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ABSTRACT

From off-grid charging of electronic devices to energising independent wireless

sensor networks, the demand for stand-alone, low-power generators from renewable

energy sources is becoming more prevalent. A cruciform energy harvester has been

shown to output consistent power in the order of 1 mW when the reduced velocity

*∗, exceeds 15. However, this output is insufficient and its onset too late for real-

world applications. Thus, this study seeks to remedy these two shortcomings by

investigating cruciforms oscillators at various cruciform angles. To fulfill these goals,

theReynolds-AveragedNavier-Stokes simulationwere performed, and the results for the

90° cruciform were compared against experimental data for validation. The experiment

uses a similar 90° cruciform in an open flow channel. Assessments were made on the

vibration amplitude, frequency, lift amplitude and lift frequency at cruciformangles 90°,

67.5°, 45°, 22.5° and 0°. The Reynolds number range was 1.1×103 ≤ Re ≤ 14.6×103

and Scruton number 9.94, which was consistent with similar studies. Hilbert-Huang

analysis of the 90° cruciform indicated that a lot of energy from the free stream was

wasted in the production of non-performing Karman vortices. A larger lift was possible

if streamwise vortices were produced instead. When 45 ≤ U(°) ≤ 67.5, asymmetries in

the vortical structures prevented high-amplitude vibrations from taking place. However,

when 0 ≤ U(°) ≤ 22.5, a high-degree of symmetry among the vortical structures led

to an early onset of high-amplitude vibration. Power generated by the cruciform was in

the order of 1 mW for a 90° cruciform, below 1 mWwhen 45 ≤ U(°) ≤ 67.5, and in the

order of 10mWwhen 0 ≤ U(°) ≤ 22.5. Unification of the power generation and energy

harvesting efficiency results produced a map that describes the power and efficiency of

the harvester in the U(°) −*∗ parameter space. This uncovers three distinct regions of

power generation: pure cruciform region as cruciform angle tends to 90°, steep-angle

region between 45 ≤ U(°) ≤ 67.5, and shallow-angle region between 0 ≤ U(°) ≤ 22.5.

Maximum efficiency occurs close to 0.8 m/s when cruciform angle is 90°, close to

0.2 m/s at 67.5°, and close to 0.4 m/s at 0°. This power and efficiency map makes it

possible for future engineers to tailor the design of their cruciform energy harvester to

their specific power and efficiency needs.
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ABSTRAK

Daripada pengecasan peranti elektronik di luar grid sehingga pentenagaan

rangkaian sensor tanpa wayar, permintaan untuk sistem janakuasa berskala kecil dari

sumber tenaga boleh diperbaharui adalah semakinmeningkat. Sebuah pemungut tenaga

krusiform menghasilkan kuasa sekitar 1mW apabila halaju terturun *∗ lebih besar

daripada 15. Walau bagaimanapun, output ini tidak mencukupi dan permulaannya

terlalu lewat untuk aplikasi dunia sebenar. Kajian ini bertujuan untuk mengatasi

dua masalah tersebut dengan menyelidik pengayun krusiform pada sudut krusiform

yang pelbagai. Simulasi Navier-Stokes Purata-Reynolds telah dijalankan, dan data

dari krusiform 90° telah dibandingkan dengan data eksperimen untuk pengesahan.

Eksperimen tersebut juga menggunakan krusiform 90° dalam sebuah kanal aliran

terbuka. Penilaian dijalankan terhadap amplitude getaran, frekuensi, serta amplitud

dan frekuensi daya angkat pada sudut krusiform 90°, 67.5°, 45°, 22.5° dan 0°. Nombor

Reynolds adalah 1.1 × 103 ≤ Re ≤ 14.6 × 103, manakala nombor Scruton adalah

9.94. Analisis Hilbert-Huang pada sudut 90° menunjukkan terdapat banyak tenaga

yang terbazir dalam menghasilkan vortex Karman. Daya angkat yang lebih besar boleh

diperoleh sekiranya vorteks arus yang dihasilkan. Pada sudut 45 ≤ U (°) ≤ 67.5,

asimetri pada struktur vortex menghalang penjanaan amplitud getaran yang tinggi.

