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ABSTRACT 

Intelligent system-on-chip (SoC), which is the heterogeneous integration of 

devices on insulator/silicon (Si) platform and other arbitrary substrates, is considered 

as the most promising next-generation technology. Since the insulator and those 

arbitrary substrates are generally amorphous, the direct growth of crystalline 

semiconductor materials is extremely difficult. Hence, a breakthrough of clever growth 

technology is demanded. Zinc oxide (ZnO) is one of the promising metal-oxide 

materials for many device applications like sensors, optoelectronic devices, etc. Buffer 

or template layer has been widely utilized to reduce the large lattice mismatch between 

the grown materials and insulators or arbitrary substrates. In this study, graphene, which 

is flexible, transparent and possesses a similar hexagonal atomic arrangement structure 

to ZnO, was chosen as a buffer or template layer. Since most of the arbitrary substrates 

possess low- melting temperatures, the growth of ZnO had to be performed at low 

temperatures. Three low- temperature techniques were used; combination of thermal 

evaporation and oxidation, hydrothermal deposition and hot-water-beam chemical 

vapour deposition (CVD). For thermal evaporation, first, ZnO film with a thickness of 

~350 nm was deposited, followed by oxidation treatment at 450°C in oxygen ambient. 

The oxidation times varied between 30 to 120 minutes. Oxidation of physically 

deposited ZnO was to minimize the oxygen vacancies or to increase the  crystallinity 

of ZnO with the appearance of diffraction peaks corresponded to (0002), (10-10) and 

(10-11), and these peaks increased with the oxidation time up to 60 min. However, the 

peak intensity showed a decrease with broad FWHM of (0002) after 60 min of 

oxidation which was speculated to be caused by the intermixing of ZnO and graphene. 

For the hydrothermal process, which was carried at 90°C for 3 hours, a graphene/glass 

and a ZnO/ glass were used as the substrates.  No growth of ZnO was obtained on 

graphene/glass. It was speculated that graphene with low defects might not promote 

the nucleation of ZnO. However, the growth of ZnO nanorods on ZnO- seeded was 

obtained with a considerable small FWHM of 0.2892° for the (0002) peak. However, 

the intensity ratios of the ultraviolet emission (Iuv) and visible emission (Ivis) for both 

ZnO grown by thermal evaporation combined with oxidation, and hydrothermal 

process were around 1.05. This suggested that defects or oxygen vacancies were still 

high. Finally, ZnO was grown on graphene/SiO2/Si by hot water beam CVD with a 

growth time ranging from 20-60 min at a fixed substrate temperature of 500°C. As 
expected, a ZnO layer with high crystallinity (small FWHM of 0.0743°- 0.1955° for 

the (0002)) was obtained. Since the location of the 2 of ZnO (0002) was  close to the 

bulk value, this seemed to suggest less residual tensile stress compared to the other 

two methods. Extremely low defect of CVD-grown ZnO layer was also confirmed 

from Iuv/Ivis measurement, suggesting the potential for the device fabrication. The use 

of graphene as the buffer or template layer provides the potential for transferable 

electronics since the adhesion of graphene and substrate is extremely weak. 
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ABSTRAK 

Sistem-pada-cip (SoC) pintar, yang merupakan peranti penyepaduan heterogen 

pada pelantar penebat/silikon (Si) dan substrat sebarangan yang lain, telah dianggap 

sebagai teknologi generasi-masa-depan yang memberangsangkan. Pertumbuhan 

langsung bahan semikonduktor kristal amat sukar disebabkan oleh penebat dan 

substrat sebarangan yang secara umumnya amorfus. Jadi, suatu kejayaan teknologi 

pertumbuhan yang bijak adalah dituntut. Zink oksida (ZnO) merupakan salah satu 

bahan logam-oksida yang menggalakkan untuk diaplikasikan pada banyak peranti 

seperti penderia, peranti optoelektronik, dan lain – lain. Lapisan penampan atau 

templat telah digunakan secara meluas bagi mengurangkan ketakpadanan kekisi yang 

ketara di antara bahan yang ditanam dan penebat atau substrat sebarangan. Dalam 

kajian ini, grafin, yang fleksibel, telus dan mempunyai struktur susunan atom heksagon 

yang sama dengan ZnO, telah dipilih sebagai lapisan penampan atau templat. 

