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ABSTRACT 

Extreme rainfall in upstream watersheds often results in the rise of river water 
levels, leading to severe flood disasters in the downstream catchment. Therefore, 

monitoring river water level and flow are crucial for flood forecasting in early warning 
systems and disaster risk reduction. Although some computational models achieved 
good prediction accuracy in particular problems, they might not perform well in 
different datasets. Thus, this study proposed a novel intelligence system using an 

ensemble committee machine-based framework to solve the “unstable” performance 
of the computational model to forecast flood with individual base learners by simple 
averaging and weighted averaging method. In addition, the use of simple averaging in 
the ensemble method is compromised by the worst-performing individual models in a 

collective forecast. The weights of different individuals should be tuned to find the 
optimal weight combination. This weight tuning algorithm can be treated as an 
optimisation problem. Thus, the genetic algorithm (GA) and K-nearest neighbour (K-
NN) optimisation method were chosen for their flexibility and performance to improve 

the model’s generalisability. The applied base learners using various machine learning 
algorithms include radial basis function neural network (RBFNN), adaptive-neuro 
fuzzy inference system (ANFIS), support vector machine (SVM), and long short-term 
memory network (LSTM). The committee machine model was employed to forecast 

the river water level at the downstream area in different lead times addressed for the 
three various datasets in different areas, including Kelantan river, Terengganu river in 
Malaysia, and Mekong river in Cambodia. Performance comparison of the models is 
evaluated and analysed using various performance metrics, including mean percentage 

error (𝑀𝑃𝐸), root mean square error (𝑅𝑀𝑆𝐸), mean absolute error (𝑀𝐴𝐸), and 

correlation coefficient (𝑅). The results showed that the proposed Intelligent 
Committee Machine Learning (ICML) outperformed the individual base models for 

most performance indicators. Specifically, its 𝑀𝑃𝐸, 𝑅𝑀𝑆𝐸, and 𝑀𝐴𝐸 of ICML by GA 
produced 2% - 70% smaller than the best individual and ICML-KNN-based model in 
the Kelantan dataset. Likewise, 𝑅 values are 0.01% - 0.24% higher than the best 
ANFIS model and ICML by K-NN. The proposed ICML-GA based model has 

improved 𝑀𝐴𝐸𝑠 performance in the Terengganu dataset, 0.26% - 4.5% smaller than 

the best individual model (LSTM). While 𝑅 performance of ICML-GA model 
produced 0.01% - 0.06% better in all steps ahead forecasting horizons. While in the 
Mekong dataset, the ICML-GA model outperformed all performance indicators. 

Specifically, its 𝑀𝑃𝐸𝑠 are 2% - 11% smaller than the best ANFIS and RBF model, 

2% - 7% smaller in 𝑅𝑀𝑆𝐸𝑠, and 1% - 10% smaller in 𝑀𝐴𝐸𝑠 than those ANFIS and 
RBF. In addition, 𝑅 values improved 0.01% - 0.07% better than other individual 
models. In sum, the proposed ICML-GA model can robustly forecast river water levels 
to predict floods for early warning and disaster risk reduction and outperformed 

individual models and the ICML-KNN model for the case studies investigated in this 
work.  
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ABSTRAK 

Hujan lebat di kawasan hulu sungai sering mengakibatkan peningkatan paras 
air sungai, yang membawa kepada bencana banjir yang teruk di kawasan tadahan hilir. 

Oleh itu, pemantauan secara intensif  terhadap paras dan aliran air sungai adalah 
penting untuk ramalan banjir dalam sistem amaran awal dan pengurangan risiko 
bencana. Walaupun sesetengah model pengiraan mencapai ketepatan ramalan yang 
baik dalam masalah tertentu, model tersebut mungkin tidak berfungsi dengan baik 

dalam set data yang berbeza. Oleh itu, kajian ini mencadangkan sistem perisikan baru 
menggunakan rangka kerja berasaskan mesin jawatankuasa berkelompok untuk 
menyelesaikan prestasi "tidak stabil" model pengiraan untuk meramal banjir dengan 
pelajar asas individu dengan kaedah purata dan wajaran. Di samping itu, penggunaan 

purata mudah dalam kaedah kelompok terjejas oleh model individu yang berprestasi 
paling teruk dalam ramalan kolektif. Berat individu yang berbeza harus ditala untuk 
mencari kombinasi berat yang optimum. Algoritma penalaan berat ini boleh dianggap 
sebagai masalah pengoptimuman. Oleh itu, kaedah pengoptimuman algoritma genetik 

