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ABSTRACT 

The conversion of lignocellulosic biomass into bioethanol or biochemical 

products requires a crucial pre-treatment process to break down the recalcitrant lignin 

structure. Biological pre-treatment using microbial enzymes appears to be the most 

promising alternative to depolymerize the lignin fragment, which can simultaneously 

facilitate conversion into valuable chemical products. Thus, this research focuses on 

bioconversion of Alkali Lignin (AL) for lignin depolymerization, using several 

enzymes from bacterial isolates. Two bacteria isolates, Streptomyces sp. strain S6 and 

Bacillus subtilis strain S11y, were selected as the potential strains for the source of 

candidate enzymes responsible for lignin depolymerization. Sequencing of the 

genomic DNA of these strains revealed four successful candidate genes with lignin 

depolymerizing ability, in which two genes were identified as dye-decolorizing 

peroxidase (DyP2, ~41 kDa) and multicopper oxidase (CuO1, ~44 kDa) from 

Streptomyces sp. strain S6, and also two genes identified as Cu/Zn superoxide 

dismutase (SOD2, ~22 kDa) and monofunctional heme catalase (Kat2, ~55 kDa) from 

Bacillus subtilis strain S11y. These genes were successfully expressed as recombinant 

enzymes and confirmed to have the ability to degrade AL polymer. Differential UV-

vis spectrum (∆ε-spectrum) of AL treated with the candidate enzymes demonstrated 

increased absorbance at ~295 nm and 350 nm after treatment, indicating increased free 

and conjugated phenol structure due to depolymerization. These enzymes also showed 

activity for oxidation of AL, reducing ~100-240 Da of the high-molecular-weight 

fraction of AL within 24 h treatment. Analysis of reaction components of all enzymes 

with AL by ultra-high-pressure liquid chromatography-mass spectrometry and gas 

chromatography-mass spectrometry showed that the enzymes generated various low-

molecular-weight products of diverse groups, such as vanillyl alcohol, vanillin, 

dihydro-ferulic acid, salicylic acid, benzoic acid, 2,4-dimethyl-benzaldehyde, and 

oxalic acid. Based on the depolymerization products, the reaction mechanisms 

performed by each enzyme were also successfully elucidated, which involved several 

types of reactions, including β−O−4, C-C, C-C, Aryl-C bond cleavages, O-

demethylation, polymerization, decarboxylation, benzylic oxidation, and aromatic ring 

oxidative cleavage. Each enzyme appeared to generate radicals formed on the lignin 

surface, leading to several bond cleavages and structural modification in AL after 

enzymatic treatment, proving their ability to depolymerize polymer lignin. Successful 

evaluation of lignin depolymerizing enzymes can be applicable for lignin pre-

treatment process in green energy production as well as generation of valuable 

chemicals in bio-refinery.  

  



 

vi 

 

ABSTRAK 

Penukaran biojisim lignoselulosa kepada bioetanol atau produk biokimia 

memerlukan proses pra-rawatan yang penting untuk menguraikan struktur lignin yang 

degil. Pra-rawatan biologi menggunakan enzim mikrob menunjukkan pilihan yang 

paling berpotensi dalam menguraikan serpihan lignin, yang pada masa yang sama 

boleh menghasilkan produk kimia yang bernilai. Oleh itu, penyelidikan ini tertumpu 

pada biopenukaran alkali lignin (AL) bagi tujuan penyahpolimeran lignin dengan 

menggunakan beberapa enzim daripada beberapa bakteria yang telah melalui proses 

pemencilan. Dua bakteria, Streptomyces sp. strain S6 dan Bacillus subtilis strain S11y, 

telah dipilih sebagai strain yang berpotensi untuk mendapatkan sumber enzim yang 

bertanggunjawab bagi penyahpolimeran lignin. Penjujukan genomik DNA  strain  ini 

berjaya mendedahkan empat calon gen yang berkemampuan dalam penyahpolimeran 

lignin, di mana dua gen dikenal pasti sebagai penyahwarna pewarna peroksidase 

(DyP2, ~41 kDa) dan oksidase multikuprum (CuO1, ~44 kDa) dari Streptomyces sp. 

strain S6, serta 2 gen yang dikenal pasti sebagai Cu / Zn jenis-superoksida dismutase 

(SOD2, ~22 kDa) dan katalase monofungsi yang mengandung hem (Kat2, ~55 kDa) 

dari Bacillus subtilis strain S11y. Gen-gen ini berjaya dinyatakan sebagai enzim 

rekombinan dan diperakui mempunyai kemampuan untuk mendegradasi polimer AL. 