Walau bagaimanapun, apabila 0 ≤ U (°) ≤ 22.5, simetri yang tinggi pada struktur

vorteks menyebabkan getaran amplitud tinggi bermula lebih awal. Penyatuan data

output kuasa dan kecekapan menghasilkan peta output kuasa dan kecekapan dalam

ruang parameter U (°) − *∗. Ini membawa kepada penemuan tiga rantau penjanaan

kuasa: rantau krusiform asli apabila sudut krusiform menghampiri 90°, krusiform

curam apabila 45 ≤ U (°) ≤ 67.5, dan krusiform cetek apabila 0 ≤ U ° ≤ 22.5.

Kecekapan maksimum terhasil sekitar 0.8 m/s dan sudut krusiform 90°, sekitar 0.2 m/s

pada 67.5° dan sekitar 0.4 m/s pada 0°. Peta kuasa dan kecekapan ini membolehkan

jurutera masa hadapan mengubahsuai pemungut tenaga krusiform mereka mengikut

keperluan kuasa dan kecekapan yang diperlukan.
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CHAPTER 1

INTRODUCTION

This chapter gives the reader a brief overview of the contents of the thesis.

The chapter begins with the Section 1.1 Background of Study. Here, an abridged

introduction to the topic of flow-induced vibration (FIV) is provided, specifically,

on vortex-induced vibration (VIV) for energy harvesting. Two types of VIV are

discussed: Karman VIV and streamwise VIV. This is followed by the prerequisites

of their formation and the pros and cons of each in terms of energy harvesting.

Next, the chapter proceeds with Section 1.2, Problem Statement. This lists the

main gaps to be closed in this thesis. Then, Section 1.3, Research Questions translates

the gaps identified in the preceding section into concrete questions that this work will

address in subsequent chapters. Following this, the Thesis Objectives are listed in

Section 1.4 and Significance of Study in Section 1.6. Finally, the chapter explains the

Scope of Work in 1.5 and ends with the outline of the thesis in Section 1.7, Thesis

Organisation.

1.1 Background of Study

The term “flow-induced vibration” refers to a wide range of phenomena. One of

the phenomenon is called flutter, which is the flapping of a thin, flexible structure that

results from the competition between periodic bending forces due to the shedding of

vortices, and the stabilising forces from the structure itself (Xia et al., 2015). Another

example is galloping, which is the outcome of aeroelastic instability of an elastically

supported cylinder (Kluger et al., 2013). On the other hand, vibration of a structure

due to resonance with the frequency of turbulent eddies around it is called turbulence-

induced vibration (Nakamura et al., 2013). Finally, there are also structural vibrations

that are the result of excitations coming from the wake of another structure, named

wake-induced vibration (Derakhshandeh et al., 2014). The vast majority of these

1



phenomena were studied as part of a program to suppress the vibrations, to prevent

structural failure (Khalak and Williamson, 1999).

On the other hand, vortex-induced vibration (VIV) is a type of vibration that

grows from instabilities in fluid flows moving past a solid object, i.e. bluff body. When

the flow exceeds a critical velocity, the flow develops vortices that are shed alternately

downstream the bluff body. This triggers the onset of unsteady lift and drag forces that

initiate and sustain its vibration (Bukka et al., 2020). The common denominator for

all these examples is the potential damage to the engineering construct experiencing it.

Thus, methods are devised and implemented to mitigate the effects of the vibrations by

dissipating the vibrational energy or delaying/aborting its onset in the first place.

However, the past decade has seen efforts to instead make the vibration stronger.

For example, purposefully maximising the vibration of flexible piezoelectric flags to

harvest wind energy from low-speed winds (Mehdipour et al., 2022). Another example

is the effort to maximise the vibration of in-tandem VIV nanogenerators for energy

harvesting by (Zhang et al., 2022b). Simple circular cylinder oscillators has also been

studied to increase its vibration amplitude and efficiency in energy conversion (Zhang

et al., 2022a). The simplicity of design and scalability attracts many to contribute to

this multidisciplinary field of study, along with the prospect of successful development

and subsequent commercialization of a new generation of energy harvesters. Also,

technical publications since the 2000s saw a surge in contributions toward the subject

from the perspective of energy harvesting. A simple search in SCOPUS shown in Fig.

