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ABSTRACT 

Since 1964, liquefaction resistance of sand matrix soils or sand-fine mixtures 

has been extensively studied by researchers. These extensive studies were 

done/conducted following dramatic damages due to liquefaction caused by 

earthquakes in Niigata and Alaska. However, until the end of the 2010s and the latest 

major liquefaction occurrence in September 2018 at Palu, Indonesia, little research 

effort had been made to focus on the effects of particle shape and size, grading 

characteristics, particle arrangement and fines content of sand matrix soils. Although 

sand is the dominant material in sand matrix soils, there have not been enough efforts 

to elucidate the effects of particle size and grading characteristics of sand as the main 

factor in altering liquefaction resistance. Moreover, some results previously reported 

are still contradictory. This research aims to determine the effects of particle size and 

grading characteristics of sand on liquefaction resistance of sand matrix soils. To 

achieve the aim, three (3) objectives have been identified; (1) to evaluate the particle 

size, the grading characteristics and the physical properties of sand matrix soils at 

various compositions of sand and fines, (2) to establish the critical state line as the 

failure envelope of sand matrix soils from the results of monotonic undrained triaxial 

tests, and (3) to characterize the liquefaction susceptibility of sand matrix soils from 

the cyclic triaxial tests and validate through the centrifuge tests. The material used in 

the research was selected clean sand, which was sieved into three ranges of grain size 

that were coarse, medium and fine. Sand matrix soils were reconstituted by mixing 

these three-grain sizes of sand with low plasticity fines (kaolin) at 0% to 40% by 

weight. The results showed that the threshold fine content for coarse sand matrix soil 

and medium sand matrix soils were 30%, while for fine sand matrix soil, the 

percentage was 10%. From cyclic triaxial tests, it also indicated that the liquefaction 

resistance of sand matrix soils decreases with increases in fine content and showed a 

reverse trend after reaching threshold fine content. The threshold fines content (fth) for 

coarse sand matrix soils and medium sand matrix soils was 30%, whereas, for fine 

sand matrix soils, it was 10%. Threshold fines (fth) were observed to change the 

transition behaviour of sand dominates to fines dominates which occurred at different 

percentages of fines content depending on the grain size of sand. Less number of cycles 

was required to initiate soil liquefaction of sand matrix soils with a higher value of the 

coefficient of curvature and coefficient of uniformity. In general, the sand matrix soil 

has higher liquefaction resistance at larger sand particles. By using the centrifuge test, 

similar trends were observed as a result of the cyclic triaxial test. Some of the equations 

were generated to provide a new outcome for this research. 
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ABSTRAK 

Sejak 1964, rintangan terhadap pencecairan bagi tanah matriks pasir atau 

campuran pasir butiran halus telah dikaji secara meluas oleh penyelidik-penyelidik. 

Kajian secara meluas ini telah dilaksanakan mengikuti kerosakan yang dramatik akibat 

pencecairan disebabkan oleh gempa bumi di Niigata dan Alaska. Namun, sehingga 

akhir tahun 2010 dan insiden terkini pencecairan berlaku pada bulan September 2018 

di Palu, Indonesia, sedikit usaha penyelidikan yang dilakukan fokus kepada kesan 

bentuk butiran dan saiz pasir, ciri-ciri penggredan, susunan butiran dan kandungan 

butiran halus bagi tanah matriks pasir. Walaupun pasir adalah bahan yang dominan 

bagi tanah matriks pasir, belum ada usaha yang mencukupi untuk menjelaskan kesan 

saiz butiran dan ciri-ciri pengredan pasir sebagai faktor utama dalam mengubah 

rintangan pencecairan. Lebih-lebih lagi,beberapa hasil yang dilaporkan sebelum ini 

masih bercanggah. Kajian ini bertujuan untuk menentukan kesan saiz butiran dan ciri-

ciri penggredan pasir terhadap rintangan pencecairan tanah matriks pasir. Untuk 

mencapai tujuan tersebut, tiga (3) objektif telah dikenal pasti; (1) untuk menilai saiz 

butiran, ciri-ciri penggredan dan ciri-ciri fizikal bagi tanah matriks pasir pada pelbagai 

komposisi pasir dan butiran halus, (2) untuk menubuhkan garis keadaan kritikal 

sebagai sampul kegagalan bagi tanah matriks pasir hasil keputusan ujikaji tiga paksi 