Bezaan spektrum ultraungu tampak (∆ε-spektrum) bagi AL yang dirawat dengan 

enzim menunjukkan peningkatan keresapan pada ~295 nm dan 350 nm selepas 

rawatan, menunjukkan peningkatan struktur fenol bebas dan berkonjugat kesan 

daripada penyahpolimeran. Enzim ini juga menunjukkan aktiviti untuk pengoksidaan 

AL, dengan pengurangan ~100-240 Da pecahan berat molekul tinggi AL dalam 

tempoh 24 jam rawatan. Tindak balas komponen bagi setiap jenis enzim dengan AL 

dianalisis dengan menggunakan kromatografi cecair tekanan ultra-tinggi-spektrometri 

jisim dan kromatografi gas-spektrometri jisim menunjukkan beberapa produk berat 

molekul rendah terjana dari pelbagai kumpulan kimia, seperti alkohol vanillyl, 

vanillin, asid dihidro-ferulit, asid salisilik, asid benzoik, 2,4-dimetil-benzaldehid dan 

asid oksalik. Berdasarkan produk penyahpolimeran, mekanisma tindak balas yang 

dilakukan oleh setiap enzim berjaya dijelaskan, yang melibatkan beberapa jenis tindak 

balas, termasuk pemecahan ikatan β−O−4, C-C, C-C, Aryl-C, pendemetilan-O, 

polimerisasi, dekarboksilasi, pengoksidaan benzilik dan belahan oksidatif gelang 

aromatik. Setiap enzim dilihat boleh menjana radikal yang terbentuk pada permukaan 

lignin, menyebabkan beberapa belahan ikatan dan pengubahsuaian struktur dalam AL 

selepas rawatan enzim membuktikan keupayaan mereka untuk menyahpolimer lignin 

polimer. Keberjayaan penilaian enzim penyahpolimeran lignin menunjukkan 

kebolehgunaan enzim sebagai proses pra-rawatan lignin dalam penghasilan tenaga 

hijau serta penjanaan bahan kimia bernilai di loji penapis biologi. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

The industrial production of fuels, chemicals, and synthetic polymers depends 

on non-renewable fossil resources, which are depleting and can pose serious 

environmental problems, such as waste generation and global warming. Developing 

sustainable products from renewable natural resources is in demand to minimize this 

issue. Lignocellulosic biomass is the most abundant renewable organic carbon source 

on earth.  Utilization of this renewable source is expected to be the most assuring 

alternative feedstock to petroleum-based resources as it is widely available in nature. 

Besides, lignocellulosic feedstocks are inedible compared to food-based crops and will 

not compete with food supplies. As a tropical country with enormous biomass 

resources, Malaysia generated at least 168 million tons of biomass annually, ranging 

from palm oil, rubber, wood, and rice husks (Agensi Inovasi Malaysia, 2013). The 

palm oil sector contributes to the most significant biomass generation in the country, 

with about 85.5 % generation. From the palm oil biomass, only approximately 10% 

can be converted into crude palm oil, while the remaining 90% are generated as 

biomass (Ng et al., 2012), which are still seen as low-value by-products. This residual 

biomass can be re-utilized and converted into downstream value-added products, 

including but not limited to bioethanol, biobased chemicals, and biopolymers, which 

can generate revenue for the country. 

Despite the abundance and potential of biomass, the main challenge for its 

commercial application is the technology for converting lignocellulosic biomass into 

sugars for bioethanol/biochemicals and aromatic-based chemicals. There is still 

technology uncertainty in the initial pre-treatment process of breaking down the lignin 

fraction of the biomass structure before converting it into individual sugars that can 

later be fermented into bioethanol or bio-based chemicals. Lignocellulosic biomass is 
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the main component of plant structure, which mainly consists of two carbohydrate 

polymers, cellulose and hemicellulose, and an aromatic polymer, lignin, organized and 

interlinked together. Cellulose and hemicellulose are chains of polysaccharides that 

can be easily degraded by microbial enzymes or chemical hydrolysis and are 

considered the primary candidates for bioethanol and biochemical production. 