(GA) dan K-jiran terdekat (K-NN) telah dipilih untuk fleksibiliti dan prestasi baiknya 
untuk meningkatkan kebolehgeneralisasian model. Algoritma pembelajaran asas yang 
digunakan menggunakan pelbagai algoritma pembelajaran mesin termasuk rangkaian 
saraf fungsi asas jejarian (RBF), sistem inferens kabur neuro adaptif  (ANFIS), mesin 

vektor sokongan (SVM) dan rangkaian memori jangka pendek yang panjang (LSTM). 
Model mesin jawatankuasa digunakan untuk meramalkan paras air sungai di kawasan 
hiliran dalam masa pendahuluan yang berbeza, ditujukan untuk tiga pelbagai set data 
di kawasan berbeza, termasuk sungai Kelantan, dan sungai Terengganu di Malaysia, 

dan sungai Mekong di Kemboja. Perbandingan prestasi model dinilai dan dianalisis 
menggunakan pelbagai metrik prestasi, termasuk ralat peratusan min (𝑀𝑃𝐸), ralat min 

kuasa dua akar (𝑅𝑀𝑆𝐸), ralat mutlak min (𝑀𝐴𝐸), dan pekali korelasi (𝑅). Keputusan 
menunjukkan bahawa pembelajaran mesin jawatankuasa perisikan (ICML) yang 
dicadangkan mengatasi model asas individu untuk kebanyakan penunjuk prestasi. 

Khususnya, 𝑀𝑃𝐸, 𝑅𝑀𝑆𝐸 dan 𝑀𝐴𝐸 ICML-FF oleh GA menghasilkan 2% - 70% lebih 
kecil daripada model individu terbaik dan ICML-KNN dalam set data Kelantan. Begitu 

juga, nilai 𝑅 adalah 0.01% - 0.24% lebih tinggi daripada model ANFIS terbaik dan 
ICML-KNN. Dalam set data Terengganu, model berasaskan ICML-GA yang 

dicadangkan telah bertambah baik dalam prestasi 𝑀𝐴𝐸, di mana 0.26% - 4.5% lebih 
kecil daripada individu terbaik (LSTM). Manakala prestasi 𝑅 model ICML-GA 
menghasilkan 0.01% - 0.06% lebih baik dalam semua langkah ke hadapan ramalan 

ufuk. Semasa dalam set data Mekong, model ICML-GA mengatasi prestasi dalam 
semua penunjuk prestasi. Secara khususnya, 𝑀𝑃𝐸nya adalah 2% - 11% lebih kecil 

daripada model ANFIS dan RBF terbaik, dan 2% - 7% lebih kecil dalam 𝑅𝑀𝑆𝐸, juga 

1% - 10% lebih kecil dalam 𝑀𝐴𝐸 daripada ANFIS dan RBF tersebut. Di samping itu, 
nilai 𝑅 meningkat 0.01% - 0.07% lebih baik daripada model individu lain. Secara 
ringkasnya, model mesin jawatankuasa pintar ICML-GA yang dicadangkan mampu 
meramalkan paras air sungai yang mantap dan mengatasi model individu dan model 

ICML-KNN untuk meramalkan banjir untuk amaran awal dan pengurangan risiko 
bencana untuk kajian kes yang disiasat dalam kerja ini. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview and Motivation 

Nowadays, in many parts of the world, frequent floods have become part of 

people’s lives, with increasing numbers and frequencies, which people have adapted 

for hundreds of years. These floods are usually expected and welcomed in some 

locations since they enrich the land and improve livelihoods (WMO and GWP, 2013). 

Floods are the world’s most considerable damage potential compared to other natural 

catastrophes and affect the largest number of people. There is evidence of rising rates 

of the number of individuals impacted by floods which correspond to an increase in 

economic loss. The river flows in the local communities are increasing, becoming 

increasingly intense and less predictable. Building natural catastrophe resilience is one 

of this region’s most significant problems for sustainable development. Floods are one 

of the most frequent natural disasters in Asia-Pacific, with devastating impacts on the 

poor and vulnerable populations who live along river basins and are dependent on 

agriculture for their livelihoods (UNESCAP, 2015). 