monotonik di bawah keadaan tidak tersalir, dan (3) untuk mencirikan kerentanan 

pencecairan bagi tanah matriks pasir daripada ujikaji tiga paksi berkitar dan 

pengesahan melalui ujian empar. Bahan yang digunakan dalam penyelidikan ini adalah 

pasir bersih yang terpilih, dimana telah diayak ke dalam tiga saiz julat butiran iaitu 

kasar, pertengahan dan halus. Tanah matriks pasir disusun semula dengan 

mencampurkan tiga saiz julat butiran pasir indengan butiran halus berkeplastikan 

rendah (kaolin) pada 0% to 40% daripada berat. Keputusan menunjukkan bahawa 

kandungan butiran halus ambang untuk tanah matriks pasir kasar dan pertengahan 

adalah 30% manakala untuk tanah matriks pasir halus adalah 10%. Daripada ujian tiga 

paksi berkitar, ia juga menunjukkan bahawa rintangan pencecairan tanah matriks pasir 

berkurang dengan peningkatan butiran halus dan telah menunjukkan arah aliran 

sebaliknya selepas mencapai kandungan butiran halus ambang. Nilai butiran halus 

ambang (fth) bagi tanah matriks pasir kasar dan juga tanah matriks pasir sederhana 

adalah 30% manakala untuk tanah matriks pasir halus adalah 10%. Butiran halus 

ambang (fth) diperhatikan telah mengubah sifat arah aliran daripada dominasi pasir 

kepada butiran halus yang mana berlaku pada peratusan butiran halus berbeza 

berdasarkan kepada saiz butiran pasir. Kurang bilangan kitaran yang diperlukan untuk 

memulakan pencecairan tanah bagi tanah matriks pasir dengan nilai yang lebih tinggi 

bagi pekali kelengkungan dan pekali keseragaman. Secara umumnya, tanah matriks 

pasir mempunyai rintangan pencecairan yang tinggi pada butiran yang lebih besar. 

Dengan menggunakan ujian empar, arah aliran serupa diperhatikan sebagaimana 

keputusan daripada ujian tiga paksi berkitar. Sebilangan persamaan dihasilkan untuk 

menyediakan hasil baru dari penyelidikan ini. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

Niigata Earthquake occurred in 1964 in Japan raised the awareness on how the 

liquefaction incident from earthquake event damaged the city of Niigata. However, 

past history shows that the liquefaction of soils also occurred without impact from 

earthquake event as reported by Jefferies and Been (2006) at Fort Peck Dam, Missouri 

River, USA in 1938 and Nerlerk at Canadian Beaufort Sea in 1983. As a result, many 

engineering professionals across the globe have undertaken an intensive study 

regarding the incidents. Numerous empirical demonstrations have been performed to 

comprehend and expose the processes of soil liquefaction and the variables that led to 

the circumstance. Soil liquefaction is a subsequent consequence of a seismic quake; it 

occurs when saturated granular soils compress, raising pore water pressures and 

lowering the effective stress during seismic quakes, resulting in a degradation of 

unconfined compressive strength (Dowrick, 2009). Due to the earth’s incapacity to 

sustain structural integrity, liquefied soil with a lack of shear strength could potentially 

cause enormous damage. The Niigata earthquake on 16 June 1964 is a real-life 

incidence of catastrophic destruction induced by liquefaction, since it resulted in 

damage to bearing capacity, structural residences, and pavement surfacing aggregates 

(Day, 2012). The 11 March 2011 Tohoku Earthquake (Mw 9.0) in Japan’s Tokyo Bay 

region is among the major latest liquefaction-related disasters (Sana & Nath, 2016; 

Bhattacharya et al., 2011). 

Dowrick (2009) stated that Barazangi and Dorman (1969) had produced a 

global seismic activity map, as shown in Figure 1.1. Malaysia is usually situated 

beyond the Ring of Fire, a zone of regular earthquakes and volcanic activity. Malaysia 

is located closed to the three major active plate boundaries; Eurasian plate, Indian-

Australian plate and Philippine Sea-Pacific plate. According to the seismic hazard map 



 

2 

of Malaysia produced by Marto et al. (2007), it can be said that the probability of 

earthquake occurs in Malaysia is low, however the impact of seismic from earthquake 

events is not negligible. On the other hand, the United States Geological Survey 

(USGS) published an updated map in 2019 that depicts the area of seismic events and 

volcanic activity, as shown in Figure 1.2. As a result of this statistic, the notion that 

Malaysia is earthquake-proof no longer holds true, as Malaysia, particularly the East 

Malaysian zone and the southern portion of West Malaysia, are located inside the Ring 

of Fire.  

