SUSTAINABLE TIMBER PREFABRICATED ARCHITECTURE IN SINGAPORE

NURULAIN NADHIRAH BINTI KAMAL

UNIVERSITI TEKNOLOGI MALAYSIA

SUSTAINABLE TIMBER PREFABRICATED ARCHITECTURE IN SINGAPORE

NURULAIN NADHIRAH BINTI KAMAL

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Architecture

School of Architecture Faculty of Built Environment and Surveying Universiti Teknologi Malaysia

FEBRUARY 2022

DEDICATION

To my beloved mother and father, and to the people nearest to me.

ACKNOWLEDGEMENT

First and foremost, I thank Allah for this opportunity. I am very grateful that the conduct of this thesis has been successful and fruitful. Hereby, I would like to express my heartfelt gratitude and appreciation to all the people who had given me their support and encouragement throughout the process of this thesis.

The production of this thesis would not have been possible without the helped and encouragement from my main thesis supervisor, Sir Azari bin Mat Yasir for lending his time and attention to my work. Not to forget to my co-supervisor, PM Dr Alice Sabrina binti Ismail for the guidance in writing this thesis. My deepest gratitude is also to other lecturers or staff that has helped me directly or indirectly. It has been an honour to be able to collaborate and work together into producing this thesis writing.

My sincere appreciation to my fellow peers in Master of Architecture who have been my catalyst for their support. Finally, to my beloved family for their prayer and love, without them, I would not be where I wanted today. Thankful to Allah S.W.T for allowing me to come this far, with hopes that this thesis could be useful for the future researchers.

ABSTRACT

The role of the urban in addressing sustainability issues is becoming more widely recognized. The World Commission on Environment and Development (WCED, or Brundtland Commission) defines sustainable development as "development that meets the demands of the present without compromising future generations' ability to satisfy their own needs." This necessitates a careful balancing act between meeting human economic and social demands mainly through economic growth and preserving the environment and natural resources (Seetoh & Ong, 2008). Maintaining this delicate balance between development and the environment will protect future generations from gaining a standard of living that is at least as outstanding as ours. The overall goal of Sustainable Development Goal 11 is to make cities "inclusive, safe, resilient, and sustainable" (United Nations and Nations, 2014). Cities must now, more than ever, grow in an environmentally sustainable manner.

This paper gives a brief overview of timber prefabricated building system in Singapore, aims to achieve sustainable planning. The concept of prefabrication system has been proved in reducing to 52% of waste construction on to 35% of time savings on site. Economy, speed of construction and improved environmental performance are critical variables that challenge the modern construction industry to strike a balance between. Several case studies have been referred to obtain an in-depth appreciation of interest, in its natural real-life context. It was found that precast timber construction methods to be environmentally beneficial, and using lightweight modern engineered timber materials can reach excellent economic efficiency. As a result, there is an increasing demand for extensive assessments on the possible environmental benefits of prefabrication, particularly in the areas of built-in energy savings via waste reduction and improved material efficiency.

ABSTRAK

Peranan bandar dalam menangani masalah kelestarian semakin dikenali. Suruhanjaya Dunia mengenai Alam Sekitar dan Pembangunan (WCED, atau Suruhanjaya Brundtland) mendefinisikan pembangunan lestari sebagai "pembangunan yang memenuhi tuntutan masa kini tanpa menjejaskan kemampuan generasi akan datang untuk memenuhi keperluan mereka sendiri". Ini memerlukan tindakan penyeimbangan yang teliti antara memenuhi tuntutan ekonomi dan sosial manusia terutamanya melalui pertumbuhan ekonomi dan memelihara alam sekitar dan sumber semula jadi (Seetoh & Ong, 2008). Mengekalkan keseimbangan secara teliti antara pembangunan dan persekitaran akan melindungi generasi akan datang daripada memperoleh taraf hidup yang sekurangnya sama dengan kita. Matlamat keseluruhan Pembangunan Lestari 11 adalah menjadikan bandar "inklusif, selamat, berdaya tahan, dan lestari" (United Nations and Nations, 2014). Bandar sekarang, lebih dari sebelumnya, mestilah berkembang dengan cara yang lestari dari segi persekitaran.

