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ABSTRACT 

Water pollution has been plaguing the world ever since the industrial 

revolution. One of the main water pollutants is dyes and they pose adverse effect on 

mankind and aquatic life. This pollutant can be removed through an emerging 

alternative technique; the advanced oxidation process (AOPs). Photocatalysis, one of 

popular AOPs, utilizes semiconductor catalyst to degrade the dyes. Zinc oxide (ZnO) 

is a promising material for this process. In this study, pullulan-based zinc oxide 

nanoparticles (ZnO NPs), polyaniline/pullulan composites (PANI/Pul Cs) and zinc 

oxide-polyaniline/pullulan nanocomposites (nZPP NCs) were synthesized. The 

catalysts were characterized using X-ray diffraction (XRD), Fourier transform infrared 

spectroscopy (FTIR), ultraviolet-visible spectrophotometer (UV-Vis), transmission 

electron microscopy (TEM), surface area and pore analyser and thermogravimetric 

analysis (TGA). In this study pullulan served as capping agent for the production of 

ZnO NPs and PANI/Pul Cs. For the synthesis of ZnO NPs, the effects of calcination 

conditions, temperature and time, on the properties of ZnO NPs were studied. The 

crystallinity and particle size of ZnO NPs increased proportionally with calcination 

temperature. Concerning calcination time, significant increase of particle size was 

observed when the time was increased to two hours. TEM results showed that the 

particles size of synthesized ZnO NPs ranged from 28 to 127 nm. All the catalysts 

were subjected to photodegradation of rhodamine B (RhB) dye. ZnO NPs produced 

with calcination conditions of 400 °C for 1 hour showed the best activity with 

degradation rate of 0.0801 min-1. Then, composites PANI/Pul were synthesized with 

variation of aniline to pullulan mass ratio. The impact of mass ratio variation on the 

properties PANI/Pul Cs was compared. In the presence of pullulan, the crystallinity of 

PANI/Pul Cs improved. Besides, the particle morphology also became more consistent 

rod-like shape in the presence of pullulan with aniline to pullulan mass ratio of 1:3. 

All the synthesized PANI/Pul Cs were subjected to photodegradation of RhB and the 

results showed that the best activity was exhibited by the PANI/Pul C synthesized with 

1:3 aniline to pullulan mass ratio with degradation rate of 0.0086 min-1. Then nZPP 

NCs were synthesized using ZnO NPs produced with calcination conditions of 400 °C 

for 1 hour and PANI/Pul C with 1:3 aniline to pullulan mass ratio. The weight per cent 

of PANI/Pul C in nZPP NCs were varied as two, six and 10 per cent. With the addition 

of PANI/Pul C on ZnO NPs, the crystallinity of ZnO NPs was not disturbed.  The nZPP 

NCs catalyst activity was optimized by using response surface methodology (RSM) 

with the variable being weight per cent of PANI/Pul C, catalyst dosage and pH with 

the response being degradation rate. The results showed that the most suitable model 

was quadratic with the optimum degradation rate obtained was 0.2319 min-1 with six 

weight per cent of PANI/Pul C, catalyst dose of 0.7 g/L and initial pH of 8. Lastly, the 

optimized catalyst was tested with simulated dye wastewater which was created by 

mixing five dyes together. The results showed that complete decolourization was 

achieved in 180 minutes.      
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ABSTRAK 

Pencemaran air telah melanda dunia sejak revolusi industri. Salah satu bahan 

pencemar utama adalah pewarna dan ia memberi kesan yang buruk kepada manusia 

dan hidupan akuatik. Bahan pencemar ini dapat dihapuskan melalui teknik alternatif 

yang muncul; proses pengoksidaan termaju (AOP). Fotokatalisis, salah satu AOP yang 

terkenal, menggunakan pemangkin semikonductor untuk degradasi pewarna. Zink 

oksida (ZnO) adalah bahan yang mempunyai harapan untuk proses ini. Dalam kajian 

ini, nanozarah ZnO berasaskan pullulan (ZnO NPs), komposit polyanilin/pullulan 

(PANI/Pul Cs) dan nanokomposit zink oksida- polyanilin/ pullulan (nZPP NCs) telah 