 

Figure 1.1  Seismic activities map of the world (Dowrick, 2009 after Barazangi 

and Dorman, 1969) 

Figure 1.2  Ring of Fire (U.S. Geological Survey, 2019) 

Legend: 

  Volcanoes    

  Ring of Fire             
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In June 2015, an earthquake of 5.9 in Magnitude (Mw) had occurred in Sabah, 

East Malaysia. This incident caused 18 deaths and damages to a lot of properties. Some 

seismic incidences have surfaced in West Malaysia since 2007, even though 

earthquake had never been reported in the region. For example, minor earthquakes 

Magnitude (Mw) less than 4.9 had occurred in Janda Baik, Bentong, Pahang in 

November 2007; in Jerantut, Pahang in March 2009; subsequently in Manjung, Perak 

on 29 April 2009; and finally in the southern areas such as in Kuala Pilah, Negeri 

Sembilan on 30 November 2009. As mentioned by Malaysian Meteorological 

Department (MMD), all the resulting vibrations were less than 4.9 in Magnitude (Mw) 

were categorized as weak, and did not cause any noticeable damages to the buildings 

or houses in the area. 

Some of the proposed projects lie on the earthquake hazard zones produced by 

the Ministry of Science, Technology and Innovation (MOSTI) (2009) especially at 

Bukit Tinggi and Bentong district. It shows that, the seismic risk consideration needs 

to be enhanced in earthquake hazard zones to any development project to provide a 

safer place for population and economic growths.  This challenge is affecting local 

construction trends and is threatening the ability to construct quality and sustainable 

structures. As a way forward, the Ministry of Works, Malaysia through speech by the 

Minister of Works during the Seminar on Geotechnical Earthquake Engineering 

(2016) urged that all of us must be concerned and vigilant about the risks and 

consequences of the natural disasters (earthquake, landslide and liquefaction, among 

others under stresses of seismic waves) and to take serious action to protect lives and 

our well-being. The detailed study on the earthquakes must be conducted to produce 

appropriate adjustments to current practice and policies.  

The domination of sand in soil with presence of limited percentage of fine 

particles is known as sand matrix soils (Tan, 2015; Marto et al., 2016). Historical 

evidence on liquefaction phenomena shows that sand matrix soils also liquefy as 

reported by Holzer et al. (2010), Orense et al. (2012) and Batilas et al. (2013). This 

type of soils is found in abundance in Malaysia. Laboratory test conducted by Tan 

(2015) on the effects of fines content by up to 40% on liquefaction resistance of sand 

matrix soils have shown that the liquefaction resistance increases with increases of 
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plasticity of soils. They found that the threshold fines content, fth for sand-kaolin 

mixtures was 25% which liquefaction occurred. Similar findings were reported by 

Perlea et al. (2000), however the percentage of fines content occurred at different value 

was 15-20%.  Other factors such as types of fines content, void ratios, relative 

densities, particle shape and sizes, particle size distribution and cyclic strength is 

believed to cause the liquefaction occurred at different percentage of fines content. 

The effects of fines content have been well-studied to-date, however other factors 

which contribute to increase or decrease in liquefaction resistance need to be 

investigated such as particle size and grading characteristics of sand. Sieve analysis 

used to determine the particle size distribution of soil samples. From this analysis, the 

percentages of sizes of particles can be obtained. The results from particle size 

distribution were used to calculate the grading parameters of soils (Coefficients of 

Uniformity and Curvature). Holtz and Kovacs (1981) stated that soils gradation is an 

indicator of other engineering properties such as compressibility, shear strength, and 

hydraulic conductivity. 

In general, the undrained shear strength of soil is influenced by its particle size 

and morphological characteristics (Ghadr and Assadi‑Langroudi, 2019). Igwe et al. 

