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ABSTRACT 

In most studies, carbonyl iron particles (CIP) were merged with carbon-based 

particles such as graphite (Gr) or carbon black (CB) particles as fillers to enhance the 

electrical properties of magnetorheological elastomers (MRE). Although the electrical 

properties were improved, excessive implementation of particle in MRE led to brittle 

phase which caused decrement of properties such as elasticity. Hence, this study 

examined a single material, cobalt particles, as a filler to enhance the rheological and 

electrical properties in MRE. The selection of cobalt particles is due to its dual 

properties – magnetic and electrical. A total of three MREs containing 53, 60 and 67 

wt% of cobalt were fabricated through mixing and curing processes. Characterization 

related to physicochemical properties of MRE samples was analysed by using X-Ray 

diffraction (XRD), energy-dispersive x-ray spectroscopy (EDX), field emission 

scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM). 

Then, the rheological properties of the MRE in various strengths of magnetic field 

intensity between 0 to 0.8 T were conducted by using a rheometer. Subsequently, the 

effect of the cobalt on the electrical properties was investigated and compared with 

different applied forces towards the MRE. The physicochemical properties indicate 

the presence of cobalt has influenced the rheology and electrical properties of the 

MRE. Both properties were enhanced with the increase of cobalt content that 

embedded in the silicone matrix. Even though, the initial storage modulus of MRE 

increased from 0.28 to 0.52 MPa, the magnetorheological (MR) effect has enhanced 

from 57.14% to 82.69%. On the contrary, the MRE resistance decreased when 

increasing the applied force from 1 to 10 kg. In sum, the findings show a higher cobalt 

content in MRE contributed to a higher MR effect, and simultaneously lower the 

electrical resistance. The finding suggests the potential of cobalt particles as a filler in 

the MRE fabrication for future sensing applications.  
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ABSTRAK 

Dalam kebanyakan kajian, partikel besi karbon (CIP) digabungkan dengan 

zarah berasaskan karbon seperti zarah grafit (Gr) atau karbon hitam (CB) sebagai 

pengisi untuk meningkatkan sifat elektrik pada Elastomer Reologi Magnet (MRE). 

Walaupun sifat elektrik ditambah baik, zarah berlebihan di dalam MRE membawa 

kepada fasa rapuh yang menyebabkan penurunan sifat seperti keanjalan. Oleh itu, 

kajian ini mengkaji bahan tunggal, iaitu zarah kobalt, sebagai pengisi untuk 

meningkatkan sifat reologi dan elektrik di dalam MRE. Pemilihan zarah kobalt adalah 

kerana dwi-sifatnya – magnet dan elektrik. Sebanyak tiga MRE yang mengandungi 

53, 60, dan 67 wt% kobalt dibuat melalui kaedah proses pencampuran dan 

pengawetan. Pencirian yang berkaitan dengan sifat fizikokimia, MRE dianalisis 

dengan menggunakan difraksi sinar-X (XRD), spektroskopi sinar-X penyebaran 

tenaga (EDX), mikroskop elektron pengimbasan pelepasan medan (FESEM) dan 

magnetometer sampel bergetar (VSM). Kemudian, sifat reologi MRE dalam pelbagai 

kekuatan intensiti medan magnet antara 0 hingga 0.8 T dilakukan dengan 

menggunakan rheometer. Seterusnya, kesan kobalt pada sifat elektrik disiasat dan 

dibandingkan dengan daya yang berlainan terhadap MRE. Sifat fizikokimia 

membuktikan bahawa kehadiran kobalt telah mempengaruhi sifat reologi dan elektrik 

MRE. Kedua-dua sifat telah dipertingkatkan dengan peningkatan kandungan kobalt 

yang terdapat di dalam matriks silikon. Walaupun modulus penyimpanan awal MRE 

dilihat menaik dari 0.28 MPa hingga 0.52 MPa, kesan MR meningkat dari 57.14% 

kepada 82.69%. Sebaliknya, nilai rintangan berkurang apabila daya yang dikenakan 

meningkat  daripada 1 kg hingga 10 kg. Oleh yang demikian, kandungan kobalt yang 

tinggi dalam MRE menyumbang kepada kesan magnetorheologi (MR) yang lebih 

tinggi dan sekaligus merendahkan nilai rintangan elektrik. Penemuan ini telah 

mencadangkan potensi zarah kobalt sebagai pengisi dalam fabrikasi MRE untuk 

aplikasi penderiaan pada masa akan datang.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

Magnetorheological (MR) materials fall under the class of smart materials due 

to their controllable rheological properties. Their rheological properties can be 

changed continuously, quickly and reversibly with the presence of a magnetic field, 

which makes this material of great interest due to its fast real-time response. Recently 

MR materials such as MR fluids (MRF) [1–3], MR grease (MRG) [4–6], MR foam 

[7–9], MR plastomer (MRP) [10–12], and MR elastomer (MRE) [13–16] have been 

widely researched in both industrial and academic areas as potentials materials for 

vibration/impact management or position control [17,18]. 

