreover, most works used 70% as their maximum concentration 

due to stability in the microstructure. 

• The oscillation testing (i.e. dynamic testing) of the samples was conducted using 

parallel plate rheometer to investigate the viscoelastic properties of MRE. Three 

sweep tests were performed:  1) Strain sweep, 3) Frequency sweep and 3) current 

sweep.  

• In this study, two MRE’s dynamic viscoelastic properties which were the storage 

modulus (MPa) and loss modulus (MPa) were considered as the prediction model.  

• All modeling, simulations and analysis were performed using MATLAB R2018b 

platform. 

1.6 Significance of research 

This research offered a flexible, intelligent, simple, and high performances 

solution of prediction the MRE viscoelastic behavior. The details of the contribution 

for this study can be found as follow. 
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1. A new model for characterize the Payne effect phenomenon 

The Payne effect can be observed by plotting the storage modulus versus shear 

strain. This effect can be seen when the storage modulus is maintained until it drops at 

critical strain, along with the increase of strain amplitude. By this, the observation of 

LVE and NLVE can be determined. The LVE is a region where the microstructure is 

strong. Meanwhile, the microstructure in the NLVE region is weak. To be specific, at 

the large deformations which occur at NLVE region, the stress induced MRE has 

broken down the filler network due to unstable particle bonding resulted to the 

decreasing of storage modulus. In the meantime, the particle interaction are much 

stronger at small deformation which is in LVE region [56]. Differentiating these two 

regions with the given shear strain can be essential, especially for material 

characterization and device development. Considering different magnetic fields will 

become arduous because the LVE and NVLE region will keep changing. Hence, a 

model that can mitigate this behavior is a need. However, only a few commercially 

available finite element algorithms take into account the effect of amplitude 

dependency when incorporating a magnetic field response. Furthermore, developing 

such an algorithm is a complex endeavor that requires the incorporation of actual 

material features with mathematical formulation. Hence, machine learning models 

offer an easy way to model the behavior and may solve issues such as nonlinear SAOS 

and LAOS analysis. 

2. A new composition and filler distribution dependent linear viscoelastic MRE 

model. 

In the case of the linear viscoelastic model, many constitutive MRE models have 

been developed, including the fabrication effect such as CIP concentration as input 

response. It is a challenging task for the previous works to provide a model that can 

accommodate magnetic flux density, filler concentration, and filler distribution as a 

function of frequency as the input in one model. Thus, this study offers a machine 

learning model for predicting the linear viscoelastic behavior as a function of 

frequency which can predict the dynamic viscoelastic properties at the desired 

magnetic field, with the desired composition for either isotropic or anisotropic 

distribution flexibly. Therefore, this model helps optimize or tune the magnetic field 
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and composition for isotropic and anisotropic distribution according to the application 

requirement. 

1.7 Thesis outline 

This thesis is organized in five chapters that can be shortly described as follow: 

Chapter 1: This chapter describes the introduction of the thesis, starting with the 

research background and motivation of study to gain the reader's understanding related 

to the topic and then followed by the problem statement and research objective. After 

that, this thesis's scope is briefly explained, followed by the significance of the 

research. 

Chapter 2: This chapter presents the literature review conducted in this work. It 

started with introducing MRE, including the components of matrix rubber, magnetic 

particle, and its dynamic viscoelastic properties. Furthermore, the existing linear 

viscoelastic models is described. Then, the available machine learning model for 

MRE and its shortage is explained. 

Chapter 3: This chapter starts with a flowchart presentation of the proposed 

model's process to gain understanding. After that, the fabrication process of MRE by 

explaining the raw material used and rheological testing of MRE is described. Then, 

this chapter presents the modeling platform of MRE via the machine learning approach 

by proposed backpropagation artificial neural network (BP-ANN) and extreme 

learning machine (ELM) method by describing the network structure of the model. 

The data sets of the model are introduced and followed by the data division for training 

and validation purposes.   

Chapter 4: This chapter describes the performance of the proposed modeling 

method in predicting the viscoelastic properties of MRE, particularly the storage 

modulus and loss modulus. The training performance is discussed on the basic 

viscoelastic model and extended input case. Then, the model generalization 
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performance is presented, followed by the effect of the model hyperparameter, which 

is the number of hidden nodes and type of activation function. 

Chapter 5: This chapter concludes with research outcomes reflecting this thesis's 

objective. Also, the contribution of research is declared, and lastly, the 

recommendation and future work is stated at the last of the chapter.  
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