Research on the advancement of flood forecasting models contributes to flood 

early warning and risk reduction, disaster management, minimising the loss of human 

life, and reducing property damage. Data-driven machine learning methods have been 

widely used in classification and regression tasks in inter-disciplinary studies, 

involving many engineering fields, hydroinformatics, and environmental studies. 

Innovative techniques and solutions based on machine learning methods have been 

developed with adequately published results. Emerging advances in computing 

technologies coupled with big-data mining have boosted data-driven applications. 

Machine learning technology has modernised scientific thinking and predictive 

applications with its flexibility and scalability in pattern extraction. This study 

investigates recent machine learning algorithms for flood water level forecasting to 
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improve the model’s performance by combining individual models to form an 

advanced intelligent committee machine learning framework. 

1.2 Research Background 

Flood disasters continue to occur in many countries around the world due to 

the dynamic climate change condition. Among the natural hazards, flood disasters are 

the most destructive. Massive floods cause tremendous casualties to human life, 

properties and agriculture and disrupt a country’s socio-economic system. 

Governments, therefore, are under pressure to develop and provide accurate and robust 

flood forecasting for disaster risk management to reduce the impact of this disaster 

(Khalid and Shafiai, 2015). Flood forecasting models are essential in hazard 

assessment and disaster management. The research on the advancement of flood 

forecasting will increase since it contributes to disaster risk reduction, which is a 

difficult task, challenging and highly complex to model (Jain et al., 2018). According 

to the Sendai frameworks 2015-2030, disaster risk reduction (DRR) is given priority 

numbers three and four. The framework states “investing in disaster risk reduction for 

resilience” and “enhancing disaster risk preparedness for effective response” among 

its priorities (UNISDR, 2015). In connection with these viewpoints, hence flood 

modelling and forecasting is crucial for disaster risk management. In many regions of 

the world, flood forecasting is one of the few feasible options to manage flood 

disasters.  

Flood forecasting models are an essential component in many flood warning 

and emergency response systems. Models can assist by providing warnings of the 

likely timing and peak flow of the flooding in advance and helping to understand the 

complexities of flood events as they develop. Models output may also be used in 

decision support systems for flood event management. In addition, flood forecasting 

is essential for an early warning system (EWS), in which such EWS is an integral 

component of disaster risk management. A flood forecasting system provides the 

operating environment within which the flood forecasting model can be operated and 

is sometimes called the system environment (Sene, 2008).  
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To date, several flood forecasting models are mainly data-specific and involve 

simplified various input assumptions (Lohani et al., 2014). Thus to mimic the complex 

mathematical expression of physical processes and river behaviour, such models 

benefit from specific techniques, e.g., empirical black-box models, stochastic and 

hybrids (Zhao et al., 2018). These physically and statistically based models boost the 

usage of advanced data-driven methods, e.g., Machine Learning (ML) and Deep 

Learning (DL) techniques. Data-driven forecasting methods using ML are promising 

tools as they are less time consuming to develop with minimal inputs. ML technique 

is one of the most significant current discussions in Artificial Intelligence (AI) fields. 

Among them, the most well-known works of flood forecasting modelling include 

artificial neural networks (ANNs) (Napolitano et al., 2010; Elsafi, 2014; Yaseen et al., 

2018), support vector machines (SVM) (Zhu et al., 2016; Hong, 2008) and adaptive 

neuro-fuzzy inference system (ANFIS) (Lohani et al., 2014; Ashrafi et al., 2017).  

These models were effectively employed for both short-term and long-term flood 

forecasting. As a new method in ANN models, deep learning is a significant subject 

of interest in AI methods. Deep learning is being studied in many problems, such as 

image processing, speech recognition, and natural language processing. In the subject 

of forecasting, recent studies have reported the successful use of deep learning in 

various fields (Guo et al., 2018; He et al., 2019; Qu et al., 2019), respectively, for 

power load and probability density forecasting, traffic flow forecasting and rainfall 

forecasting. In addition, Cai et al. (2019) reported that deep learning performed better 

than the traditional ANN models in their work. 