In recent years, MRE has attracted the most interest among those MR materials, 

since MRE shows a desirable performance due to the stability of magnetizable 

particles in the matrix and simpler material handling such as no leakage and no 

sedimentation [19]. MRE is a kind of composites material that mainly consists of 

rubber matrix and magnetic particles. Elastomer such as rubber has been used as a 

matrix to mitigate shock and vibration in structures, vehicles, and other types of 

machinery due to its high and reversible deformability. Few types of rubber such as 

natural rubber (NR) [20–23], silicon rubber (SR) [24,25], thermoplastic [26,27], and 

even hybrid matrix [28] have been used in the manufacture of MRE. It is believed that 

rubber's modulus properties are constant throughout any applied magnetic field due to 

the non-magnetic nature of rubber. The interaction of the particles will therefore be 

more effective and, the MR effect will be greater. The MR effect of soft rubber-like 

SR based on MRE, for example, can reach as high as 500 %, while the thermoplastic 

MR effect is only 70 %  [29,30].  
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Carbonyl iron particles (CIP) [31–34] have been the most widely used 

magnetic particles in MRE fabrication to date because they have high magnetic 

permeability and saturation, but low in magnetic remanence. Because of these 

advantages, the MR group, including MRE, has become actively tuned and quick to 

respond to the applied magnetic field. The amount of magnetic particles used in MRE 

fabrication also had a significant impact on the MRE's final performance; particularly 

related to the MR effect. Previous studies have reported that the use of magnetic 

particles is typically in the range of 10-90% by weight. Even though higher particle 

loading is known to lead to a greater storage modulus and MR effects, however, some 

drawbacks like brittle issues [35],  will occur which limit the use of MRE in some 

potential applications like in sensors, automotive and rehabilitation [36–38]. 

Therefore, several attempts also have been made in order to enhance the mechanical, 

rheological as well as electrical properties of MRE by the introduction of additives 

[39–42].  Additive helps in property enhancement, cost reduction, reinforcement and 

processing improvement  [43–50]. A variety of additives including graphite (Gr) [51], 

graphene [52], silica [53] and carbon black (CB) [54,55] have been utilized and the 

final performance of MRE, on the other hand, was found to be directly dependent on 

several factors, including matrix-particle interaction, particle-particle interaction, 

matrix and particle types, and particle distribution within the MRE. 

In addition, MRE can be classified into two groups which are, isotropic MRE 

and anisotropic MRE. The difference between isotropic and anisotropic MRE is the 

distribution of the magnetic particle in the MRE. For anisotropic MRE, it has a chain-

like structure in a matrix due to the curing condition under an applied magnetic field. 

As for the isotropic MRE, the curing condition is without the presence of a magnetic 

field, which resulted in random particle distribution in the matrix. It has been known 

that these groups have different rheological properties of MRE [56–58]. Due to this 

fact, anisotropic MRE has closer gaps between the magnetic particle, as compared to 

the isotropic MRE. Thus, a much higher MR effect can be obtained, which resulted 

from strong particle interactions. The primary parameters describing the rheological 

properties of MREs are the shear storage modulus (G') and loss factor or tan δ. The 

energy storage capacity of the viscoelastic material is referred to as G'. The loss factor, 

meanwhile, refers to the damping property of the material due to the dissipation of 

energy in the MRE materials.  
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1.2 Motivation of Study 

The previous studies thus far have contributed to the knowledge concerning 

the unique functions of MRE that enable them to have sensitive mechanical and 

electrical properties, which can be changed under external stimuli, such as magnetic 

field and mechanical pressure. Ghafoorianfar et al. [59] investigated the electrical 

properties and obtained that the resistivity value of MRE ranging from 4.41 𝑋 1029 to 

1.7 𝑋 1014 Ω mm by varying particle volume fractions under different compression 

mechanical loads. In order to enhance the electrical properties of MRE, a common 

approach is to combine carbon-based particles such as Gr, graphene, and carbon black 

with the CIP. Schûmann et al. [60] analysed an electroconductive MRE (mixed CIP 

with carbon black) that exhibited a highly complex resistive behavior. The results 

revealed that the resistance declined exponentially from 2300 kΩ to 1200 kΩ within 

the region of linear elasticity. In another study, Tian et al. [61] utilized various weight 

fractions of Gr powder (0-5g) and mixed with CIP in fabricating MRE, so-called Gr-

