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ABSTRACT 

Hardware Trojan (HT) is an alarming hardware security threat which has 

gained increased awareness over the last decade. Due to the emerging threat of HT, 

ensuring trustworthiness in an integrated circuit (IC) has become an important aspect 

to be considered during manufacturing. Hence, the design process of ICs must be 

reviewed to avoid HT insertion by malicious third-party vendor. The purpose of this 

research is to develop a HT detection method in register-transfer-level (RTL) 

description with an improved HT coverage compared to the other previously proposed 

methods. The proposed method discovered HT branching statement in the RTL 

description by utilising a supervised machine learning classifier based on ten (10) 

proposed two-abstraction-level features. The proposed two-abstraction-level features 

relevant to HT characteristics included branching probability features extracted at RTL 

and net testability features extracted at gate-level (GL). The effectiveness of the 

proposed features in detecting HTs with 19 Trust-Hub benchmark circuits were 

demonstrated. The Minimum Redundancy Maximum Relevance (mRMR) feature 

selection algorithm was utilised to prove that the combination of the proposed features 

can achieve maximum accuracy (ACC) of 99.97% in detecting HTs during classifier 

training. To avoid overfitting issue, the trained classifiers were further evaluated with 

a classifier testing experiment on unseen circuit. The unseen circuit was completely 

independent of the training data, and it consisted of 24 HT circuits derived from a 

genuine Keccak encryption circuit. By using a set of proposed HT stealthiness 

assessment measures, the HT coverage of the classifiers was evaluated. The decision 

tree (DT) classifier with the two-abstraction-level features achieved the highest 87.5% 

HT coverage with 81.25% true positive rate (TPR), 88.44% true negative rate (TNR), 

and 88.24% ACC respectively. The results proved that the two-abstraction-level 

features outperformed single-abstraction-level features with higher HT detection 

coverage.  
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ABSTRAK 

Perkakasan Trojan (HT) adalah ancaman sekuriti litar bersepadu (IC) yang 

membimbangkan dan perhatian berkaitan dengannya telah meningkat selama sedekad 

kebelakangan ini. Disebabkan ancaman HT ini, pemastian kebolehpercayaan telah 

menjadi aspek penting untuk dipertimbangkan semasa pembuatan IC. Proses reka 

bentuk IC mesti disemak semula untuk mengelakkan HT disisip masuk oleh pihak 

ketiga yang tidak bertanggungjawab. Tujuan penyelidikan ini adalah untuk 

membangunkan kaedah pengesanan HT bagi deskripsi di peringkat pemindahan daftar 

(RTL) bagi liputan HT yang lebih baik berbanding dengan kaedah sebelumnya. Bagi 

mengesan pernyataan bercabang HT dalam deskripsi RTL, satu kaedah yang 

menggunakkan pengelas pembelajaran mesin tersedia dicadangkan di mana ia 

berasaskan 10 ciri abstraksi-dua peringkat. Ciri-ciri HT yang dicadangkan termasuk 

kebarangkalian percabangan yang diekstrak pada peringkat RTL dan ukuran testabiliti 

yang diekstrak pada peringkat get logik. Keberkesanan ciri-ciri tersebut telah 

dikenalpasti dengan menggunakan 19 litar tanda aras yang terdapat di dalam 

pangkalan data hab-kepercayaan. Algoritma pemilihan ciri Lebihan Minima Perkaitan 

Maksima (mRMR) digunakan untuk membuktikan bahawa gabungan ciri-ciri yang 

dicadangkan boleh mencapai ketepatan (ACC) maksimum sebanyak 99.97% semasa 

latihan pengelas. Untuk mengelakkan isu pemasangan limpahan, pengelas-pengelas 

terlatih diuji dengan data baru yang berbeza sepenuhnya daripada data latihan, dan ia 

terdiri daripada 24 litar HT yang diperolehi daripada litar penyulitan Keccak tulen. 

Nilai liputan HT kemudianya diukur dengan menggunakan langkah-langkah penilaian 

kesembunyian. Pengelas pokok keputusan (DT) dengan ciri-ciri abstraksi-dua 

peringkat telah mencapai liputan HT tertinggi iaitu 87.5% berbanding dengan kaedah 

dulu, dengan 81.25% kadar positif yang benar (TPR), 88.44% kadar negatif yang benar 

(TNR), dan 88.24% ACC. Hasil kajian ini menunjukkan bahawa penggunaan ciri-ciri 

abstraksi-dua peringkat mengatasi ciri-ciri abstraksi-satu peringkat dengan capaian 

liputan HT yang lebih tinggi.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Trojan is a term that usually refers to a malicious module that conceals its 

content while deviously modifies the operation of a system. In the semiconductor 

industry, a term “hardware Trojan” (HT) was coined to refer to a specific Trojan that 

exists in a form of a circuit that is secretly inserted into an integrated circuit (IC) and 

attempts to attack the system at which the HT resides (Tehranipoor & Koushanfar, 

2010). The HT can launch harmful attacks such as changing the circuit operation, 

leaking the critical information, degrading the circuit performance, and a Denial-of-

Service attack (Salmani et al., 2013). The HT effect could be activated upon receiving 

a specific signal, or upon system power up. 