Tesis ini memberikan gambaran ringkas mengenai sistem pembangunan pasang siap kayu di Singapura, yang bertujuan untuk mencapai perancangan yang lestari. Konsep sistem pasang siap telah terbukti dalam mengurangkan sehingga 52% pengurangan sisa daripada pembinaan hingga 35% penjimatan masa di lokasi. Ekonomi, kepantasan pembinaan dan peningkatan prestasi persekitaran adalah pemboleh ubah kritikal yang mencabar industri pembinaan moden untuk mencapai keseimbangan. Beberapa kajian kes telah dirujuk untuk memahami lebih mendalam tentang subjek kajian, dalam konteks kehidupan nyata semula jadi. Didapati bahawa kaedah pembinaan pasang siap menggunakan kayu bermanfaat untuk alam sekitar, dan menggunakan bahan kayu moden yang ringan dapat mencapai kecekapan ekonomi yang sangat baik. Menyebabkan, ada permintaan yang bertambah bagi penilaian yang lebih meluas mengenai manfaat daripada sistem pasang siap, terutama di bidang penjimatan tenaga melalui pengurangan sisa dan peningkatan kecekapan bahan.

TABLE OF CONTENTS

	TITLE	PAGE
DECLARATION		III
DEDICATION		IV
ACKNOWLEGEMENT		V
ABSTRACT		VI
ABSTRAK		VII
TABLE OF CONTENTS		VIII
LIST OF TABLES		XII
LIFT OF FIGURES		XIII
LIST OF ABBREVIATION	IS	XV

CHAPTER 1 INTRODUCTION 01 Background Study 1.0 01 1.1 02 Problem Statement 1.1.1 Physical and Environmental Changes towards 03 Sustainable Planning in Singapore 1.1.2 Building Construction Waste in Built Environment 04 1.2 Research Aim 04 1.3 **Research Questions** 05 1.4 **Research Objectives** 05 1.5 Significance of Research 05 Research Scope 1.6 06 1.7 Theoretical Framework 07 Research Methodology 1.8 08 1.9 Summary 08

CHAPTER	2 LITERATURE REVIEW	09
2.0	Introduction	09
2.1	Sustainable Development in Global Cities	10
2.2	Sustainability in the Context of Construction	11
2.3	Sustainable Planning in Singapore	12
	2.3.1 Sustainable Construction Master Plan 2008	13
	2.3.2 Singapore Green Plan 2012	14
	2.3.3 BCA Green Mark Scheme	15
2.4	Prefabricated Modular Architecture	15
2.5	Construction Materials	16
2.6	Building System of MET in Singapore	17
2.7	Types of MET	18
2.8	Codes and Regulations Using MET	20
2.9	Benefits of Using MET	21
	2.9.1 Fire Resistance	22
	2.9.2 Sustainable	22
	2.9.3 High Strength to Weight Ratio	22
	2.9.4 Speed of Construction	23
2.10	Barriers to MET Adoption	23
2.11	Summary	25
CHAPTER	3 RESEARCH METHADOLOGY	27
3.0	Introduction	27
3.1	Research Paradigm	27
3.2	Research Design	28
3.3	Theoretical Framework	28
3.4	Research Procedure	30
3.5	Data Collection Procedure	30
	3.5.1 Site Study Introduction	31
	3.5.2 Literature Review	31
	3.5.3 Case Study	32
3.6	Data Analysis Interpretation	32
3.7	Summary	33

іх

CHAPTER 4	CASE	STUDY	35
4.0	Introdu	uction	35
4.1	Nanya	ng Technological University (NTU) The Wave, Singapore	35
	4.1.1	Building Construction	37
	4.1.2	Structural System	38
	4.1.3	Passive Displacement Ventilation (PDV)	39
	4.1.4	Natural Lighting	40
	4.1.5	Prefabricated Prefinished Volumetric Construction (PPVC)	40
	4.16	Challenges in Construction of The Wave	41
4.2	JTC L	aunchpad @ One-North (Block 81), Singapore	42
	4.2.1	Building Construction	43
	4.2.2	MET Hybrid System	44
	4.2.3	Building Finishes	45
	4.2.4	Challenges in Construction of JTC Launchpad	45
4.3	Singap	oore Sustainability Academy (SSA), Singapore	46
	4.3.1	Building Construction	47
	4.3.2	Solar Technology	49
4.4	Forte I	Living, Australia	49
	4.4.1	Building Materials	51
	4.4.2	Building Construction	52
	4.4.3	Structural System	55
		4.4.3.1 Wall System	55
		4.4.3.2 Floor and Ceiling System	56
	4.4.4	Challenges in Construction of Forte Living	57
4.5	Brock	Common-Tallwood House, Canada	57
	4.5.1	Building Materials	59
	4.5.2	Building Construction	61
	4.5.3	Fire Protection	63
	4.5.4	Challenges in Construction of Brock Common	64
		-Tallwood House	