MRE to achieve electrical conductivity. It has been observed that a high concentration 

of the Gr filler led to an improvement in the MR effect. The conductivity of the Gr-

MRE increased with the increment of applied force, which was up to 1 kg. Later, 

Shabdin et al. [35] continued to investigate the electrical properties of isotropic and 

anisotropic MRE by adding 33 wt% Gr powder as a filler with 20 wt% of CIP. The 

changes of Gr-MRE conductivity had a relationship with the external force up to 10 

kg in certain magnetic field intensity. However, although the conductivity of MRE 

could be improved by increasing the Gr particles, excessive use of particles or fillers, 

in MRE often led to decrement of some other properties such as elasticity. Moreover, 

the distribution of particles was more challenging, which led to a brittle phase and 

decrement of the field-dependent modulus of MRE [35,61].  

Nevertheless, several studies have introduced cobalt as magnetic particles in 

MRE. The uniqueness of cobalt, which offered dual properties; magnetic and electrical 

properties are believed can supersede the conventional combination of CIP and Gr, as 

a filler. At such, Tong et al. [62] studied the interaction that occurred in MRE with 

different shapes of cobalt filler; spherical and flower-like. The result demonstrated that 

the flower-like shape cobalt particles exhibited a higher magnetic up to 0.1 T and 
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enhanced the rheological performance as compared to the spherical shape. This 

phenomenon happened due to particle shape that led to a higher crosslink density. 

However, their work had focused on rheology properties and a lack of supporting data 

towards the electrical properties. Therefore, a comprehensive investigation to analyse 

the magnetic, MR effect and electrical behavior of various compositions of cobalt filler 

is worth investigating.  

1.3 Problem Statement 

From the previous studies, CIP was merged with carbon-based particles such 

as Gr or CB as a filler to provide electrical conductivity to the MRE. Although this 

combination of fillers improves the conductivity, excessive used of particles often 

results in loss of other properties such as elasticity. Furthermore, it resulted in a 

decrement in MRE’s field-dependent modulus. In fact, the relationship between a 

variety of properties, including rheological and electrical properties had not been 

thoroughly investigated. Therefore, some other magnetic particles that exhibit dual 

properties; magnetic and electrical like cobalt particles can be used to further enhance 

the properties of MRE. 

1.4 Research Objectives 

The main aim of this research is to investigate the MRE performance by 

introducing cobalt as a magnetic particle. Therefore, the objectives of the research are: 

I. To characterize the physicochemical properties of the MRE in terms of 

structural observation and magnetic properties of MRE. 

II. To analyse the rheological and electrical properties of MRE with cobalt at off- 

and on-state conditions. 

III. To evaluate the effects of magnetic field and particles content on rheology and 

electrical behaviour of MRE.  
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1.5 Research Scope  

The scope of this study is specified on the experimental investigation on the 

rheological and electrical properties of MRE embedded with cobalt. The scope of this 

study includes:  

I. The fabrication of MRE using various compositions 53, 60 and 67 wt% of 

cobalt particles. 

II. The microstructural, elemental analysis and magnetic performance of MRE are 

performed using FESEM, XRD, EDX and VSM. 

III. The rheological test of MRE in the absence and presence of a magnetic field 

was examined under oscillatory shear mode. The tests are included input 

parameters of strain sweep, frequency sweep and magnetic field sweep.   

IV. The correlation between change in MRE resistance at different applied forces 

under off- and on-state conditions was analysed using a custom made test-rig.  

 

 

1.6 Thesis Content 

The layout of this thesis is as follows: 

Chapter 1 introduces the research idea by providing the background of 

research, motivation and problem statement that clearly identifies the research gap, 

research objectives and research scope. 

Chapter 2 contains a literature review related to the research work of MR 

materials, on what has been investigated before and the evidence on how the research 

is generally conducted in this area. Generally, this chapter summarizes relevant 

outcomes to the research area by covering a brief history of morphological 

observation, magnetic measurement, rheological and electrical properties based on 

several previous studies.  
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Chapter 3 described step-by-step research activities to achieve the objective. 

This chapter also describes the materials and details of MRE fabrication. The 

experimental setup involved in the MRE characterization is described in detail. 

Chapter 4 discusses the experimental results and analysis from the 

physicochemical, rheology and electrical properties of MRE. The physicochemical 

analysis is conducted by referring to the morphological observations and magnetic 

properties of MRE. Meanwhile, results of the rheological properties are discussed 

under oscillatory shear modes test, respective to strain amplitude, frequency and 

magnetic field sweep. Furthermore, the electrical properties are discussed based on the 

effect of the applied load on the MRE resistance under the absence and presence of the 

magnetic field. 

Chapter 5 concludes the research work and highlights the contribution of this 

research as well as the recommendation for potential future research work. 
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