Disebabkan kebanyakan substrat sebarangan mempunyai suhu lebur yang rendah, 

pertumbuhan ZnO perlu dilakukan pada suhu rendah. Tiga teknik suhu rendah telah 

digunakan; gabungan penyejatan terma dan pengoksidaan, pemendapan hidroterma 

dan alur air panas pemendapan wap kimia (CVD). Untuk penyejatan terma, pertama, 

filem ZnO dengan ketebalan ~ 350 nm diendapkan, diikuti dengan rawatan 

pengoksidaan pada 450°C dalam ambien oksigen. Masa pengoksidaan diubah, antara 

30 hingga 120 minit. Pengoksidaan ke atas endapan fizikal ZnO adalah bagi 

meminimumkan kekosongan oksigen atau untuk meningkatkan kehabluran ZnO 

dengan mempamerkan puncak pembelauan yang sepadan dengan (0002), (10-10) dan 

(10-11), dan puncak-puncak ini telah meningkat dengan masa pengoksidaan sehingga 

60 minit. Namun, keamatan puncak menunjukkan penurunan dengan FWHM (0002) 

yang lebar selepas 60 minit pengoksidaan yang dijangka disebabkan oleh percampuran 

diantara ZnO dan grafin. Bagi proses hidroterma, yang telah dilakukan pada suhu 90°C 

selama 3 jam, grafin/kaca dan ZnO/kaca telah digunakan sebagai substrat. Tiada 

pertumbuhan ZnO diperoleh pada grafin/kaca. Ini berkemungkinan disebabkan oleh 

kecacatan yang rendah pada grafin yang mungkin tidak merangsang nukleasi ZnO. 

Namun, FWHM yang kecil terhasil daripada pertumbuhan nanorod ZnO pada ZnO-

biji iaitu 0.2892° bagi puncak (0002). Walau bagaimanapun, nisbah keamatan 

pancaran ultraviolet (Iuv) dan pancaran nampak (Ivis) bagi kedua-dua ZnO yang 

ditanam melalui gabungan penyejatan terma dan pengoksidaan, dan proses hidroterma 

adalah sekitar 1.05. Ini menunjukkan bahawa kecacatan atau kekosongan oksigen 

masih tinggi. Akhirnya, ZnO ditanam pada grafin/SiO2/Si oleh alur air panas CVD 

dengan masa pertumbuhan diantara 20-60 min pada suhu substrat yang tetap, 500°C. 

Seperti yang dijangkakan, lapisan ZnO dengan kehabluran tinggi (FWHM kecil 

0.0743°- 0.1955° bagi (0002)) telah diperoleh. Memandangkan lokasi 2 ZnO (0002) 

berhampiran dengan nilai pukal, ini menunjukkan tegasan tegangan sisa yang kurang 

berbanding dengan dua kaedah lain. Kecacatan yang sangat rendah pada lapisan ZnO 

yang ditanam CVD juga telah disahkan daripada pengukuran Iuv/Ivis, menunjukkan 

potensi bagi fabrikasi suatu peranti. Penggunaan grafin sebagai lapisan penampan atau 

templat adalah berpotensi untuk elektronik terpindah kerana lekatan grafin dan substrat 

adalah sangat lemah. 

. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

People nowadays live in a modern era where the use of nano-sized silicon-

based transistors has brought the realization of the Internet of Things (IoT) and 

artificial intelligence (AI) technology. The revolution of Silicon (Si) based transistor 

that kept growing over the years, together with the size reduction of the transistor, 

allowed the miniaturization of the transistor, which enables numbers of transistors to 

be crammed onto a single Si platform, thereby boosting computer capabilities. This 

obeyed Moore’s law, where the performance of silicon-ultra-large-scale integrated 

circuits (Si-ULSIs) has been improved over the last 30 years by doubling the number 

of transistors every two years on a single platform [1]. Today, a single processor can 

hold more than a trillion transistors [2]. However, the never-ending miniaturization of 

transistors makes winning more difficult due to limitations such as the short channel 

effect and gate leakage current.  