Meanwhile, lignin, the most complex among them, is a three-dimensional 

heterogeneous cross-linked macromolecule comprising numerous aromatic 

phenylpropanoid monomeric units identified as guaiacyl (G), p-hydroxyphenyl (H), 

and syringyl (S) units (Guerriero et al., 2016). In the plant cell wall, lignin acts as a 

cellular glue between cellulose fibers and is covalently bonded with hemicellulose, 

thus enhancing its strength and rigidity. In addition, being aromatic and relatively 

hydrophobic, lignin acts as an antimicrobial and waterproofing agent and provides 

carbohydrates protection from hydrolysis by microbial enzymes (Hatti-kaul and 

Ibrahim, 2013; Olajuyigbe et al., 2018). However, due to these stable aromatics and 

complex structures, lignin is highly resistant to degradation. Thus, the crosslinked 

networks prevent enzymatic access to cellulose and hemicellulose, which hinders the 

downstream saccharification and fermentation process for bioethanol conversion.  

Several pre-treatment approaches include mechanical, chemical, 

physicochemical, and biological methods to depolymerize the recalcitrant lignin 

fraction of lignocellulosic biomass. Biological pre-treatment using microbial enzymes 

appears to be the most promising alternative, as it offers a more environmental-friendly 

treatment with lower energy requirements (Olajuyigbe et al., 2018; Xu et al., 2018). 

Besides, since lignin is the only available natural source for aromatic chemicals 

production, biological pre-treatment could also offer advantages to support the 

generation of lignin-derived compounds alongside the saccharification of 

carbohydrates from cellulose and hemicellulose. Through biological pre-treatment, 

microbial degradation can be controlled to achieve desired, valuable aromatic and 

phenolic by-products, such as vanillin, catechol, styrene, as well as polyphenols (Bugg 

and Rahmanpour, 2015; Fang and L. Smith, 2016).  

It is reported that some white-rot and brown-rot fungi have the ability to 

degrade lignin, and many studies have been reported on the production of lignin-
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degrading enzymes from fungi (Salvachúa et al., 2013; Sharma and Aggarwal, 2017). 

According to Vicuña (1988), lignin degradation occurs in nature mainly the result of 

two processes. First is the depolymerization of native polymeric lignin to yield low 

molecular weight aromatic compounds, followed by mineralization of those resultant 

aromatics. Depolymerization of native lignin is driven by oxidoreductases enzymes, 

such as lignin peroxidase (LIP), manganese peroxidase (MNP), versatile peroxidase 

(VP), and laccase (LAC). White- and brown-rot fungi can generate numerous 

oxidoreductases and are expected to be the main contributors to the lignin 

depolymerization stage. Meanwhile, bacteria are thought to have a lesser amount of 

these powerful ligninolytic enzymes. Due to this, bacteria are generally predicted to 

take a major part in the second stage, which is the mineralization of lignin-derived 

aromatic compounds. Bacterial enzymes involved in the depolymerization of lignin 

are still poorly understood until now. 

However, most of the studies on fungal ligninolytic enzymes have not turned 

into a commercial process for lignin degradation, and the lignin degradation problem 

is still becoming an issue. There are limitations in producing a large-scale growth due 

to their slow reproduction rate and maintaining the enzyme activities' stability at broad 

reaction conditions (Taylor, 2013). Besides, fungi also have a relatively complex 

genetic and protein expression characteristics (Ahmad et al., 2011), making it 

challenging to perform genetic manipulation.  

1.2 Problem Statements 

It is proposed that bacterial systems can be suitable for generating lignin-

oxidizing enzymes for lignin depolymerization. Although less well-identified and 

characterized, especially in their depolymerization ability, bacteria are well understood 

for their biochemical versatility, rapid growth, and good environmental adaptability. 

Their lignin metabolism can also be further explored (Bandounas et al., 2011; Taylor, 

2013). Performing molecular genetics and protein expression from bacteria is also 

more convenient than fungi, especially on a large scale (Lee et al., 2019). Various 

gram-positive and gram-negative bacteria have been reported to have the ability to 
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break down lignin, such as Sphingomonas paucimobilis SYK-6), Pseudomonas putida 

mt-2, and Rhodococcus jostii RHA1 (Timothy Bugg et al., 2011). However, since 

bacteria are predicted to involve in the mineralization of lignin-derived aromatic 

compounds, many of the previously reported bacterial lignin degradation utilized low 

molecular weight lignin-derived compounds, such as dimers (-Aryl ether, biphenyl) 

and monomers as the lignin model (Santos et al., 2014; Min et al., 2015; Zhou et al., 

2017; Granja-Travez et al., 2018; Haq et al., 2018). These results will be inaccurate to 

represent the actual depolymerization ability of the organisms as the native lignin is in 

polymeric form. Besides, rather than focusing on exploring specific lignin 

depolymerizing enzymes, more of the previous studies on bacterial lignin degradation 

pays attention to finding the enzymes involved in the catabolic pathways of the lignin-

derived aromatics (Sato et al., 2009; Abdelaziz et al., 2016; Rhee, 2016). Looking 

closer at these studies, most of the enzymes were only directed to break down the ether 

linkages. Reports on the actual degradation of polymeric lignin are still limited. 