disintesis. Pemangkin telah dicirikan menggunakan pembelauan sinar-X (XRD), 

spektroskopi inframerah transformasi Fourier (FTIR), spektrofotometer cahaya-

nampak ultraungu (UV-Vis), mikroskopi pancaran elektron (TEM), luas permukaan 

dan penganalisis liang dan analisis termogravimetrik (TGA). Dalam kajian ini, 

pullulan berfungsi sebagai agen penutup untuk penghasilan ZnO NPs dan PANI/Pul 

Cs. Untuk sintesis ZnO NPs, kesan keadaan kalsinasi iaitu suhu dan masa, terhadap 

sifat ZnO NPs telah dipelajari. Penghabluran dan ukuran zarah ZnO meningkat secara 

berkadar dengan suhu kalsinasi. Dari segi masa kalsinasi, peningkatan saiz zarah yang 

ketara diperhatikan apabila masa dinaikkan menjadi dua jam. Hasil TEM 

menunjukkan bahawa ukuran partikel ZnO NPs yang telah disintesis berkisar antara 

28 hingga 127 nm. Semua pemangkin telah diuji pada fotodegradasi pewarna 

rhodamine B (RhB). ZnO NPs yang telah dihasilkan dengan keadaan kalsinasi 400 °C 

selama 1 jam menunjukkan aktiviti terbaik dengan kadar degradasi 0.0801 min-1. 

Kemudian, komposit PANI/Pul Cs telah disintesis dengan variasi nisbah jisim anilin 

dan pullulan. Kesan variasi nisbah jisim pada sifat PANI/Pul Cs telah dibandingkan. 

Dengan adanya pullulan, kristaliniti PANI/Pul Cs bertambah baik. Selain itu, 

morfologi zarah juga menjadi bentuk batang yang lebih konsisten dengan nisbah anilin 

kepada pullulan 1:3. Semua PANI/Pul Cs yang dihasilkan telah diuji terhadap 

fotodegradasi RhB dan hasilnya menunjukkan bahawa aktiviti terbaik dipamerkan 

oleh Pul/PANI C yang telah disintesis dengan nisbah jisim analin dan pullulan 1:3 

dengan kadar degradasi 0.0086 min-1. Kemudian, nZPP NCs telah disintesis 

menggunakan ZnO NPs yang dihasilkan dengan keadaan kalsinasi 400 °C selama 1 

jam dan PANI/Pul C dengan nisbah jisim analin dan pullulan 1:3. Peratusan berat 

Pul/PANI C pada nZPP NCs divariasi seperti 2, 6 dan 10 peratus. Dengan penambahan 

PANI/Pul C pada ZnO NPs, kristaliniti ZnO NPs tidak terganggu. Aktiviti pemangkin 

nZPP NCs telah dioptimumkan dengan kaedah respon permukaan (RSM) dengan 

pemboleh ubah adalah peratusan berat PANI/Pul C, dos pemangkin dan pH dengan 

respon dikaji adalah kadar degradasi. Hasil kajian menunjukkan bahawa model yang 

paling sesuai adalah kuadratic dengan kadar degradasi optimum diperoleh adalah 

0.2319 min-1 dengan enam peratus berat PANI/Pul C, dos pemangkin 0.7 g/L dan pH 

8. Akhir sekali, pemangkin yang telah dioptimumkan telah diuji dengan air sisa 

pewarna simulasi yang telah dihasilkan dengan mencampurkan lima pewarna bersama. 

Keputusan menunjukkan bahawa penyahwarnaan lengkap telah dicapai dalam 180 

minit.  
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1 

CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Water pollution is one of the biggest problems plaguing everybody around the 

world. It is known that clean water is essential for survival of mankind. However, with 

industrial revolution, it is nearly impossible to obtain clean water straight from its 

source. The majority of wastewater from the industries were insufficiently treated and 

released to the water bodies thus potentially contaminate and pollute the clean water 

source. One of the main contributors to water pollution is textile industry and the dyes 

being the major pollutant. Statistic shows that 450000 ton of organic dyes produced 

annually and more that 11 % of it is lost in the effluents during manufacture and 

application process [1]. It is also one of the most water-consuming industrial sectors 

where it released approximately 115-175 kg/ton of finished product of wastewater [2]. 