The concept of advanced heterogeneous integration on a single platform has 

attracted much attention toward realizing a ‘More than Moore' technology [3]. In 

realizing such technology, the growth of various high-quality semiconductors such as 

germanium (Ge) [4], gallium arsenide (GaAs) [5], gallium nitride (GaN) [6], silicon 

carbide (SiC) [7], zinc oxide (ZnO) [8] on the platform is a must. The co-integration 

of materials enables the present ULSIs to be facilitated not only with ultra-high-speed 

complementary metal-oxide-semiconductor (CMOS) transistors and novel transistors 

[9] but also with various kinds of functional devices, such as optical devices [10], 

photodetectors [11], solar batteries [12], and sensors [13, 14]. Such intelligent system-

on-chip (i-SoC) on Si is considered a promising and practical direction. To fabricate 

multi-functional devices on a single Si substrate, it is necessary to electronically isolate 

the semiconductor materials using insulators such as silicon dioxide (SiO2), silicon 
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nitride (Si3N4) or arbitrary substrates. Figure 1.1 illustrates the evolution of Si in the 

‘More than Moore’ [15]. However, the hybridization of high performance of 

semiconductors and insulators is impossible due to the amorphous structures of the 

insulators. Therefore, it needs some significant development in growth technology.  

 

Figure 1.1 Evolution of Si in ‘More than Moore’ [15] 

 

In the meantime, the use of insulators or arbitrary substrates such as polymers, 

rubber, and glass to fabricate the devices has become phenomenal today. Some of the 

devices are widely used in optoelectronics [16-18], sensors [19-21], and photovoltaic 

[22, 23] industries. Several advantages include simple, environmentally friendly, yet 

cheap materials suitable for the fabrication of commercial devices. Besides, other 

physically unique and eye-catching features like flexibility, transparency, and 

colourful are added values for device production on these arbitrary platforms. 

However, it still needs technology to breakthrough in fabricating semiconductor 

devices on these platforms due to the substrate's non-crystalline or amorphous 

structure, which makes the fabrication of high-quality semiconductor devices 

challenging.  
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Graphene is remarkably known for its flexibility and has superior 

characteristics. Besides, it has a similar hexagonal orientation to the ZnO, making a 

combination of ZnO and graphene feasible. Hence, in this study, we will utilize 

graphene as the buffer layer for ZnO on the insulator, and we speculate that the grown 

ZnO structures on the insulator by using graphene as the template or buffer layer will 

be high-quality.  

1.2 Research Motivation 

Since decades ago, semiconductor materials such as ZnO, SiC, GaN and GaAs 

have been widely used in device fabrication, such as in sensors [24-26], transistors 

[27], optoelectronics [28, 29] and photovoltaic [30]. Generally, the materials' 

morphology, compositions, and physical and chemical properties can be controlled 

during the growth process, which can be exploited for specific device fabrication. 

However, in fabricating a semiconductor device system on a Si substrate, it is crucial 

to electronically isolate the grown material and Si platform with any isolator, such as 

SiO2, Si3N4, or any arbitrary substrate, to avoid any current leakage or short circuit, 

especially in the production of CMOS or field-effect transistor (FET) as in Figure 1.2 

[31]. On the other hand, a recent commercial-value semiconductor device was 

fabricated on a cheap and flexible platform like polymers and glass.  

 

Figure 1.2 Different types of leakage current present in transistor [31] 

The concept of flexible electronics device fabrication was introduced in the 

1960s [32]. It begins with thinned-Si platforms, which have been used in solar cell 

fabrication for extra-terrestrial satellites. Over the years, researchers have added some 
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exciting features in fabricating flexible yet lightweight devices, such as increasing their 

robustness and stretchability. This device must be robust in order to avoid any 

deformation or malfunction during the integration process. These unique 

characteristics will eventually increase semiconductor electronic devices' quality, 

sensitivity, and performance. Aside from thinned-Si, some other inexpensive arbitrary 

substrates were used as the platform, such as polymers [33, 34], hydrogenated 

amorphous Si (a-Si:H) [35], and glass [36], which brought out visually appealing 

features like transparent, bendable and flexible [37]. The semiconductor-based flexible 

electronics have grasped attention throughout these years due to their wide-ranging 

applications, such as flexible displays [33] and skin electronics [38].  