Exploration of lignin depolymerizing enzymes secreted by bacteria that are 

evaluated directly on polymer lignin substrate is needed to understand the actual 

mechanism of lignin depolymerization and attain suitable enzymes for this purpose. 

Numerous studies have attempted to utilize polymeric lignin, such as Kraft lignin, 

Alkali Lignin (AL), and Organosolv lignin model that can closely mimic the natural 

lignin to evaluate lignin degradation by bacteria (Y. H. Chen et al., 2012; Kumar et 

al., 2015; C.-X. Yang et al., 2017; Jackson et al., 2017). However, in all these reports, 

lignin-depolymerizing enzymes by the bacteria were determined through enzymatic 

assays using the basis of fungal ligninolytic enzymes (LIP, MNP, and LAC detection). 

Knowledge about bacterial lignin degradation was based mainly on empirical studies 

on producing the enzymatic activities of those peroxidase enzymes. Nevertheless, the 

actual enzymatic system utilized by bacteria responsible for lignin depolymerization 

is still not fully explored. Some bacterial enzymes were reported to contribute to 

depolymerization of lignin, such as dye-decolorizing peroxidase (DYP) from 

Rhodococcus jostii RHA1 (Ahmad et al., 2011), superoxide dismutase (SOD) from 

Sphingobacterium sp. T2 (Rashid et al., 2015) and multi-copper oxidase from 

Ochrobactrum sp. (Granja-Travez and Bugg, 2018). These enzymes are thought to 

have broad substrate specificity, allowing the degradation of lignin polymeric 
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compounds. However, understanding bacterial enzymes for lignin depolymerization is 

limited to these few strains. Since different bacterial strains would generate diverse 

sets of lignin-degrading enzymes, further exploration of the responsible enzymes is 

necessary. Besides, due to their limited studies, it is still uncertain whether or not 

bacterial enzymes are good candidates for lignin depolymerization, which requires 

further evaluation. 

1.3 Objectives of Study 

This study aimed to perform bioconversion of AL polymer using several candidate 

enzymes for lignin depolymerization from several bacteria isolates. The objectives of 

the study are as follows:  

(a) To obtain the potential bacterial strains and candidate enzymes with lignin 

depolymerizing ability.  

(b) To construct recombinant enzymes for lignin depolymerization using 

heterologous expression in Escherichia coli. 

(c) To evaluate the ability of candidate enzymes for the depolymerization of lignin 

structure using AL as substrate. 

 

1.4 Scopes of Study 

This study involves the selection of lignin-degrading bacteria with better 

performance from the previously reported strains, isolated from palm oil wastes. The 

bacterial strains include: four mesophilic bacterial strains from the genus of 

Agrobacterium sp. S2, Streptomyces sp. S6, Aureimonas sp. S26, and Rhodococcus sp. 

S58, that were previously isolated from decayed oil palm empty fruit bunch (OPEFB), 

and two thermophilic bacteria from the genus of Stenotrophomonas sp. S2N and 
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Bacillus subtilis S11y that were isolated from matured OPEFB and palm oil mill 

effluent (POME) compost. Initial selection was performed by evaluating the growth 

of isolated bacteria in a medium containing AL as sole carbon source. AL is used as a 

polymeric lignin model compound, that can sufficiently mimic the native lignin. Since 

there is limited study on ligninolytic enzymes from bacteria, the known ligninolytic 

enzyme assays that were previously detected and reported in fungi and some bacteria, 

were used to further select the potential strains. The enzymes include, LIP, MNP, DYP, 

LAC and auxiliary enzyme, AAO. Bacterial strains with better overall growth and 

enzymatic activities were selected as the potential strains.  Draft genome sequences of 

the potential strains were extracted and analyzed to confirm the strain species and to 

search for homology sequences that encode for the known ligninolytic enzymes being 

tested. Since bacteria showed low homology similarities with the reference genes 

encoding for the known ligninolytic enzymes, the draft genome sequences were also 

used to evaluate and identify the presence of other candidate genes that are responsible 

for the lignin depolymerization in bacteria. All the potential gene of interest were TA 

cloned using pGEM-T Easy vector in E. coli JM109 host. Successful recombinant 

plasmids were heterologously expressed in E. coli BL21(DE3) using IPTG induction. 