4.6	Mjøstå	rnet, Norway	65
	4.6.1	Interior	67
	4.6.2	Building Materials	68
	4.6.3	Building Construction	70
	4.6.4	Fire Protection	73
	4.6.5	Challenges in Construction of Mjøstårnet	74
4.7	Summa	ary	75
CHAPTER 5	FINDI	NGS AND DISCUSSION	77
5.0	Introdu	iction	77
5.1	Potenti	al Strategies based on Design Consideration of	f 77
	Case S	tudies to be adapted in Singapore	
	5.1.1	Structural Component	78
	5.1.2	Fire Protection Measure	79
	5.1.3	Moisture Protection Measures	81
5.2	Summa	ary	83
CHAPTER 6	CONC	CLUSION	85
6.0	Introdu	iction	85
6.1	Resear	ch Synthesis	85
	6.1.1	Research Objective 1 Analysis	86
	6.1.2	Research Objective 2 Analysis	87
	6.1.3	Research Objective 3 Analysis	87
6.2	Limitat	tion	88
6.3	Recom	mendation for Future Research	88

REFERENCES

89

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	Five Strategic Thrusts of Sustainable Construction Master Plan	n 13
Table 2.2	Targets Set SGP 2012	14
Table 2.3	Differences of CLT, Glulam and LVL	19
Table 3.1	Data Collection Method	30
Table 4.1	Summary of Case Studies	75
Table 5.1	Active and Massive Measures	81

LIST OF FIGURES

FIGURE NO.	. TITLE	PAGE
Figure 1.1	The Three Pillar of Sustainable	1
Figure 1.2	The Theoretical Framework	7
Figure 2.1	Targets Set SGP 2012	20
Figure 2.2	SCDF Provision	21
Figure 4.1	East Façade, The Wave	36
Figure 4.2	Interior view of the sports hall	37
Figure 4.3	Cross section view and 3-point arch supporting structure	38
Figure 4.4	Three-hinged glulam arches spanning across the long direction	39
Figure 4.5	Structural Joints Section Drawing	39
Figure 4.6	Sun buffer in the west side of The Wave	40
Figure 4.7	Elevation view of the shallow shape of the arches of the Wave	41
Figure 4.8	JTC Launchpad @ One-North (Block 81)	42
Figure 4.9	Structure component of Block 81, JTC	43
Figure 4.10	Timber slabs cut to the required shape	44
Figure 4.11	Structural framework, comprising of wood and steel component	ts 44
Figure 4.12	Block 81 interior finishes	45
Figure 4.13	Singapore Sustainability Academy (SSA)	47
Figure 4.14	Structural framework from interior	48
Figure 4.15	Structural framework from exterior	48
Figure 4.16	Integrated Solar PV Panel	49
Figure 4.17	Exterior perspective of Forte Living	50
Figure 4.18	Unit balcony	51
Figure 4.19	Living room Forte'	52
Figure 4.20	Typical unit floor plan	53
Figure 4.21	Structural system	54
Figure 4.22	PBU in Forte and Integration of M&E services	54
Figure 4.23	Exposed CLT at main stair tower	55
Figure 4.24	Cross Section of CLT Floor	56

Figure 4.25	Aerial view of Brock Common-Tallwood House	57
Figure 4.26	Site Plan of Brock Common-Tallwood House	58
Figure 4.27	Ground Floor Plan	59
Figure 4.28	Typical Floor Plan	59
Figure 4.29	Building Envelope Options	60
Figure 4.30	Structure System	61
Figure 4.31	Slab Construction	62
Figure 4.32	Fire Compartmentation Diagram	63
Figure 4.33	Mjøstårnet, Norway	65
Figure 4.34	Site Plan of Mjøstårnet	66
Figure 4.35	Typical Section	67
Figure 4.36	Restaurants	68
Figure 4.37	Meeting Room	68
Figure 4.38	Façade envelope of the Building	69
Figure 4.39	Diagonal Structure Element	69
Figure 4.40	Highlighted volumes used in the building's structure	71
Figure 4.41	Floor Element Layout	72
Figure 4.42	Pergola Structure on the Roof	72
Figure 4.43	Fire test of glulam at SP Firetech. Standard ISO fire for	73
	90 minutes and observation in the cooling process	
	(This specimen has an internal steel connection)	
Figure 5.1	Example of an overhead waterproof shelter	82