The presence of HT causes the trustworthiness issue of ICs. Due to the rapid 

advancement of the semiconductor industry, the market demand for sophisticated IC 

is rising. To reduce the production’s cost, outsourcing the production task is a common 

practice for semiconductor companies (Bhunia et al., 2014). For instance, the 

companies would outsource part of their circuit design to a third-party intellectual 

property vendor. The companies focusing on circuit design business would outsource 

their circuit fabrication to other fabrication factory. This business model poses a 

security threat in which some untrusted third parties may have a chance to be involved 

in the supply chain and attempt to modify the circuit design. Furthermore, the 

increasing complexity of circuit allows the HT insertion with less effort because the 

HT can be stealthier in a large circuit and escape from detection more easily during 

conventional verification and testing (Cruz et al., 2018). 

HT is gaining public awareness due to the emerging 5G and Internet-of Thing 

technology in which the digital devices around us are connected to each other and to 
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internet, in which our personal data could be stored. Without proving the 

trustworthiness of the IC, we cannot ensure our data privacy. Our devices could be 

vulnerable to HT attacks that may steal our personal data or kill the circuit operation 

to unexpectedly interrupt the system. Besides, HT also poses a threat to any system 

which is controlled by an IC, including military system, transportation system, 

healthcare system, and so on. In 2007, a critical failure of Syria’s radar systems was 

reported to be the cause of incoming missiles detection failure (Adee, 2008). The 

experts suspected that the system failure was intentionally triggered by using a kill-

switch which was secretly built into the microprocessors by the circuit manufacturer. 

Besides, there have been other rumors of secret HT insertion into ICs during the 

manufacturing process (Robertson & Riley, 2018). To resolve the HT threat, Toshiba 

Information Systems (Japan) Corporation (2020) have announced a new service of HT 

detection to their customers. These HT reports have drawn attention from academia, 

industry, and government over the past decade. 

To assist in HT research, a few categorizations of HTs have been introduced. 

Xiaoxiao et al. (2008) introduced the first HT taxonomy which was later refined and 

expanded by other researchers (Karri et al., 2010; Rajendran et al., 2010; Tehranipoor 

and Koushanfar, 2010; Salmani et al., 2013). The most widely referred HT 

categorization method is the one proposed by Salmani et al. (2013). The details of the 

HT taxonomy are illustrated in Figure 1.1. The authors have constructed a HT 

benchmark library based on the six attributes as in the proposed HT taxonomy: 

insertion phase, abstraction level, activation mechanism, effect, location, and physical 

characteristics. 
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Figure 1.1 Taxonomy of Hardware Trojan (Source: Shakya et al., 2017). 

One of the HT countermeasures is detection. We cannot apply only single 

approach to detect all HTs because of the diversity of HT types. Many HT detection 

methods have been introduced with each of them having different motivations. These 

HT detection approaches can be categorized based on their detection level. The 

detection level refers to the abstraction levels of the IC manufacturing process at which 

the detection approach is applied, as illustrated in Figure 1.2. 

 

Figure 1.2 Detection levels corresponding to manufacturing process. 

In typical IC design process, the abstraction levels involved are behavioral 

level, register-transfer level (RTL), gate level (GL) and layout level. The detection 

methods conducted at one of these levels are considered as pre-silicon detection. For 

instance, Bang et al. (2010) introduced a HT detection method by utilizing the 
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conventional verification techniques at GL. The method only requires the circuit 

netlist, which is simply a list of coding, instead of the physical circuit. Such method is 

known as the pre-silicon detection method which can identify HT at early 

manufacturing process. After the circuit is fabricated, post-silicon HT detection can be 

applied at test time and run time. For example, Jin et al. (2008) proposed a test-time 

circuit authentication method by analyzing the path delay parameter. The required 

information is extracted from the fabricated circuit. The method is considered as post-

silicon detection which can conclusively authenticate the fabricated circuit. 

Among the previously proposed detection methods, the machine-learning-

based approach is relatively popular, especially for pre-silicon detection. Its self-

learning ability helps in building an analytical model without an explicit programming. 

The model can be even expanded by fitting it with a larger database. Due to these 

reasons, machine learning can reduce the effort of HT detection. A test-time circuit 

authentication method utilizing a machine learning approach was suggested by Bao et 

al. (2014). The authors successfully developed a HT circuit classifier based on the 

scanning electron microscope image of the fabricated circuit. The first pre-silicon 

machine-learning-based HT detection method was introduced by Hasegawa et al. 

(2016). The authors suggested to classify each net in the GL netlist based on their 

structural measures during the design stages. 

HT detection is preferable to be conducted during pre-silicon stage due to the 

difficulty of HT removal from a physically fabricated circuit. To prevent unnecessary 

investment in an infected circuit design, it is always better to identify the HT before 

the circuit design is mapped into later stages of design process. In addition, the 

information contained in the circuit design at every stage is different, it could be harder 

to trace the HT when the circuit design undergoes more mappings at lower abstraction 

levels. Due to these reasons, RTL is an early design stage which is suitable for 

conducting HT detection. 