Their enzymatic properties on polymeric lignin were study to confirm the catalytic 

activities of the enzymes for lignin depolymerization. To do this, polymeric AL was 

treated with the overexpressed whole-cell recombinant enzymes. Direct structural 

characterization on the lignin was performed to evaluate the enzymatic performance. 

The cell harboring the blank vector pGEM-T Easy (E. coli BL21(DE3)/pGEM) was 

used as negative control. The control and enzymatic treated lignin samples were then 

analyzed by ultraviolet–visible spectroscopy (UV-vis). Successfully characterized 

lignin depolymerizing enzymes were further analyzed to evaluate the extent of 

depolymerization performed by the enzymes, by using several analytical instruments 

including gel-permeation chromatography (GPC), ultra- high-pressure liquid 

chromatography mass spectrometry (UHPLC/MS), and gas chromatography mass 

spectrometry (GC/MS). Due to limited understandings on bacterial ability to 

depolymerize lignin and its enzymology, the degradation study by the recombinant-

enzymes were performed using whole-cell enzymes rather than free enzymes. The 

used of whole-cell biocatalysts were also targeted to minimize the time-consumption 

and material-intensive from enzyme purification process. Besides, due to the 

recalcitrant structure of lignin structure, the enzymatic treatment was performed on 
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polymer lignin-mimicking model (Alkali Lignin), and not on dimers or directly on the 

native lignocellulose medium. In this study, the bacterial lignin-degrading enzymes 

are only limited to those that are secreted by the isolated bacterial strains.  Moreover, 

biochemical characterizations and enzyme kinetics were not performed as the activity 

against the test substrates under the specific reaction conditions might have different 

outcome on the degradation of actual polymeric lignin substrate. Thus, the catalytic 

activities of the enzymes were directly assessed using lignin as substrates and 

evaluated the structural changes using analytical instruments (UV-vis spectroscopy, 

GPC, UHPLC/MS, and GC/MS).  

1.5 Significance of study 

This research provides the engineering of whole-cell enzymes for green 

chemistry applications. Uncovering bacterial genes and enzymes in its 

lignocellulolytic system is important for improvement in the industrial applications. 

This is because, analyzing the genome sequences of the bacteria strains, could reveal 

many potential genes with unique properties and contributes to information on lignin 

depolymerization mechanism by bacteria. In addition, the research on exploring 

bacterial enzymes for lignin depolymerization will also contribute to additional 

knowledge about lignin-depolymerizing enzymes and could be applied by industrial 

enzyme for lignin depolymerization process. A commercial lignin depolymerizing pre-

treatment process could also subsequently provide a global solution associated to the 

underutilized lignocellulosic biomass generation and aid in the development of 

biomass conversion to value-added product, such as bioethanol and bio-based 

chemicals production. Maximizing the potential of lignocellulose biomass in 

biorefinery can subsequently improve profitability of the biorefinery and provide 

circular economy to the biorefinery.  
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1.6 Thesis Organization 

This thesis consists of Five Chapters with appendices. Chapter One is the 

background of study, problem statements, and objectives related to the studies, the 

research scopes, as well as significance of study. Chapter Two discussed about 

lignocellulose biomass, specifically on lignin, including its structures, its isolation as 

well as its potential as renewable feedstocks. Several pre-treatment processes for 

degradation of lignin were covered, mainly on biological pre-treatment in the form of 

ligninolytic enzymes. Short reviews on microbial enzymes, especially from bacteria 

responsible for lignin degradation were also written to understand the limitation in the 

related-reported studies, and to highlight the potential of bacterial enzymes in 

depolymerizing lignin. Some discussion on the DNA recombinant technology, and 

protein expression for production of recombinant enzymes for lignin depolymerization 

were also covered. Some analytical methods to study and characterize the structure of 

lignin and lignin-derived breakdown products were also included. Chapter Three 

explained all the materials and methodologies required to complete the entire 

objectives of the research. Chapter Four presented the experimental results and 

thorough discussion of the research findings. Chapter Five concludes the overall 

research studies with some recommendation for future related research.   
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