Previous methods are indicative of all individual models being capable of 

forecasting floods. Different AI models provide a similar acceptable efficiency but 

with different strengths and weaknesses. So that, exploiting the synergy among better 

performing models is an attractive proposition if the positive aspects of individual 

modelling techniques can be combined. One such technique is the Intelligence 

Committee Machine (ICM) or Committee Machine with Intelligent System (CMIS) 

models.  This technique was explored in various disciplines, including river flow 

forecasting, gas reservoirs, and rock permeability predictions (Abrahart and See, 2002; 

Goswami and O’Connor, 2007; Bagheripour, 2014; Tatar et al., 2014). These works 

typically use AI-based multi-model interfaces to exploit their synergy. Outputs from 

different AI models are used to reach the overall decision, thereby achieving better 
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performance (Nadiri et al., 2016). Researchers have successfully employed an 

ensemble committee-based data intelligent approach to generate soil moisture 

forecasts (Prasad et al., 2018). The CMIS combines AI models by simple ensemble 

averaging or by weighted averaging, which is adopted via optimisation methods such 

as Genetic Algorithm (GA) (Kadkhodaie-Ilkhchi et al., 2009). Gholami et al. (2018) 

compared GA and simple ensemble averaging method as combiners and concluded 

that the GA is more efficient. Notably, the term committee is understood to refer 

generally to the synergic combination of a few models and machine to be another word 

for artificial. The advantage of the CMIS is a capability for a nonlinear combination 

of AI models under supervision, leading to improvements in the performance of CMIS 

over individual AI models. 

The forecasting of flood lead-time and location occurrence is fundamentally 

complex due to the dynamic nature of the monsoon phenomenon. Although extensive 

studies have been carried out on hydrological-flood forecasting models, very few 

identified AI approaches apply to all types of modelling (e.g., forecasting, 

optimisation, classification, etc.). Previously published studies are limited to one flood 

forecasting model employed in one reservoir. There was not a single AI technique 

suitable for all specific problems in general (Yaseen et al., 2018). However, the nature 

of the presented models remains unclear, and flood peak needs to be forecasted more 

accurately. With this growth of forecasting techniques in hydrological data, these 

applied models still have a notable degree of shortcoming about their generalisation 

and implementation as an expert system. Therefore, the design of flood modelling 

remains a complex challenge that continues to be undertaken by researchers or 

scientists.  

Investigating multi-model integration is a continuing concern within the field 

of advanced machine learning methods. It has been reported that the integration of 

intelligent systems and the committee machine concept can improve and optimise the 

performance of individual models (Kadkhodaie-Ilkhchi et al., 2009). Although studies 

have recognised the idea of committee networks (Mosavi et al., 2018; Fotovatikhah et 

al., 2018), the use of CMIS based machine learning models is mainly unnoticed in 

engineering-hydrological science, especially for flood forecasting. Yaseen et al. 
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(2019) suggested that a further study then is needed focusing on using advanced-soft 

computing methods. Integration of individual machine learning-based models are 

largely unobserved in developing flood forecasting model. They are worth 

investigating in future research study. Based on these findings, the CMIS technique 

looks very promising and will be developed further in this study to obtain an improved 

flood forecasting model. A CMIS has a parallel framework that produces a final output 

by combining the results of individual models. Individual models include those widely 

employed in ML methods, including ANN, a hybrid neural network and fuzzy system, 

and support vector machine. Finally, the more recent ANN paradigm called deep 

learning will also be examined as an individual expert member in that particular 

committee machine network.  

Committee machine-based model is designed by combining various types of 

machine learning algorithms or individual experts. It is essential to find suitable 

machine learning algorithms developed to create committee-based models. Therefore, 

the literature study reviewed the most successful machine learning models, including 

single and hybrid models developed for flood forecasting problems. Mosavi et al. 

(2018) reported many machine learning models developed in the literature for flood 

forecasting. Among them, ANN models, including multilayer perceptron and radial 

basis function, were the most successful model in the current development. In addition, 

SVM based model has increasingly been applied in this particular problem, as reported 

by Fotovatikhah et al. (2018). Despite the success story from the decision tree and 

random forest based model (Khosravi et al., 2018; Muñoz et al., 2018), the ANFIS 

model as part of the hybrid algorithm was effectively developed for the flood 

forecasting problem (Rezaeianzadeh et al., 2014). The use of LSTM as part of the deep 

learning technique is selected as an individual expert to develop ICML based model 

since this model has received limited attention in the literature (Song et al., 2019). 