The presence of trace amount of dyes in effluent is highly visible and undesirable. It 

causes adverse effect to both aquatic life and human health as some of these dyes are 

toxic, mutagenic and carcinogenic [3, 4]. Once the dyes enter the water, they are 

difficult to remove. Furthermore, their complex aromatic structure and the synthetic 

origin makes them more stable thus harder to degrade [5].  

In a typical process of textile wastewater treatment, biological process 

followed by chemical coagulation is employed Although this treatment unit’s 

processes are effective in removing dyes, it is high in cost as it requires specific 

equipment and high energy. Furthermore, generation of large amount of by-product 

lead to the problem of safe disposal [4, 6]. Due to these issues, the focus of textile 

wastewater treatment has been shifted towards advanced oxidation processes (AOPs). 

This process involves the generation and the use of hydroxyl radical as strong oxidant 

to destroy the compounds until all the constituents degraded or mineralized to carbon 

dioxide and water [6, 7]. The generation of hydroxyl radical can proceed through two 
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main pathways which are nonphotochemical and photochemical process. Between 

these two, photochemical process gained more attention, as it is more economical. In 

this process, there are three main methods to generate the hydroxyl radical which are 

ultraviolet (UV) irradiation in presence of hydrogen peroxide, Fenton reagents in 

presence of light and heterogeneous semiconductor photocatalysis. Among these, 

heterogeneous semiconductor photocatalysis is the most popular method due to its safe 

and detoxification nature to the environment [8]. It employed photocatalysts such as 

titanium dioxide (TiO2), iron oxide (Fe3O4), zinc oxide (ZnO), copper oxide (CuO) 

and cadmiun sulphide (CdS) in the treatment of dyes wastewater.  

In the field of photocatalysis, ZnO has emerged as the leading candidate and 

this is due to its properties such as direct and wide band gap (3.37 eV) in the near UV 

spectral region, strong oxidation ability and good photocatalytic property [9, 10]. It 

also possesses excellent electrical, mechanical and optical properties similar to TiO2. 

Furthermore, the production of ZnO is more economical compared to TiO2. However, 

ZnO still possess several disadvantages such as limited light absorption in the visible 

light region due to wide band gap energy and fast recombination of photogenerated 

charges which lead to low photocatalytic efficiency. Improvement can be done on ZnO 

to overcome these problems by producing nanoscale ZnO thus increasing the surface 

area, metal and/or non-metal doping, coupling with another semiconductor, surface 

modification and others [9-11].  

Nanotechnology has garnered a lot of attention around the world across many 

fields. It is defined as a field of research that involved in the development of very small 

materials which is within nanometer range [12]. Nanomaterials are unique as they 

display different properties compared to their bulk counterpart. Due to their small size, 

they have a greater relative surface area which resulted in enhancement of several 

properties [13, 14]. To obtain nanomaterials, there are two main approaches which are 

“top-down” and “bottom-up” approach. In “top-down” approach, it involves breakage 

of large material to nanomaterials. However, this method generate particles with wide 

size distribution and variation of morphologies [15]. “Bottom-up” approach is much 

more common in nanomaterials synthesis and it involves the growth of nanoparticles 

from single atom [12]. This approach give rise to a better nanomaterial in terms of 
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shape and size which is useful in the targeted applications.  In both approaches, there 

are three main synthesis techniques in obtaining nanomaterials which are physical, 

chemical and green synthesis method. With the increasing concern of environmental 

pollution, the synthesis process has been more focus towards green synthesis which is 

also known as biosynthesis [16]. In general, biosynthesis makes use of 

environmentally friendly, non-toxic and safe reagent. The overall cost of synthesis 

process also reduced as no additional chemical is needed. Furthermore, the overall 

experimental process is relatively mild which can save energy.  