(2004) stated that the study on influence of particle size distribution on liquefaction 

needs to be carried out in order to obtain enough information for conclusions to be 

drawn. Literature search conducted in the research showed that a certain number of 

studies have been carried out focusing on the effects of particle size and grading 

characteristics of sand matrix soils, but it was also revealed that there are still not 

enough data and information for a global agreement. Recent research works on particle 

size and grading characteristics by Choobbasti et al. (2014), Hakam et al. (2016), Zhou 

et al. (2017), Peacock (1971), Aydan et al. (2008), and Wei et al. (2020) have reported 

contradictory or inconsistent findings.  For example, Peacock (1971) reported that the 

mean grain size, D50 of 0.08 mm is most susceptible to liquefaction, whereas Aydan et 

al. showed that approximately 80% of liquefied soils have D50 between 0.113 mm and 

0.338 mm. Further investigation, clarification and validation are needed. 

Kokusho (2012) and Kuerbis et al. (1988) stated that the coefficient of 

uniformity (CU) is an important factor in controlling the liquefaction resistance of 
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sands. However, this factor is considered to be not applicable to sand matrix soils 

condition as shown by Yilmaz et al. (2008) and Choobbasti et al. (2014), who reported 

that there is no correlation between CU and coefficient of curvature, CC, in cyclic 

resistance as the liquefaction indicator. 

As mentioned above, there are not enough conclusive findings on the 

relationship between CU and the liquefaction resistance of soils. As sand in natural 

consist of different percentage of fines and particle size, a study on the effects of 

particle size and grading characteristics of sand on liquefaction resistance of sand 

matrix soil need to be carried out.  Because any soil naturally has a different size 

distribution and a varying fraction of fines content, a good conclusion cannot be 

expected unless these factors are taken into account. There is not enough 

evidence at this point to obtain a global agreement in describing how the particle size 

and grading characteristics of sand particles influence on the soil liquefaction 

resistance under dynamic loading. Most of the research conducted on compositional 

characteristics of soils without considering the effects of particle size and grading 

characteristics of sand in sand matrix soils. It also shows that the study using tropical 

sand and silt or clay on liquefaction resistance are still limited. Generally, soil 

liquefaction occurred in undrained condition. As mentioned by Das (2013), it difficult 

to model the soil behaviour for undrained and over-consolidated soils if the volume 

change of soils ignored.  For this reason, the critical state soil mechanics (CSSM) 

framework is expected to provide a better interpretation of results than the Mohr-

Coulomb failure theory (Tan, 2015). Although no volume change allowed under 

undrained condition, any volume change was automatically observed and saved into 

files through data acquisition unit provided using recent triaxial machine. At the end 

of monotonic test, the samples were tested for moisture content to be back-calculated 

on the specific volume at particular mean normal effective stress. 

Tongkul (2015) shows some form of liquefaction occurred at Poring Hot 

Spring, Ranau, Sabah after magnitude 6.0 earthquake in 2015. The mud and water 

were ejected from underground and flow out due to the shaking and as a result turned 

the water to black. The mud and water move up because of liquefaction, which gathers 

at the interface between the clay layer and sand layer (Shao et. al, 2020). The 
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characteristics of potentially liquefiable soil are found in many areas along the 

shoreline of Malaysia (Hashim et al., 2017). Therefore, it is necessary to accumulate 

and analyse basic scientific data, elucidate the information, and establish more general 

and integrated understandings of liquefaction based on the obtained knowledge. The 

is the overall aim of this research. As a result, it is also expected that the outcome of 

this research makes contributions to the establishment of national-level disaster 

mitigation measures in Malaysia.  

1.2 Problem Statement 

Liquefaction resistance of sand matrix soils or sand fine mixtures has been 

extensively studied by the previous researchers since 1964 as a result of dramatic 

damages by earthquakes due to the seismic liquefaction phenomena in Niigata, Japan 

and Alaska, USA. To date, the factors affecting on the liquefaction resistance, such as 

sample preparation techniques, relative densities, aging and cementation methods, soil 

types, effective confining pressures, cyclic loading, and frequencies are well 

investigated and understood.  However, until the end of the last decade, not much work 

had been conducted on the effects of particle shapes and sizes, grading characteristics, 

particle arrangements, and fines contents. The effects of fines contents on liquefaction 

susceptibility of sand matrix soils are in general agreement among the previous studies, 

but it is not conclusive enough to be applicable to all the types of sand with different 

physical characteristics. Although sand is the dominant material in sand matrix soils, 

there is still not enough effort in considering the effect of particle size and grading 

characteristics of sand as the main factor in altering liquefaction resistance. Hence 

results are still vague and contradictory. 