Recently, some novel technology for fabricating semiconductor-based flexible 

electronics device systems with an ability to be transferred from one platform to 

another has arisen. This process usually uses an atomically thin layer of two-

dimensional (2D) materials or novel van der Waals (vdW) heterostructures as the 

transferred tool or template layer [39]. These thin layers of 2D materials such as 

graphene [40], molybdenum disulfide (MoS2) [41], or hexagonal boron nitride (hBN) 

[39, 41], which act as the template will allow the metal-oxide to be directly grown on 

that template, where it will be part of the device. This innovative technology trend 

enhanced i-SoC on the semiconductor or arbitrary platform’s performance to the full 

extent with the versatility of device fabrication technique.  

In realizing a good performance of flexible and transferable semiconductor-

based electronic devices on the insulator-character arbitrary substrate, it is essential to 

do a fundamental study, beginning with the growth process of semiconductor 

materials. A breakthrough in growth technology is strongly required to fabricate a 

high-quality semiconductor-on-insulator with excellent crystallinity and other 

properties. Since an insulator has amorphous or polycrystalline lattice structures, 

growing the high crystallinity of semiconductor structures on an insulator is almost 

impossible. It is because of the large lattice mismatch between a crystalline 

semiconductor and an amorphous insulator [42]. This significant lattice difference will 

make the grown semiconductor material in the polycrystalline structure; thus, making 

a high-quality semiconductor structure is challenging. In reducing the lattice 
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mismatch, a buffer or template layer is exploited during fabrication [43]. Similar to the 

fabrication of transferable devices, this template layer for the growth of high-quality 

semiconductor structures on the insulator was placed between semiconductor materials 

and the insulator. In addition, some growth methods also need a buffer layer of 

semiconductor materials for the nucleation site of the subsequent material growth, such 

as in the hydrothermal growth technique [44].  

Several intensive researchers have focused on fabricating one and two-

dimensional ZnO semiconducting nanostructures throughout the years because of their 

uniqueness in morphology, compositional and other main properties such as chemical, 

physical, optical and electrical. This white and non-toxic ZnO is a promising candidate 

for the fabrication of several devices due to its unique electronic and optical properties, 

such as a wide bandgap at 3.37 eV and enormous exciton binding energy of 60 meV 

at room temperature (RT) [45, 46]. These properties allow the ZnO-based devices to 

be used at RT without any hindering from thermal instability. In addition, the high 

transparency of ZnO makes it the best choice for making transparent-like devices such 

as photovoltaics. Thus, ZnO is the best material for the device's system in various 

astonishing applications such as photovoltaics, optoelectronics, and sensor sensing 

elements [47].  

As mentioned, a template layer is needed during the growth process of ZnO on 

an insulator, the type of material used for the template layer is also critical, starting 

with lattice orientation. The lattice orientation of both the template layer and 

semiconductor is preferably similar. Here, the lattice of both template and insulator 

will bond together using vdW forces by mechanically-assembled stacks or physical 

epitaxy or chemical vapor deposition (CVD) [39]. One of the simplest ways to grow 

ZnO structures on the template is by using the same material, ZnO-seed, as the buffer 

layer. The exact similar lattice structure will eventually make a least lattice mismatch. 

This ZnO layer, known as the ZnO seed layer, is commonly used as the nucleation site 

to enable the subsequent growth of ZnO nanostructures on the insulators [44]. Still, 

using the ZnO thin layer as a template layer is challenging for fabricating flexible and 

transferable devices [48]. Those very fragile materials give some minus points for the 

fabrication of a transferable device as it may be deformed during transferring process 
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of the device. Here, atomically thinned 2D material with a similar lattice orientation 

to the ZnO, such as graphene, is the best candidate to act as the buffer layer.  

Graphene is a 2D hexagonal network of carbon atoms formed by making strong 

triangular σ-bonds of the sp2-hybridized orbitals. This bonding structure is similar to 

the (111) plane of zinc-blende and the c-plane of a hexagonal crystalline structure [49]. 

Thus, making the growth of semiconductor nanostructures and thin films on graphene 

feasible. In addition, graphene has excellent potential for novel electronic devices 

because of its extraordinary optical, electrical, thermal, and mechanical properties, 

including carrier mobility exceeding 104 cm2/Vs and thermal conductivity of 103 

W/mK [49].  