Hence, combining their strengths could produce better generalisability to improve the 

model performances in the advanced ensemble machine learning technique. 
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The approach’s usefulness is evaluated using real case studies for Malaysia’s 

two (2) major rivers, Kelantan River and Terengganu River, as a representative flood 

forecasting point (FFP). In addition, one river across Cambodia, namely Mekong river, 

will also be considered as a case study. These reservoirs are among the most frequent 

seasonal flood disasters in Malaysia and Cambodia. Two significant types of flood 

occur in Malaysia are flash flood and monsoon flood. Some districts and states in 

Malaysia suffer from floods during the monsoon season, which this study will 

consider, especially in Kelantan and Terengganu. While flash flood reportedly occurs 

occasionally in Kuala Lumpur region (Abu Bakar et al., 2017).  

The applications in flood forecasting can be classified according to flood 

resource variables. These variables include river water level, flood peak discharge, 

urban flood, plain flood, river flood, precipitation, river inflow, peak flow, river flow, 

rainfall-runoff, flash flood, rainfall, streamflow, seasonal streamflow, soil moisture, 

rainfall-discharge, groundwater level, rainfall stage, flood frequency analysis, flood 

quantiles, surge level, extreme flow, storm surge, typhoon rainfall, and daily flows 

(Maier et al., 2010). Among these critical influencing flood resource variables, rainfall 

and the streamflow river water level had the most significant role in flood modelling 

(Toukourou et al., 2011), which will be considered more in this study.  

1.3 Problem Statements 

 Data-driven modelling and computational intelligence, in general, have 

proven their applicability to various water-related problems. These include modelling, 

short and long-term forecasting, data classification, reservoir optimisation and 

building flood severity maps based on aerial or satellite photos  (Ghaderi et al., 2019). 

However, since natural processes are complex, it is sometimes impossible to build a 

single global model that adequately captures the overall system behaviour. According 

to Mosavi et al. (2018), in hydrological flood forecasting, data-driven machine 

learning methods were the most popular in improving the quality of the flood 

forecasting models. However, such individual machine learning models are helpful 

only when the model architecture and parameters are chosen correctly (Chen and Lin, 
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2006). Inappropriate models cannot learn the problem well and can easily lead to 

overfitting or poor generalisation. Hence, it affects their predictive performance. 

Despite the developments of flood forecasting methods, there is still an 

increasing concern over the performance and ability of these models when used in 

various flood-prone areas. There are, however, issues with the accuracy of such 

models. For example, they may be quite accurate on average, where some error 

measures might be low. Still, they miss the extreme values (peaks or low values), 

which are essential in actual situations, e.g. flood early warning applications. Hence, 

using a single global model for a complex process is often inadequate  (Mosavi et al., 

2018). In this case, machine learning algorithms lose their estimation abilities, and the 

results are poor if not invalid. Moreover, as recently reported by Yaseen et al. (2019) 

and Luo He et al. (2019), few published studies have systematically examined the 

concept of committee machine intelligent system technique in hydrological-

engineering problems, especially for flood forecasting. Hence, there is a need to 

investigate the effectiveness of committee machines for flood forecasting in various 

flood-prone areas. More specifically, in the case of Malaysia, the committee model 

approach has not been applied so far in the flood forecasting problem. 

In addition to the ensemble of committee machines, combination methods 

among the individuals were essential to producing the final result, and over there, 

simple averaging is the most popular one (Kadkhodaie-Ilkhchi et al., 2009). However, 

the disadvantage is that the important contribution of the individuals cannot be 

emphasised due to giving equal weights to all the individuals. Likewise, the overall 

model performance is compromised by the worst performing models (Prasad et al., 

2018). One another approach is by aggregating the individual models. A number of 

aggregating methods have been proposed, such as boosting (Li et al., 2016), bagging 

(Yariyan et al., 2020), stacking (Zhan et al., 2018), and majority vote (Xie et al., 2017). 