Typical practices are biased to use the original sand to investigate the 

liquefaction resistance without considering the effect of particle size and the types of 

fines content whether it contain silts or clay. This may lead the misleading on the 

results on liquefaction resistance of soils samples. Previous studies reported that the 

presence of fines in sand could either increases or decreases the liquefaction resistance 

of sand matrix soils. Due to that reason, most of the researchers focusing on the role 
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of fines in liquefaction resistance of sand matrix soils. The effect of fines content on 

liquefaction susceptibility of sand matrix soils is generally in great agreement but it is 

not conclusive enough to be applicable on all types of sand with different physical 

characteristics. Although the sand is the dominant material in sand matrix soils, not 

much efforts was given on the characterization of the roles of sand as the main factor 

in altering liquefaction resistance. Besides that, the research findings on the effect of 

particle size and grading characteristics of sand on liquefaction resistance of sand 

matrix soils is contradictory. Therefore, there is a need to investigate the effect of 

particle size and grading characteristics of sand on liquefaction resistance of sand 

matrix soils. In fact, there are not many studies yet done on the liquefaction 

susceptibility of soils in Malaysia due to an earthquake, particularly on sand matrix 

soils. Therefore, it becomes essential to develop fundamental understanding on 

liquefaction resistance of sand matrix soils of different particle sizes and grading 

curves, which could contribute towards disaster preparedness and prevention in the 

future, particularly in Malaysia. 

1.3 Research Objectives 

The research is aimed to investigate the effects of particle size and grading 

characteristics of sand on liquefaction resistance of sand matrix soils. In order to 

achieve the research aim, three (3) objectives have been identified and set as follows. 

1) To evaluate the particle size, the grading characteristics, and the physical 

properties of sand matrix soils at various compositions of sand and fines. 

2) To establish the critical state line as the failure envelope of sand matrix soils 

from the results of monotonic undrained triaxial tests. 

3) To characterize the liquefaction susceptibility of sand matrix soils from the 

cyclic triaxial tests and validate through the centrifuge tests. 
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1.4 Scope and Limitation 

In order to answer the problem statement that has been identified,  

laboratory tests had been carried out in accordance to respective British 

Standard (BS1377-2:1990 Classification Test (British Standards Institution, 2010a) 

and BS1377-8:1990 Effective Shear Strength Tests (British Standards Institution, 

2010c)), American Society for Testing and Materials (ASTM D5311-M13 Standard 

Test Method for Load Controlled Cyclic Triaxial Strength of Soil (American Society 

for Testing and Materials, 2013)), (ASTM D3999 Standard Test Methods for the 

Determination of the Modulus and Damping Properties of Soils Using the Cyclic 

Triaxial Apparatus) and some cited journal publication including the 

test procedure introduced by Yamamuro and Lade (1997) on maximum density and 

minimum density of sand matrix soils. Portable microscope named as Cooling Tech 

USB Digital Microscope has a capability to view the particle size up to 500 times using 

built-in camera of 2.0 Megapixel. The used of this microscope shows a reliable result 

as reported by Alvin John (2014) for soils at different relative density. The research 

has been conducted under the scopes and limits as follows. 

1) Sand and Kaolin were obtained from river mining sites (largely used for 

construction) at Johor and Kaolin (M) Sdn. Bhd, Selangor, respectively. The 

selection of kaolin is because it is more stable and less problematic compared 

to bentonite. Since it contains low plasticity fines, as a result kaolin shows less 

swelling and shrinking compared to bentonite. 

2) Maximum void ratio represents the loosest state of samples while minimum 

void ratio shows the densest state of samples. All samples of sand matrix soils 

were prepared with targeted relative density of 15% for loose condition. Void 

ratio of each sand matrix samples at 15% relative density was back calculated 

as references. 

3) Sand matrix soils were artificially prepared as follows: Clean sands were 

separated into three grain size ranges; coarse sands (2.0 mm to 0.6 mm); 

medium sands (0.6 mm to 0.2 mm); and fine sands (0.2 mm to 0.06 mm). These 
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three grain sizes of sand were mixed with low plasticity fines (kaolin) at 

different percentages (0% to 40%) by weight to prepare sample specimens. 