The properties of ZnO NPs can be controlled by manipulating the synthesis 

parameters such calcination conditions. The two main phenomena that effect the ZnO 

NPs properties, especially its particle size, are Ostwald ripening and quantum 

confinement effect. Ostwald ripening referring to the growth particles through the 

diffusion of smaller particles and this process may be enhanced by reaction 

temperature [17]. Due to small particles size, quantum confinement effect can occur. 

This process referring to the confinement of electron within the nanoparticle size 

which resulted to the generation of different properties compared the materials bulk 

counterpart [18]. Therefore, by controlling the synthesis parameters, ZnO NPs with 

desirable characteristic as photocatalyst can be generated. Other than developing ZnO 

nanoparticles (ZnO NPs), improvement can be done by coupling it with other 

materials. Through this coupling, the overall catalyst properties such as better light 

absorption, suppression of photoinduced electron-hole pair recombination and 

increase of charge separation can be achieved. One of the materials that is suitable to 

be coupled with ZnO is conducting polymer. Conductive polymer provide extra 

advantages over normal polymer as it can match its band structure with the 

photocatalyst thus reducing the recombination of photogenerated electron-hole pairs 

[19]. Besides that, with the presence of conducting polymer, the process of recollection 

of photocatalyst for reusability will be easier compared to collecting pure ZnO NPs.  

Although there has been a lot of effort in the research of determining the 

suitable catalyst for photocatalytic degradation of dyes in wastewater, there are still 

some issues that are still unclear. There is still lack of report on utilization of 

composites consisting of ZnO NPs and conducting polymer for dyes treatment. Herein, 
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we report the preparation of ZnO NPs and conducting polymer polyaniline (PANI) in 

the presence of biopolymer pullulan. The produced ZnO NPs and PANI were tested 

for photodegradation of rhodamine B dye. The best ZnO NPs and PANI were used to 

produce nanocomposites (NCs) consisting of both ZnO NPs and PANI. The NCs 

photocatalytic activity was optimized via response surface methodology (RSM) and 

the optimized sample was used to determine its potential as photocatalyst for treatment 

of textile wastewater by testing it against simulated dye wastewater.  

1.2 Problem Statement 

In the last decades, worldwide textile industry has made a great impact on the 

market economics. However, due to the rapid expansion of this industry, the negative 

impact to the environment also increases especially towards the water and its sources. 

Textile industry uses large number of chemicals and dyes in each step of processing. 

Therefore, its discharge contains a lot of dangerous chemical substances, especially 

dyes. Without treatment, this discharge will cause harm to the environment and even 

human health as well. Hence, the treatment for textile effluent is necessary to protect 

the environment and human.  

The current conventional wastewater treatment process relies on several 

treatment stages which consist of physical, chemical or biological approaches. 

Physical approach involves the usage of adsorbent, filtration and gravity sedimentation 

while chemical approach includes the use of chemicals to cause coagulation for 

removal of inorganic dissolved trace metals and removal of bacteria through usage of 

chlorine or ozone. Aerobic and anaerobic treatments are some of biological approach 

used to treat the wastewater [6, 20]. All these treatment approaches are effective to 

treat the wastewater but the high fabrication and maintenance cost make these 

treatments uneconomical [5]. Therefore, alternative treatment method that is much 

more economical is highly needed.  

In recent years, AOPs have been receiving a lot of attention due to their 

potential to remove the pollutants. This process is able to degrade the pollutants 
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without generating secondary pollution. One of the materials that has been utilized as 

photocatalyst is TiO2 but it has the tendency to agglomerate and uneconomical for 

large scale production. Due to this, ZnO has been gaining interest to replace TiO2. 

However, ZnO has large band gap and high recombination rate of photoinduced 

electron-hole pairs which lead to lower photocatalytic activity. Therefore, 

improvement on ZnO to increase its photocatalytic activity is needed.  