1.1 reveals this trend for keywords [“vortex induced vibration” energy] for the last 4

decades.
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Figure 1.1 Number of publications with keywords ["vortex induced vibration"
energy]. Retrieved from SCOPUS.

At the cutting edge of this field of research is a group at The University of

Michigan, that has already built prototypes of the energy harvester, named VIVACE

(vortex-induced vibration for aquatic clean energy). They compared the cost of power

production in USD/kWh between VIVACE and a wide selection of common (pulverised

coal, integrated gasification combined cycle, natural gas combined cycle, etc.) and new

power generation technologies (anaerobic digester, landfill gas, solar, etc.). In doing

so, they found that VIVACE is on par in terms of power production cost with the other

conventional technologies, and published their findings in Bernitsas et al. (2008). This

result demonstrated VIVACE’s economic appeal.

The VIV phenomenon utilised by the team at the University of Michigan is

of the Karman VIV type (KVIV), capable of producing power in the order of MW

when installed as a large-scale energy farm (Raghavan, 2007). Karman VIV - or KVIV

for short - is a form of VIV that is induced and sustained by the periodic shedding

of Karman vortices from opposite surfaces of a cylinder. The periodic shedding of

these vortices creates a pressure fluctuation from the opposing surfaces (Mei et al.,

2021). This produces a net fluctuating force acting on the cylinder, which is the lift that
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drives its vibration. Karman vortices fall into the category of spanwise vortices, and

structurally, a single cylinder is all one needs to trigger its formation (Liu et al., 2022).

However, as pointed out by Koide et al. (2013) the reduced velocity (*∗)

range within which KVIV can be relied upon for power generation is about one order

of magnitude smaller than what can be expected from another form of VIV namely

the streamwise VIV (SVIV). Reduced velocity *∗ is a nondimensional characteristic

velocity that allows comparison of results between similar systems vibrating in a flow.

Reduced velocity is defined as follows.

*∗ =
*∞ 5=
�

, (1.1)

where *∞, 5= and � refers to the freestream velocity, natural frequency of the system

and diameter of the cylinder respectively. Using*∗ to express flow velocity allows the

reader to gauge how fast the flow is, with respect to the speed of vibration at 5=.

Streamwise VIV - or SVIV for short - has its vorticity vector parallel to

the direction of the flow. This is different from KVIV whose vorticity vector is

perpendicular to the direction of the flow, and is instead parallel to the axis of the

cylinder. Structurally, unlike a single cylinder like KVIV, SVIV needs two cylinders

in cruciform to trigger its formation. This cruciform is made by placing one cylinder

upstream and another downstream. The axes of the two cylinders are at right angles to

each other. The midpoint of the cylinders overlap one another, forming a plus sign, i.e.

“+”. This type of cruciform, where the two cylinders are at 90° to each other is called

the pure cruciform.

Streamwise vortices that drive the vibration of the cylinder appear in pairs, one

on the left, and another on the right of the “+”. The streamwise vortex on the left of the
“+” rotates in the opposite direction to the streamwise vortex on the right. This means

that the streamwise vortex pair is a counter-rotating pair of vortex. This counter-rotation

produces the alternating lift on the upstream cylinder. Since SVIV power generation is
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possible for a large range of *∗, it is better suited for deployment in flows with large

velocity changes.

Unlike KVIV-based energy harvesters, the oscillating upstream cylinder of

SVIV-based energy harvesters have both Karman and streamwise vortices shed from

it (Koide et al., 2017). This presents a challenge to the measurement of the phase lag

between the lift and vibration signals. The closer the phase lag is to 90°, the higher the

power output (Koide et al., 2013; Raghavan, 2007). Hence it is favourable to be able to

measure the phase lag as it can help explain an observed improvement or deterioration

of the power output. Since both Karman and streamwise vortices are shed from SVIV-

based energy harvesters, distinguishing which part of the lift signal is due to either,

is difficult. A time-resolved signal processing method is needed and in this study, the

Hilbert-Huang Transform (HHT) analysis is employed.