4) GDS Automated Enterprise Level Dynamic Triaxial System (ELDYN) was 

used to carry out the monotonic and cyclic triaxial tests for all reconstituted 

sand matrix soils samples. 

5) Wet tamping method with 5% moisture content was used to prepare the 50 mm 

x 100 mm sample for triaxial tests. No curing period was applied.  

6) All samples were prepared to a target relative density for loose state soil. Three 

different effective consolidation pressures of 50, 100 and 200 kPa were applied 

in monotonic triaxial tests. As the most susceptible liquefy soils (loose state) 

found less than 15m depth, the effective consolidation pressure 50kPa, 100kPa 

and 200kPa was chosen to replicate the soil at different depth. The volume 

changes before shearing were automatically observed and saved into files 

through data acquisition unit (ELDCS) provided using ELDYN machine. At 

the end of monotonic test, the samples were tested for moisture content to be 

backed calculated on the specific volume at particular mean normal effective 

stress. 

7) All samples were tested under isotropically consolidated undrained condition. 

The constant strain rate was fixed at 0.1 mm/min until the sample reached the 

maximum of 25% axial strain. Monotonic triaxial test was terminated when the 

maximum axial strain reached 25% (Head and Epps, 2011) (Tan, 2015). 

However, the failure criteria for reached critical state when the soil was sheared 

to 20% of strain or when the u become constant. 

8) Two-way undrained cyclic triaxial tests were conducted on reconstituted loose 

sand matrix soil samples with cyclic frequency of 1 Hz at 100 kPa effective 

confining pressure. At 15% relative density, loose sand matrix soils were 

reconstituted by moist tamping method and void ratio at 15% were carefully 

kept as initial condition. Similar method was applied at monotonic test. 

Termination process during cyclic triaxial test was capped at maximum 10% 

of axial strain or 100 cycles, whoever encounter first. However, double 

amplitude axial strains of 5% was used for initiation of liquefaction or when 
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pore water pressure equal to consolidation pressure. The samples then were 

collected and tested for moisture and void ratio results. 

 

1.5 Significance of the Research 

The findings and knowledge of the research make substantial contributions to 

enhance the fundamental theory and to provide engineering practice of soil 

liquefaction evaluation for construction industry. This study provides better 

understanding on the role of sand in liquefaction resistance of sand matrix soil. By 

incorporating the theoretical framework of critical state soil mechanics, the 

fundamental understanding on how the particle size and grading characteristics 

influence the liquefaction resistance of sand matrix soils will be improved. 

1.6 Thesis Outline 

This thesis consists of six chapters as follows, 

1) Chapter 1 describes the background of study which is associated with the 

liquefaction resistance and the rationale of this study. To achieve the aim of 

this study, problem statement, objectives and scope are presented followed by 

significance of this study. 

2) Chapter 2 presents the literature review which starts from the introduction and 

description of liquefaction. Factors affecting the liquefaction resistance of soils 

from past research was reviewed. This chapter also reported and discussed the 

relationship between critical state parameter on liquefaction resistance. A short 

introduction on the findings replicating a model to represent the actual 

condition of soil is presented through a centrifuge sub-topic. The important of 

this study for Malaysia condition is presented through a seismic hazard 

research in Malaysia.  
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3) Chapter 3 explains how the research had been conducted to achieve the aims 

of this research. This chapter include testing program, laboratory test and 

small-scale test using centrifuge facilities provided by Kyoto University, 

Japan. Details on the experimental setup, testing and data collection are 

discussed in this chapter. 

4) Chapter 4 discusses the results on the characteristics of sand matrix soils 

particularly on the aspect of index properties and strength properties of sand 

matrix soils at different percentage of fines content. This chapter focused on 

the shear strength of the sand matrix soil using two different criteria; Mohr-

Coulomb failure criteria and the critical state failure criteria. Relationship 

between the critical state parameters and the particle size as well as the grading 

characteristics are discussed. 

5) Chapter 5 presents and discusses the results from cyclic triaxial tests and 

centrifuge tests. The relationship between particle size and grading 

characteristics of sand matrix soil are evaluated and their effects to liquefaction 

resistance are discussed thoroughly.   

6) Chapter 6 presents the conclusions and recommendation for future research. 
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