This zero bandgap and high mobility of graphene can also act as the metal 

contact or junction, allowing electrons or ions to move freely from one place to 

another. Therefore, with such excellent characteristics of graphene layers, growing 

semiconductor nanostructures on graphene layers would enable their novel physical 

properties to be exploited in diverse, sophisticated device applications. Since graphene 

is an excellent heat conductor thus, a significant issue of thermal management in 

heterogeneous integration can also be solved. In addition, the weakly bonded layers of 

graphene allow transferring the grown semiconductor nanostructures or films onto 

other arbitrary substrates such as glass, metal, and plastics [37]. Hence, we speculated 

that using this atom-thick material with high flexibility, transparency, and mobility as 

the buffer layer would likely increase the quality of grown ZnO.  

Diverse group morphologies of ZnO structures such as nanorods [50], 

nanowires [51], nano-porous [52] and thin films [44] were synthesized using a variety 

of vapor and liquid phase fabrication techniques. In addition, the vapor phase 

deposition techniques can be separated into two; physical vapor deposition (PVD) and 

CVD. These deposition methods include metal-oxide chemical vapor deposition 

(MOCVD), molecular beam epitaxy (MBE), and thermal evaporation, while the liquid 

phase techniques include hydrothermal, sol-gel deposition and electrodeposition [53]. 

Each method has its benefits in growing the ZnO structures on a substrate.  
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PVD methods can be either sputtering, thermal evaporators or others. In some 

cases, the PVD technique is preferable over CVD due to its advantages, such as fast 

growth and simplicity. Besides, this technique only uses a single solid target. Again, 

some methods like electron beam and thermal evaporation have no direct temperature 

applied on the substrates, making it possible to be carried on the substrates with low-

melting temperatures, such as plastic or rubber. In addition, the process is considered 

less toxic, so there will be no toxic waste, such as toxic gas or liquid, throughout the 

experiment. Therefore, this study will use thermal evaporation as the only PVD-based 

method for depositing the ZnO on the insulator at low temperatures.  

On the other hand, implementing the liquid phase of the chemical approach as 

the growth technique is still impossible for industrial-scale production. However, this 

technique fits for studying the grown semiconductor on an insulator utilizing a buffer 

layer. Simple, low operating temperatures, yet a wide range of chemicals can be used 

as the aqueous solutions and electrolytes throughout the process. Thus, it allows the 

study on the effect of the buffer layer on the grown structures.  

Meanwhile, MOCVD has a higher commercial value than other methods 

because it can grow high-quality nanostructures compared to liquid phase deposition 

techniques and has cheaper production than the MBE technique. The ability of these 

methods to coat the unreachable area and evenly coated irregular surfaces is preferable 

in the coating industry. Besides, it can grow at a large scale with a wide range of 

elements and compounds with a high-purity end product, making the technique 

suitable for the industrial scale. However, MOCVD tends to have high energy 

consumption and higher toxicity due to precursors in metal oxides and waste products. 

These pros and cons of techniques have initiated researchers to upgrade and invent an 

innovative approach that can increase production quality and commercial value at a 

low cost.  

One of the innovative technologies is a high-temperature water CVD known as 

hot water beam CVD. Yasui et al. invented this technique for overcoming the high 

energy consumption problem using conventional CVD. The hot water CVD used high 

energy of water molecules originated from the exothermic reaction of H2 and O2. Then, 
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the hot H2O will react with the Zn source to produce ZnO molecules, which then been 

directly grown on the substrate. Although the research study of grown material in film 

and nanostructures using this technique is still at the surface, continuous results show 

that the technique can overcome past problems in using conventional CVD, such as 

high power consumption and toxic gas [54]. Besides, this technique uses a low 

working temperature and pressure, suitable for pressure and temperature-sensitive 

materials such as a polymer.  

In this study, the deposition of ZnO structures on an insulator with graphene as 

a buffer layer is carried out by a combination of thermal evaporation and oxidation. 

The deposition process was carried out using the thermal evaporation technique under 

vacuum conditions, with ZnO powder as the main target. Next, the deposited ZnO 

layer was annealed under an oxygen (O2) ambient. Only one parameter was used to 

optimize the oxidation condition, which is the oxidation time, that acted on ZnO with 

and without buffer layers. Besides, the physically deposited ZnO will be utilized as the 

buffer layer to study the growth of ZnO structures using the liquid phase of the 

chemical approach; the hydrothermal method. The outcomes are compared with the 

hydrothermally grown ZnO structures on an insulator utilizing single-layer graphene 

(SLG) and multi-layer graphene (MLG). These buffer layer differences are expected 

to play a role in the growth of ZnO structures. The recent vapor phase CVD technique, 

hot water beam CVD, grows ZnO structures on SLG and MLG insulators. Here, the 

number of graphene layers and the growth time were differentiated.  Finally, grown 

ZnO structures' morphological, crystallinity and optical properties are systematically 

characterized. 