The HHT analysis involves two steps: the first is decomposing a time-series

signal into components of decreasing mean frequency, and second, to apply the Hilbert

transform on the components to obtain the instantaneous phase (de Souza et al.,

2022). The application of HHT analysis enables this work to distinguish the dominant

components of the lift signal, identify which of these is actually driving the vibration

of the cylinder, and compute its phase lag against the vibration signal.

One shortcoming of a SVIV-based harvester is itsmaximumpower output which

is demonstrated at the current stage of development to cap at a mW scale for a single-

cylinder setup. An isolated cylinder setup for KVIV produces a maximum power in the

order of 10 W (Bernitsas et al., 2009). The apparent power %0 (W) for both KVIV and

SVIV is shown in Fig. 1.2. Following this present limitation of the unoptimized SVIV

energy harvesters, their application is currently limited to mW electronics e.g., sensors

and signal transmitters.
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Figure 1.2 Apparent power %0 (W) versus reduced velocity*∗ for cases of KVIV and
SVIV. Adapted from Koide et al. (2013).

Nevertheless, these sensors and signal transmitters can make up environment-

monitoring sensor networks to monitor the water level in rivers and irrigation canals

that benefit flood forecasting efforts. The sensor network can also be used to monitor

the level of pollution of the river or canal. This is possible by installing concentration

sensors for specific contaminants. Finally, low-power batteries can also benefit from

this energy harvesting technology, especially in the context of off-grid charging.

To expand the usability of the cruciform oscillator in energy harvesting, efforts

should be made to improve its power output. Hence, this thesis seeks to identify the

causes that limits the power output to its current value. This includes the identification

of vortical structures in the flow, their location, and strength. The thesis also looks

into the modulation of the lift signal by the shedding of vortical structures. Then, this

thesis seeks to explore a new parameter in the study of the cruciform oscillator, which is

the cruciform angle. This study documents the effects of the various cruciform angles

on the vortical structures present in the flow in terms of their location and strength.

In addition, this work also studies their effects on the lift and vibration signal, and

ultimately, estimated power output and efficiency.
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1.2 Problem Statement

The preceding section has established the viability of harnessing energy from a

flow by exploiting the VIV phenomenon. Multiple modes of VIV have been observed,

and SVIV stands out as better oriented for deployment in fluid flows that vary greatly in

terms of free-stream velocity. Even with very rudimentary optimisations, SVIV from

a cruciform harvester has the ability to generate power in the order of mW consistently

over a large range of free-stream velocities (Koide et al., 2013).

To achieve this, the problems outlined belowmust be addressed to close relevant

gaps in the current body of knowledge.

1. A lack of understanding on the transition mechanism from Karman to

streamwise vortex-induced vibration.

2. A paucity in the knowledge on what contributes to the magnitude of the

alternating lift force acting on the cylinder, and its vibrational frequency

components.

3. A deficiency of new methods to control the flow perturbation which gives rise

to a strong, stable and periodic forcing of the cylinder vibration, sustainable

over the desired operating range of*∗.

Problem statement one stems from the realisation that although past studies

have shown that SVIV in a cruciform harvester begins around *∗ = 18 (Koide et al.,

2013), none has ever looked into how the transition actually occurs from KVIV. This

is especially the case in terms of the distribution of vortical structures around the

cruciform, the lift signal: its frequency, amplitude and phase lag relative to the cylinder

vibration signal. Removing this lack of understanding can help to trigger the desired

mode of vibration at a lower*∗.

Problem statement two stems from the observation by Zhao and Lu (2018) on

sectional lift, which drew attention to the effect a vortical structure has on the lift acting

on the cylinder. Particularly in the case where several types of vortices are being shed

simultaneously - like the cruciform harvester - the paucity in the knowledge on how
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the different vortical structures affect the lift signal is a hindrance to improving the

maximum lift that can be possible obtained from the cruciform harvester.

Finally, problem statement three comes from the realisation that recent studies

in the field of cruciform energy harvester seems to be hard-pressed in finding new

parameters to explore, focusing time and again on the gap between the cylinder and the

downstream plate, the plate width and other dimensions of the system (Sakamoto et al.,

2021).