Among these combining methods, majority voting is widely used due to its simple 

implementation procedure. However,  majority voting also has some disadvantages, 

for example, the majority voting decision rules often neglect a winning expert that 

obtains only a minority of correct results, and this downgrades the diversity of the 
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ensemble, which is the primary reason for using the ensemble method  (Jafari Kenari 

and Mashohor, 2013).  

On the other hand, Ekbal and Saha (2011), and Zhang and Wang (2021) 

implemented a weighted majority vote to produce high prediction accuracy in their 

particular problems. Moreover, studies have been reported that weighted voting 

schemes can enhance the accuracy and robustness of the individual model compared 

with the simple majority vote (Ekbal and Saha, 2011a; Kim et al., 2011). When using 

weighted voting, the weights of different base learners should be tuned to find the 

optimal weight combination. This weight tuning algorithm can be treated as an 

optimisation problem, which can be addressed using metaheuristic algorithms such as 

the genetic algorithm (GA). Thus, GA is then implemented in this study due to its 

robustness and good applicability for solving different complex optimisation problems 

(Esmaeili-Jaghdan et al., 2016). 

In response to these problems, this study proposes to design intelligent flood 

forecasting models and develop committee machine learning based methods for further 

improvement and advancement of flood forecasting methods. The notion is to extract 

the pertinent information simulated by individual models and further optimise it via 

GA for a collective forecast. This overcomes the weaknesses of conventional simple 

averaging forecast combinations as well as the majority vote. Consequently, according 

to the problems stated above, the following three research questions were posed: 

(a) How to design and develop an improved committee machine model using 

intelligent systems (ANN, ANFIS, SVM and deep learning) for flood 

forecasting? 

(b) How to determine an ensemble committee machine method that can improve 

the time series forecasts of the individual experts? 

(c) How to identify the strengths of four individual experts and synergise them to 

improve the committee machine framework? 
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1.4 Objectives of Study 

The primary goal of this study is to propose an enhanced design of a flood 

forecasting model utilising a committee machine with intelligent systems and observe 

how the consensus among these models can produce improvement to get better and 

robust performance. These individuals’ intelligent system includes ANN, hybrid 

ANFIS, SVM and LSTM model. For further investigation, the specific objectives in 

this study were stated as follows; 

(a) This study aims to design and develop an improved model, namely intelligent 

committee machine learning - flood forecasting (ICML-FF), based on four 

different intelligent systems, namely ANN, ANFIS, SVM and LSTM. 

(b) This study seeks to determine and assess the generalisability of the ensemble 

ICML-FF based approach in order to improve accuracy by tuning the 

hyperparameters of individual models using the genetic algorithm. 

(c) This study aims to investigate the capabilities of the individual model’s 

contribution to improve the ensemble ICML-FF based framework in terms of 

forecasting accuracy. 

1.5 Scopes of Study 

This study’s emphasis will be on designing and developing an intelligent 

committee machine model for flood forecasting in two major river basins in Malaysia, 

namely Kelantan and Terengganu rivers. Likewise, another river in Cambodia, 

Mekong river, will also be used as a case study. Four models will be developed as 

individual experts: an artificial neural network of the radial basis function kind, a 

hybrid neuro-fuzzy model, a support vector machine, and a long short-term memory 

network model. The simple averaging method is implemented as the aggregation 

strategies to combine the weights of the individual models. Finally, the weights are 

further tuned using the genetic algorithm optimisation method to produce the final 

forecasting result. In addition, the proposed ICML-FF was also compared with the 
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existing committee machine model established for the flood forecasting problem. In 

this case, K-nearest neighbour (K-NN) is examined as the committee machine applied 

for flood peak discharge in Azmi et al. (2010). Furthermore, it is within the scope of 

this study to examine the performance comparison of individual intelligent experts and 

ICML-FF based models, as well as the comparison analysis with the existing 

committee machine model used for flood forecasting problem. 