 

5 

1.2 Problem Statement 

Most of the previous RTL HT detection research focused on detecting the HT 

by examining the circuit connectivity and circuit operation. These approaches may 

require additional structural analysis or simulation. Moreover, HT detection at RTL is 

less explored compared to the other abstraction levels such as GL and layout level, 

especially the machine-learning-based approaches. At RTL, the circuit functionality is 

described. This information is difficult to be converted into numerical data which is 

required to be used as the input features for machine learning classifier. 

The purpose of pre-silicon HT detection is to identify any suspicious 

component or circuit part, and to stop the infected circuit from undergoing further 

mapping. Therefore, the sensitivity of the classifier towards HTs is always emphasized 

to increase the possibility of successful detection of HT. We always want to use a 

detection approach with high HT coverage to cover as many types of HTs as possible. 

However, this is not a trivial task due to the diversity of HT types. Forcing a machine 

learning classifier to learn the features of all HTs is not a good move because the 

machine learning classifier will probably result in overfitting whereby the classifier is 

biased towards the training data and not robust against unseen data, especially when 

the input information or features are not enough. Although we could just use different 

detection approaches to detect different types of HTs, extending an existing detection 

approach to increase its detection performance would be a better option that possibly 

gives a better overall result with less overhead. 

Since machine-learning-based approaches may be subject to overfitting issues, 

classifier testing is important to determine the classifier performance against unseen 

data. However, most of the previous works did not conduct a proper classifier testing 

which used a truly unseen dataset. Besides, by just looking at the classification 

accuracy, we are unable to precisely tell the classifier performance against specific 

HTs, and thus the HT coverage is unknown. Currently, there is no suitable performance 

metric that could assist in HT research to evaluate HT detection methods in terms of 

HT coverage. 
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1.3 Research Objectives 

To resolve the problems as stated, the objectives for this research are 

established as follows: 

(a) To propose new features of branching statement in RTL description based on 

branching probability and net testability, to develop a machine-learning 

classifier with high accuracy in classifying HTs. 

(b) To engineer the HT-relevant features at different abstraction levels, 

specifically RTL and GL, in order to achieve higher HT detection coverage. 

(c) To introduce a set of HT assessment measures to describe the HT stealthiness 

to assist in HT design and classifier testing in terms of HT coverage and 

detection accuracy against unseen data. 

 

1.4 Research Scope 

This research proposes a HT detection method utilizing supervised machine 

learning and two-abstraction-level features. The proposed features are extracted at 

RTL and GL. The proposed method can classify suspicious HT branching statements 

in the RTL description. Our proposed detection method is only effective to the HTs 

that fulfil our threat model assumption. For the analysis of circuit signal, we consider 

logic values ‘0’ and ‘1’. 

Since our main purpose here is to demonstrate the effectiveness of the features 

with supervised machine learning, the choices of the algorithms are not emphasized. 

Three well-known supervised machine learning algorithms for binary classification 

are used in this research, which are decision tree (DT), k-nearest neighbor (k-NN) and 

support-vector machine (SVM).  
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We train the proposed machine learning classifier by utilizing the HT 

benchmark circuits provided by an open-source library, Trust-Hub (Salmani et al., 

2013). We collected the RTL descriptions, which are written in Verilog hardware 

description language (HDL), of 19 HT circuits from the library. Since the number of 

training data is reasonably large (>10,000), we apply k-fold cross validation with k = 

10 to evaluate the trained classifiers. A set of self-designed circuits based on Keccak 

(SHA-1) encryption circuit is used for classifier testing to determine the detection 

performance against unseen circuit. The performance metrics analyzed in this research 

are accuracy (ACC), true positive rate (TPR), true negative rate (TNR), and HT 

detection coverage.  

1.5 Significance of the Study 

This research proposes a HT detection method which can detect HT hiding in 

RTL description and help to increase the trustworthiness of RTL digital circuit design. 

The proposed method is a pre-silicon detection method which can identify HT at a 

very early design stage and before the circuit is fabricated, and thus prevents 

unnecessary investment wasted in an infected circuit. The proposed method is based 

on a supervised machine learning approach which has a self-learning ability and is 

expendable with a larger HT database. This can ease the HT detection effort to tackle 

known HTs in the future. Besides, this research also introduces a set of HT stealthiness 

assessment measures. It can assist in HT research by systematically categorizing HTs.  

1.6 Thesis Outline 

This thesis consists of five chapters which are organized as follows. In Chapter 

2, previous studies related to this research will be reviewed and discussed. In Chapter 

3, we describe our proposed supervised machine learning classifier for HT detection. 

The detail of the classifier development will be clearly explained. In Chater 4, the 

experimental results will be analyzed and discussed to show the performance of our 

proposed solution. The comparison between our proposed method and previous studies 
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will also be discussed to demonstrate the improvement achieved by our method. 

Lastly, in Chapter 5, we summarize this research and discuss the potential extensions 

of this research. 
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