To date, the upstream and downstream cylinder (or plate) in cruciform harvesters

have always been assumed to be at 90° to each other. It is possible that keeping

the cruciform at a right angle prevents the discovery of other configurations that are

capable of outputting higher power at better efficiencies. With enough cruciforms

studied between angles 0° and 90°, one can synthesise a map of power and efficiency of

cruciform harvesters at various cruciform angles U (°) that can advise on the selection
of the cruciform harvester for a given design constraint.

1.3 Research Questions

The answer to several questions is sought in this proposed study. These questions

are meant to drive the study towards its objectives.

1. How does the lift signal evolve as the flow transitions from being driven

primarily by Karman vortex to streamwise vortex?

2. How does the ratio of energy transferred from the flow to the lift components

evolve with respect to*∗?

3. Compared to a pure cruciform, what are the differences the Karman or

streamwise vortical structures experience under the condition of a modified

cruciform?

4. Howdo the differencesmentioned in 3 affect the liftmagnitude, and by extension

the frequency-amplitude response?
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5. Where in the power envelope can maximum (minimum) power be obtained with

the largest (narrowest) operability range, and how does this translate into a new

mode of flow control to suit the operating conditions of the cruciform energy

harvester?

1.4 Thesis Objectives

Following the problems outlined in the previous section, the objectives that

define the scope of work in this proposal are listed below.

1. To identify the causes of the difference in amplitude and frequency response of

the lift and vibration signals when the dominant vortical structure changes from

Karman to streamwise vortex, in a pure cruciform.

2. To distinguish the dominant components of the lift signal and how the

components interact tomodify the amplitude and frequency response of cylinder

vibration, in a pure cruciform.

3. To synthesise a map for each of the amplitude, power, and efficiency,

summarised in the cruciform angle U (°) - reduced velocity *∗ parameter

space.

As mentioned previously in Section 1.2, there is a lack of understanding on how

the transition from KVIV to SVIV takes place in a cruciform energy harvester, which

is the first problem statement. The first objective is thus to establish the relationship

between the amplitude and frequency response of the lift and vibration signals and the

vortical structures that are present at that time. The amplitude response is computed by

taking the root-mean-square of the signals, both lift and vibration, and plotting them

against *∗. The frequency response is computed by finding the dominant frequency

in the FFT spectrum of the signals, both lift and vibration. Vortical structures are

identified by computing the vorticity field.

Then, the second objective of distinguishing the dominant components of the

lift signal is to answer problem statement two. As the reason behind the modulation

of the lift signal remains unknown, this objective seeks to analyse the lift signal. The
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method of analysis to be employed here is HHT, through which the signal can be

decomposed and the dominant components identified. Once the components of lift

have been identified, the study can explain how they interact to produce the amplitude

and frequency response of the cylinder vibration being observed.

Lastly, the third objective of synthesising a map of the vibration amplitude,

power and efficiency in the U (°) - reduced velocity *∗ parameter space is stated to

answer problem statement three. As mentioned in problem statement three, the fact that

studies have always assumed the cruciform oscillator to have a cruciform angle of 90°

has prevented the investigation of a generalised cruciform oscillator. By computing the

amplitude response, power and efficiency of a few cruciforms between 0 ≤ U (°) < 90,

this study will be able to evaluate the feasibility of varying the angle of the cruciform

as a method to control flow perturbations due to the arrangement of vortical structures

around the cruciform. This also provides a guideline for the optimal cruciform angle for

a given design constraint such as vibration clearance, structural integrity and operating

range of*∗, in addition to power output and efficiency.

1.5 Scope of Works

Thiswork is amainly a computational fluid dynamics (CFD) study of a particular

version of VIV-based energy harvester that comprises of an elastically supported,

horizontally constrained smooth circular cylinder of diameter 1 cm and a passive flow

control mechanism that is a strip of rectangular plate at a right angle downstream the

cylinder, forming a cruciform. The range of Reynolds number investigated in this thesis

is between 1.1×103 ≤ Re ≤ 14.6×103 and the mass-damping parameter, expressed by

the nondimensional Scruton number Sc, is 9.94. This work limits itself to examining a

cruciform where the width of the strip plate is equal to the diameter of the cylinder �,

and the primary data collected from the simulation runs are the time evolution of the

cylinder displacement and the corresponding lift coefficient CL.