It was observed that the ML methods’ characteristics varied significantly 

according to the period of prediction. Thus, dividing the study based on short-term and 

long-term was essential. Short-term forecasting for floods often refers to hourly, daily, 

and weekly predictions, and they are often used as warning systems. On the other hand, 

long-term forecasts are primarily used for policy analysis purposes. Furthermore, if 

the forecast leading time to flood is three days longer than the confluence time, the 

forecasting is considered to be long-term. From this perspective, according to Mosavi 

et al. (2018), a multi-step ahead of time forecasting horizon was set to hourly (from 

one to six hours ahead) for Kelantan River dataset. In contrast, a daily flood forecasting 

model (from one to six days ahead) was developed for Mekong river dataset. Thus, the 

lead time greater than three steps ahead considered as long-term forecasting in this 

present study. Hence, this study investigated the importance of advanced systems for 

both target tasks, consisting of short-term and long-term flood periods. However, only 

three steps ahead of time forecasting horizon was used for flood warning and risk 

reduction analysis. 

1.6 Significance of Study 

This study contributes to the existing knowledge of computational intelligence 

methods, particularly for machine learning techniques. This study aims to provide a 

significant opportunity to advance the understanding of this growing research area by 

exploring more soft-computing prediction methods. The proposed method can produce 

an applicable flood forecasting system, and it expects more robust and accurate 

forecasting of the flood to reduce the disaster impact. This new understanding should 

help to improve the forecasting model, particularly in flood disasters. Furthermore, 
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this approach will prove helpful in expanding the proposed model into another study 

in a different flood-prone location. In general, the proposed model is expected to 

exhibit itself as a very optimistic predictive model that can be utilised as a viable 

alternative to the state-of-the-art soft computing methods for flood forecasting. 

1.7 Thesis Organisation 

This thesis consists of five chapters.  The contents of each chapter are described 

as follows. Chapter 1 provides an introduction involving the overview and motivation 

conducted in this research study, including the background of the research, problem of 

the research, objectives of the study, the scopes and focus of the study, and the 

significance of the research study. 

Chapter 2 explains existing researchers’ fundamental knowledge and 

previously published studies about flood forecasting models utilising a data-driven 

machine learning-based approach. It also mentioned the strategy conducted to search 

the literature in the online databases. This chapter also describes the state of the art 

machine learning techniques in flood forecasting problems, including flood resource 

variables used, machine learning algorithms and its model’s performances. Reviews 

of the most suitable machine learning models utilising as ICML-FF based model 

comprising RBF-NN, ANFIS, SVM and LSTM were discussed in this chapter. 

Furthermore, this chapter also explored the use of committee machines based on 

artificial intelligent algorithms. Moreover, the ensemble methods in constructing 

committee machine-based models to improve a model’s performance are also 

explained. In addition, this chapter also reviews the benefit of the developed flood 

forecasting models for flood warning and risk reduction. 

Chapter 3 provides a proposed ICML-FF framework to accomplish the 

objectives of the present study. This chapter starts with a general proposed research 

design and procedure. Then, the datasets of Kelantan River, Terengganu River, and 

Mekong River comprises the resources of river water level data, rainfall, and 

streamflow used as input and output variables of the proposed ICML-FF model are 
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presented. The data preparation and model development process is described in this 

chapter. Furthermore, the evaluation matrices were addressed to measure the model’s 

performances, which are root mean square error (RMSE), mean absolute error (MAE), 

mean percentage error (MPE), and coefficient of correlation value, 𝑅. The proposed 

ICML-FF framework was constructed by utilising individual experts, including RBF-

NN, ANFIS, SVM, and LSTM model. Lastly, this chapter has also proposed the 

scenario of general flood warning for disaster risk reduction to final validation of the 

ICML-FF model. 

Chapter 4 discusses research findings and analysing the simulation results of 

the proposed model. The research findings comprise the model’s simulation results, 

including all mentioned individual experts in three different datasets. Furthermore, this 

chapter also discusses the proposed ICML-FF simulation results and their findings as 

well as comparison analysis using existing ensemble model by K-NN for flood 

forecasting problem. The comparison between the individual experts model’s 

performances and the ICML model were discussed. All details about the evaluation 

matrices (𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸, 𝑀𝑃𝐸, and 𝑅) performances were explained. In addition, this 

chapter investigated the effectiveness of the proposed ICML-FF model in applying 

flood warning and disaster risk reduction analysis. 

Chapter 5 concludes the research accomplishment of the present study and 

describes the significant achievement and contributions of the study. In addition, this 

chapter summarised the successful completion of the research objectives and scopes. 

Finally, suggestions for improvements are provided, which can be used as directions 

for future research. 
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