The main improvement on ZnO to increase its photocatalytic activity is by 

producing ZnO NPs. Typical method to produce ZnO NPs is through chemical 

synthesis. Although the properties of chemically synthesized ZnO NPs is promising, 

the chemical used in the synthesis process normally will cause toxicity to the 

environments. Therefore, green synthesis emerged as an alternative way in producing 

ZnO NPs. Green synthesis utilizes natural products such as plants extract, 

microorganism and biopolymer as mediator and the overall synthesis process is 

environmentally friendly, simple, fast and cost effective.  

It is known that ZnO NPs on its own has a very good photocatalytic activity. 

However, it has large band gap and high recombination rate. Its photocatalytic activity 

can be further improved by coupling it with other materials. Conducting polymer 

emerged as one of the coupling materials which can improve the ZnO NPs 

photocatalytic properties. Furthermore, through this coupling, the process of 

recollection for recyclability will be easier. 

1.3 Objectives 

The main objective of this study is to develop pullulan-based zinc oxide 

nanoparticles (ZnO NPs), polyaniline/pullulan composites (PANI/Pul Cs) and zinc 

oxide-polyaniline/pullulan nanocomposites (nZPP NCs) for the purpose of 

photocatalyst in dye degradation application. This objective can be divided into several 

specific objectives as follow: 
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(a) To synthesize ZnO NPs, PANI/Pul Cs and nZPP NCs at various experimental 

conditions 

(b) To characterize and evaluate the physico-chemical properties of synthesized 

ZnO NPs, PANI/Pul Cs and nZPP NCs 

(c) To determine the photocatalytic activity of ZnO NPs, PANI/Pul Cs and nZPP 

NCs using rhodamine B dye 

(d) To optimize the photodegradation of rhodamine B over nZPP NCs by response 

surface methodology (RSM) and evaluate its potential on photodegradation of 

simulated dye wastewater.  

 

1.4 Scope of study 

In order to achieve all the objectives of this research, the scopes of study 

comprise the main task corresponding to the objectives are as follow: 

(a) The synthesis of ZnO NPs was carried out via sol-gel method with pullulan as 

the capping agent. The effect of calcination conditions, temperature (400, 500, 

600 and 700 °C) and time (1,2,4 and 8 hours) on the properties of synthesized 

ZnO NPs were studied. The synthesis of PANI/Pul Cs were carried out through 

oxidative polymerization of aniline monomer in the presence of pullulan. The 

mass ratio of aniline to pullulan was varied as 1:0, 1:1, 1:3 and 1:5. A series of 

nZPP NCs was fabricated through chemisorption process between ZnO NPs 

and PANI/Pul C. The weight percent of PANI/Pul C were varied as 2, 6 and 10 

wt % in comparison to ZnO NPs.  

(b) All the synthesized samples were characterized using X-ray diffraction (XRD), 

Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible 

spectrophotometer (UV-Vis), transmission electron microscopy (TEM), 

surface area and pore analyser and thermogravimetric analysis (TGA) 
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techniques. The impact of synthesis parameters variation on the properties of 

produced materials was evaluated based on the result of characterizations.  

(c) The photocatalytic activity of ZnO NPs, PANI/Pul Cs and nZPP NCs were 

evaluated using Rhodamine B (RhB) dye. For ZnO NPs, all the catalysts 

produced at different calcination conditions were tested for their photocatalytic 

activity through degradation of RhB. The photocatalytic conditions used were 

0.2 g/L catalyst dosage, 10 ppm dye concentration and pH remain unchanged 

(pH 5). Similarly, with PANI/Pul Cs, all the catalysts produced were tested for 

their photocatalytic activity against degradation of RhB. The photocatalytic 

conditions used were 0.5 g/L catalyst dosage, 10 ppm dye concentration and 

pH remain unchanged (pH 5). The ZnO NPs and PANI/Pul Cs with the best 

photocatalytic activity respectively were selected for the fabrication of nZPP 

NCs. All the synthesized nZPP NCs were subjected to photodegradation of 

RhB with experimental conditions of 0.2 g/L catalysts dosage, 10 ppm dye 

concentration and solution pH remain unchanged (pH 5).  