The baseline numerical results, i.e. results from a pure cruciform (a cruciform

where the cylinder and strip plate are 90° to each other) are validated against

experimental results of a similar system in a custom-made recirculating open flow
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channel. This experiment to validate the baseline numerical results also used a 1 cm

diameter circular cylinder. A strip plate of width 1 cm was placed downstream the

circular cylinder at a 90° angle. Data collected from the experiment is limited to the

vibration signal (i.e., cylinder displacement) only, and only between 1.1 × 103 ≤ Re ≤
11.2 × 103. The vibration signal is then post-processed into their respective amplitude

and frequency responses.

The simulation in this study collects data on the three-dimensional pressure

and velocity fields, and also cylinder displacement data. The pressure field is then

post-processed to obtain lift signal acting on the cylinder, while the velocity field is

post-processed to obtain the vorticity field. This is in relation to objective one that seeks

to establish the amplitude and frequency responses of the lift and cylinder vibration

signals. This is different from the parameters studied in Koide et al. (2017), as in their

experiment, they only seeked to visualise the different vortical structures that appear

between 1.2 × 103 ≤ Re ≤ 5.7 × 103 for cruciforms with different cross-sectional

shapes.

On the other hand, the study by Zhao and Lu (2018) only looked into the

visualisation of the vortical structures around the cruciform and the distribution of lift

along the vibrating cylinder. The range of Reynolds number they studied was between

1 × 102 ≤ Re ≤ 5 × 102. This distribution of lift along the length of the vibrating

cylinder reveals the location of dominant vortical structures and helps to visualise

their strength with respect to time. Instead, this thesis used the FFT of the transverse

(direction parallel to the vibration of the cylinder) velocity component downstream the

cylinder to visualise dominant vortical structures and their strength.

This thesis looks to discover the relationship between the vortical structures

present in the flow and how they modulate the resulting lift acting on the vibrating

cylinder of the pure cruciform. Special focus is given to the high flow velocity region

where SVIV takes place. This is done by conducting a time-series analysis of both

cylinder displacement and lift coefficient signals using the Hilbert-Huang transform

(HHT). The motivation behind this is to understand why the amplitude of cylinder

displacement is limited to the order of magnitude observed not only by the author, but
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also in numerous studies within the last ten years. This part of the study concludes with

the discovery of a particular route through which a significant amount of energy from

the freestream is lost during the energy harvesting process, and the amount by which

the power output can be improved if this loss is eliminated. This scope is related to

objective two.

The second part of this thesis is the author’s attempt to eliminate the loss

mentioned previously. This is done by generalising the cruciform system, through

the variation of the relative angle between the cylinder and the strip plate. The

study then proceeds to investigate the generalised cruciform system by examining

the vortical structures present in the flow, how they affect the resulting lift acting on

the cylinder, the amplitude of cylinder displacement itself, and ultimately the power

output. The dynamics between the lift and cylinder displacement are explained through

the computation of instantaneous phase lag between the two, which in turn is made

possible by HHT.

The thesis concludes with the unveiling of a mechanical power and efficiency

map, within a parameter space consisting of the cruciform angle and *∗. Useful

recommendations can be deduced from the map, which highlights regions of high and

low power output, and also regions of high and low efficiency, in order to obtain the

desired power output and efficiency for any given power consumption requirement.

This scope is related to objective three.

1.6 Significance of Study

The aim of objective one is to get a better understanding on SVIV in a pure

cruciform. A better understanding of SVIV in a pure cruciform in important because

this is the baseline case, to which the performance of other cruciforms at different

cruciform angles will be compared. Achieving this objective can demonstrate how the

inception of streamwise vortical structures perturb the amplitude and frequency of lift,

which directly modifies the amplitude and frequency of the cylinder vibration.
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Next, achieving objective two is desirable because it allows the establishment

of a direct link between the different branches of KVIV or SVIV and how the vortices

modulate the lift signal of a pure cruciform. Apart from that, distinguishing the

dominant components of lift allows us to quantify how much energy from the flow

is consumed by each of the Karman or streamwise vortices, and in return, how much

do they contribute towards driving the vibration of the cylinder. Investigating this for

the pure cruciform lay the grounds to understand how power generation is affected by

the configuration of vortices in the flow for more complex situations, i.e., when the

cruciform angle is no longer 90°.