1.3 Problem Statement  

The use of high crystalline semiconductor material in fabricating 

optoelectronics and photovoltaic applications has been started for years. Over the last 

decades, heterogeneous integration technology has been promising in realising the 

next-generation technology, the so-called i-SOC. However, in realizing such 

technology, it is crucial to isolate the active semiconductor and the Si platform to avoid 
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any current leakage or short circuit. It has brought the introduction of the insulator to 

many multifunctional devices such as power devices, electronic displays and so forth. 

In the meantime, arbitrary substrates, such as polymer, glass and paper, were 

introduced to replace the conventional Si in fabricating electronic devices, where these 

substrates had some unique features such as flexibility and transparency. And recently, 

the emergence of transferable electronics that can be transferred between the arbitrary 

substrate, such as LED, utilised template or buffer layers during device fabrication. 

 ZnO, an II-VI element, is given high interest to be studied for its wide bandgap 

and large exciton energy. These behaviours allow the ZnO-based device to work well 

at room temperature and have a higher breakdown voltage. Moreover, ZnO has high 

transparency, can be implemented for the element in a transparent device and is 

environmentally friendly. However, a significant lattice mismatch has made a direct 

growth of crystalline ZnO on the insulator almost impossible. Here, a buffer layer such 

as graphene and hBN with a similar hexagonal lattice structure with the ZnO was 

introduced to reduce the lattice difference. However, graphene consists of a single 

element, robust, flexible and transparent, and has zero bandgap that can be exploited 

as the active element, is the best choice as the buffer or template layer. Thus, in this 

case, the use of graphene is favourable due to the similar hexagonal lattice structure 

with the ZnO and the graphene's superior characteristics, such as good conductivity, 

which are expected to enhance the performance of the semiconductor ZnO on the 

insulator. However, some arbitrary substrates, such as polymer or paper, have low 

thermal resistance, which becomes a critical issue in the growth process.  Therefore, 

the low-temperature technique is needed. 

Thus, we need a breakthrough in the growth technique, where the growth 

processes are focused on low-temperature growth at less than 600°C. Several 

techniques for the growth process are covered in physical and chemical approaches. 

PVD and CVD are common techniques used on a commercial scale, and one of the 

simple yet well-known liquid phases using a chemical approach is hydrothermal. In 

this study, the thermal evaporation PVD with a combination of oxidation at low 

temperatures will be used as one of the growth techniques. One of the CVD techniques, 

hot water beam, is one of the latest techniques which focuses on low-temperature 
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growth with simple H2 and O2 gases as the H2O source, and dimethyl zinc (DMZn) as 

the Zn source also will be carried out to grow the ZnO on graphene/insulator. One 

chemical approach acknowledged for its simple and low operation temperature, 

hydrothermal, is used to grow ZnO on the insulator in this study. The growth process 

will use low growth temperature at atmospheric pressure as the constant parameter.  

1.5 Research Objective and Scopes 

In this study, the main objective is to investigate the low-temperature growth 

of ZnO on an insulator by utilizing graphene as the buffer layer. The study will use 

physical and chemical techniques for the growth process of the insulator. In addition, 

the quality of ZnO structures will be thoroughly analyzed from their morphology, 

crystallinity and optical properties. There are three sub-objectives for achieving the 

goal.  

 

a) To synthesize and optimize the ZnO growth on an insulator utilizing a buffer 

layer using a combination of thermal evaporation PVD, hydrothermal, and a 

recent technique, hot water beam CVD.  

b) To compare the performances of the grown ZnO on graphene/insulator by its 

morphology, crystallinity, and optical properties.   

c) To analyze the best method for the ZnO on the insulator, utilizing a buffer 

layer. 