(d) The optimum catalyst and condition for photodegradation of RhB over nZPP 

NCs was identified by RSM experiment using central composite design (CCD) 

develop by Statistica 13.0 Statsoft. The parameters including weight percent of 

PANI/Pul C (2 – 10 wt %), pH (5 – 11) and catalyst dosage (0.2-1.2 g/L). The 

performance of the catalysts was evaluated by analysing the response which is 

the degradation rate of RhB. The model was then validated and the optimize 

sample was obtained from the model generated. The optimized sample was 

then subjected to two other several photocatalytic testing such as reusability 

test and determination of active radical species. Then the optimized sample was 

used for degradation of simulated dye wastewater which was created by 

combining five dyes such as RhB, methyl orange (MO), methyl red (MR), 

methylene blue (MB) and crystal violet (CV).  
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1.5 Significance of research 

Water pollution is a major environmental issue and with the additional problem 

of water scarcity, the recovery of wastewater and its treatment is one of the main ways 

to overcome the matters. AOPs, especially photocatalysis emerged as the alternative 

treatment method to water pollution. With the recent focus towards clean and green 

process, green synthesis emerged as a preferable method in the production of materials. 

This work reported on the usage of pullulan in the production of ZnO NPs and 

PANI/Pul Cs, which has never been reported before. For ZnO NPs, green synthesis 

technique was employed with pullulan as the capping agent. With the implementation 

of green synthesis process, the adverse effect towards the environment can be 

minimized as the usage of toxic chemical reagents was avoided. Furthermore, this 

work also studied the impact of calcination conditions, temperature and time, on the 

properties of ZnO NPs and their activity towards degradation of RhB. For PANI/Pul 

Cs, it was produced via oxidative polymerization in the presence of pullulan. It was 

found that the presence of pullulan improved the overall properties of PANI/Pul Cs 

towards the degradation of RhB. Nanocomposites consists of the synthesized ZnO NPs 

and PANI/Pul Cs (nZPP NCs) were then produced via chemisorption process. To the 

best of our knowledge, this synthesized nanocomposite has not been reported before. 

Furthermore, there are still lacking of research on utilization of conducting polymer as 

composites materials for photocatalyst. Overall, it will be a good contribution to 

knowledge to study about the utilization of pullulan in the production of ZnO NPs and 

PANI/Pul Cs and the fabrication of nZPP NCs as photocatalyst for dye degradation.  

1.6 Thesis outline 

This thesis consists of five chapters. Chapter 1 is introduction to the thesis 

which includes the background of research to give the main idea of this study. The 

problems and issues that can be addressed by this research is explained in the next 

section. Then the research objectives are stated followed by scope of study that will be 

conducted to fulfill the objectives. Finally, the significant of research is also covered 

in this chapter.  
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The second chapter is about the literature reviews. This chapter elaborates on 

nanotechnology and methods to produce nanomaterials with the focus being towards 

ZnO NPs, ZnO NCs and conductive polymer PANI, the current issues of water 

pollution, dyes as the pollutants, treatment methods and optimization process.  

Chapter 3 describes the detail experimental methodology and the materials and 

chemicals reagent used in this study. A research methodology flowchart is also 

included to provide a general overview of the research.  

Chapter 4 is about the results and discussion of the experimental works. This 

chapter is divided into six parts. First is regarding the fabrication of ZnO NPs and their 

photocatalytic activity followed by the fabrication of PANI/Pul Cs and their 

photocatalytic activity. Third is about the fabrication of nZPP NCs and their 

photocatalytic activity. Then the optimization of RhB degradation rate with nZPP NCs 

by response surface methodology (RSM) followed by the evaluation of photocatalyst 

reusability, photocatalytic degradation mechanism and proposed degradation pathway. 

The final part is the photodegradation of simulated dye wastewater with optimized 

catalyst.  

The final chapter, Chapter 5 is the conclusion drawn from the study. The 

recommendation for future study is also proposed.  
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