Finally, objective three is significant because in achieving it, one is able to

evaluate and recommend the optimal cruciform angle for the designated specifications

for vibration clearance, power output and efficiency. This holds the key as to how the

cruciform angle should be varied to cater to a particular flow environment and structural

integrity - much like the performance curves associated with engines and pumps.

1.7 Thesis Organisation

This thesis is organised into eight chapters. The author introduces the study

and gives a general overview of the research in Chapter One. In Chapter One, gaps

in the research are identified and thesis objectives are formulated based on those gaps.

Chapter One also outlines the questions the author seeks to address, details the scope

of this study and provide concrete examples as to the significance and merit of this

work. Chapter Two reviews relevant literature that gives an overview of the progress

made up to the present day, on the subject of VIV energy harvesting, by exploiting an

isolated circular cylinder as the oscillator. The chapter then introduces the cruciform

oscillator and the studies on the vibration characteristics of a number of variations of

the cruciform oscillator.

Chapter Three discusses the methodology taken by the author to attain the

objectives listed in Chapter One. In Chapter Three, the author details the numerical

model implemented in the CFD undertaking and this includes the domain size, critical

dimensions of the cruciform, boundary conditions and solution method to the unsteady,
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three-dimensional (3D) Reynolds-averaged Navier-Stokes equation governing the flow.

Apart from that, the author also discusses the turbulence modelling adhered to in the

numerical studies. The author also introduces the Hilbert-Huang transform (HHT) and

explains the ensemble empiricalmode decomposition (EEMD) algorithm that drives the

decomposition of a time series signal into a finite number of orthogonal components.

Finally, the author explains the Hilbert transform and how the transform is able to

compute instantaneous phase or frequencies of a decomposed component of the signal.

Chapter Four first takes into account the validation of the numerical setup in two

ways: by way of a grid independency study, and by way of experimental comparison.

The grid independency study utilises theRichardson extrapolation and grid convergence

index (GCI) as the primary tool to ensure spatial convergence of the numerical results.

In the experimental validation, this work showcases a simple contactless method of

measuring the cylinder displacement using a camera and an open-source image tracking

software. After the processing of the experimental data to compute the uncertainty and

present them as error bars, the author concluded that the numerical results of the pure

cruciform (90° cruciform) is in fair agreement with the experimentally obtained values,

providing an added layer of confidence in the numerical results.

This is then followed by the vibration characteristics of a pure cruciform. In

this section, the author studies in detail the lift-displacement dynamics that results from

the kind of vortical structures that appear in this setup. This section concludes with the

discovery of a path to energy loss that has never been considered before in the literature

and estimated the amount of improvement possible for the power output if said loss is

eliminated.

Then, the chapter continues to discuss the vortical structures and lift-

displacement dynamics of a steep-angled cruciform (45 ≤ U(°) ≤ 67.5), followed by

the vortical structures and lift-displacement dynamics of a shallow-angled cruciform

(0 ≤ U(°) ≤ 22.5). Here, the study found out that for shallow-angled cruciforms, the

onset of meaningful power generation is brought down significantly to from*∗ = 18.2

in the pure cruciform, to *∗ = 9.1 when the cruciform angle is 0°. At U = 0°, the

maximum power also improves by approximately a factor of two.
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Finally, the author computes the mechanical power and efficiency of each of the

cruciform variants for all flow velocities studied. From it, this work is able to produce

a mechanical power and efficiency map, in essentially a cruciform angle-flow velocity

parameter space.

Chapter Five details the conclusions that follow the discussions made in Chapter

Four. Here, the four main findings of this work are summarised and the chapter ends

with some remarks on potential future works for this study.
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