 

This study concentrates on the growth of ZnO on an insulator using graphene 

as the buffer layer. The deposition and growth process will focus on low-temperature 

techniques using vapor and liquid phases; thermal evaporator PVD, hydrothermal, and 

hot water beam CVD. The effect of graphene on the grown ZnO has also been 

comprehensively studied. This study can be divided into four scopes, where three 

scopes are related to the growth techniques, and one scope for the second and third 

objective :  
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i. The thermal evaporator PVD and oxidation process were combined in the 

deposition of ZnO on graphene on the insulator. ZnO's oxidation study was 

done with different oxidation times, 30 – 120 minutes, with a fixed 

temperature of 450°C. The as-deposited and oxidized deposited ZnO 

structures on buffered graphene were compared with non-buffered ZnO on 

the insulator. All finding was studied based on their morphology, 

crystallinity and optical properties.  

 

ii. The liquid phase technique, hydrothermal, was used in growing ZnO 

structures on the insulator. This study used three types of buffer layers for 

the grown ZnO: SLG, MLG, and ZnO seed layer. An equimolar solution of 

Zinc nitrate hexahydrate and HMTA was used to grow ZnO on all different 

buffer layers on the insulator. The grown ZnO was compared based on its 

morphology, crystallinity, and optical properties. 

 

iii. A relatively new method called hot water beam CVD was used to grow ZnO 

structures on graphene on an insulator. Here, SLG and MLG were used as 

the buffer layer. The high purity of O2 and H2 gases play a crucial part in 

forming hot water molecules with Pt catalyst. DMZn is used as the zinc 

source at fixed substrate temperature. A study on ZnO on an insulator 

utilizing a buffer layer by varying time and gas flow rates was evaluated. 

Effect on the quality of morphology, crystallinity, and optical properties of 

grown ZnO on different buffer layer graphene on insulators were analysed. 

 

iv. All the results are analyzed and compared by their performance on 

crystallinity and optical properties of the grown ZnO structures on the 

insulator, with and without a graphene buffer layer. The analyses were done 

to get the best technique to grow ZnO on an insulator utilizing graphene as 

the buffer.  
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1.6 Overview of Thesis Organization 

This thesis consists of seven chapters and three chapters for results and 

discussions. Chapter 1 overviews the research background and its motivation for the 

growth of semiconductor material, ZnO, on insulator utilizing graphene as a template 

layer. The problem of the study has also been discussed in this section. Moreover, the 

research objective and its scope are also presented.  

Chapter 2 gives an overview of the fundamental properties of ZnO and 

graphene.  Discussion of previous studies of ZnO and buffer layer hybridisation on the 

insulator and their possible applications will be explained. In addition, growth 

techniques of ZnO structures on the insulator, especially in the thermal evaporator, 

hydrothermal, and catalyzed hot water beam and its previous study, are described in 

this chapter. The potential applications of oriented non-buffered ZnO nanostructures 

and ZnO nanostructures on graphene are also discussed.  

Chapter 3 focuses on the research methodology. The substrate's properties and 

preparation prior to the experiment are presented. Three different methods used to 

grow ZnO structures are explained, and the parameters used during the study are also 

discussed. Preparation and techniques used to grow ZnO structures are presented. The 

characterization techniques used to study the grown ZnO are also listed. 

Chapter 4 discussed the graphene factor to the grown ZnO on the insulator. A 

combination of thermal evaporator PVD and the oxidation process of the grown ZnO 

on graphene on an insulator will be discussed thoroughly. Besides, the comparison 

between grown ZnO on the insulator and grown ZnO on graphene on the insulator will 

be explained. The discussions will thoroughly examine the morphology, crystallinity 

and optical properties of the deposited ZnO on the insulator.  

Chapter 5 studies the effect of buffer layers used to the grown ZnO on the 

insulator using the liquid-phase hydrothermal technique. Morphology, crystallinity 

and optical properties of the deposited ZnO on the insulator will be thoroughly 

discussed. 
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Chapter 6 introduces the new CVD method to grow high-quality ZnO. The 

method of the new CVD, hot water beam CVD, and the grown ZnO on graphene on 

the insulator will be explained. Morphology, crystallinity, and optical properties of 

grown ZnO on an insulator will be thoroughly discussed. Comparison between grown 

ZnO using thermal evaporator PVD, the hydrothermal technique and the new hot water 

beam CVD will also be explained here.  

Finally, Chapter 7 concludes the contributions of the present works and 

discusses future research directions.   
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