LIST OF ABBREVIATIONS

SGP 2012	-	Singapore Green Plan 2012
EMS	-	Environmental Management System
BCA	-	Building and Construction Authority
GM	-	Singapore Green Mark Programme
MET	-	Mass Engineered Timber
WCED	-	World Commission on Environment and Development
UNIDO	-	United Nations Industrial Development Organization
MEWR	-	Ministry of the Environment and Water Resources
PV	-	Solar Photovoltaic
DfMA	-	Design for Manufacture and Assembly
CLT	-	Cross Laminated Timber
LVL	-	Laminated Veneer Lumber
Glulam	-	Glued Laminated Timber
SCDF	-	Singapore Civil Defence Force
CITM	-	Construction Industry Transformation Map
PPVC	-	Prefabricated Pre finished Volumetric Construction
NTU	-	Nanyang Technological University
PDV	-	Passive Displacement Ventilation
SSA	-	Singapore Sustainability Academy
CSM	-	City Square Mall
SEAS	-	Singapore Sustainable Energy Association
PBU	-	Prefabricated Bathroom/Sanitary units
CTBUH	-	Council for High-Rise Buildings and Urban Habitat
DPM	-	Damp Proof Membrane
PSM	-	Peel-off Membrane
MSS	-	Miralite Side Sealer
IMCSD	-	Inter-Ministerial Committee for Sustainable Development
МСО	-	Malaysian Restriction Order

CHAPTER 1

INTRODUCTION

1.0 Background Study

Cities are becoming increasingly essential to an expanding number of people as a result of global and regional urbanization processes, and their impact on surrounding areas continues to grow as cities grow. Cities, in particular, are at the crossroads of potential and conflict between economic and sustainable development and the growth of affluence in newly industrialized countries. Cities' most important functions are tied to economic, social, and environmental factor (Flynn et al., 2016). The three pillars of environmental, social and economic, are related. Figure 1.1 shows how our economy and everything in our society is situated within, and entirely dependent on, our environment. This relationship means that any every influence or change in our environment will have an impact on society and the economy. As a result, any issue concerning sustainability must be evaluated holistically and realize this interdependence.

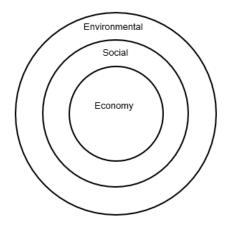


Figure 1.1 : The Three Pillar of Sustainable

Singapore, a developed first-world country, has a thriving economy and serves as Southeast Asia's financial hub. Construction, one of the industries that grows in parallel with the economy, contributes to environmental pollution and resource depletion over time (Yin et al., 2018). According to Tan & Abdul Hamid (2014), Singapore's environmental initiatives began in the 1960s with its annual Tree Planting Day, which has lately grown into a citywide awareness of the significance of urban ecosystems in achieving sustainability. Following on from Singapore's early accomplishments in recognizing the importance of greenspace planning in creating a sustainable city, (P. Y. Tan et al., 2013) Singapore's government has worked hard to establish policies and guidelines for the design and construction of sustainable buildings. The Singapore government is dedicated to become a global leader in developing a sustainable built environment, in addition to promoting awareness and addressing environmental sustainability.

1.1 Problem Statement

Over the past four decades Singapore, a small island metropolis with an everincreasing and dense population, has experienced environmental management issues resulting from fast industrialization and economic development, threatening its sustainability and liveability (Fujii & Ray, 2019; Yin et al., 2018). Referred to United Nations & Nations (2014), the world's population is rapidly urbanizing, with 70% of people living in cities by 2050. Building energy consumption is on the rise, owing to rising population and per capita consumption, particularly in urban areas. Between 2005 and 2016, residential energy usage in Singapore grew by 25% (Department of Statistics Singapore, 2018). These reasons, among others, indicate to the need to examine sustainable building design more closely (Lan et al., 2019).

1.1.1 Physical and Environmental Changes towards Sustainable Planning in Singapore

To support sustainable construction, Singapore has established several initiatives and legislation such as the Sustainable Construction Master Plan 2008, Singapore Green Plan 2012 (commonly known as SGP 2012), Green Mark Scheme, and environmental management system (EMS). These initiatives have emphasised not only energy efficiency, but also the employment of a comprehensive strategy to support green building to ensure that environmental quality and comfort are not jeopardised.

In January 2005, Singapore's Building and Construction Authority (BCA) launched the Singapore Green Mark programme (GM), which assesses buildings for their environmental effect and energy efficiency. The program's purpose is to provide a complete framework for analysing new and existing buildings' entire environmental performance in order to promote sustainable building design, construction, and operation. The real estate sectors included by GM's plan include commercial, residential, retail, industrial, hotel, institutional, office, park, and government real estate (Yin et al., 2018).

Building codes and rules for residential and non-residential buildings are generally different. The programme incentivizes developers and design teams to construct green and sustainable structures that save energy, water, and provide a better indoor environment, as well as provide foliage and landscaping for their projects. For existing buildings, GM's scheme promotes building owners and operators to fulfil certain operational objectives and reduce their structures' negative environmental and health impacts on the environment and people over the course of their lives. The following main areas are covered by GM's assessment criteria: energy efficiency, water efficiency, environmental protection, indoor environmental quality and green features and innovation.

1.1.2 Building Construction Waste in Built Environment

The building industry is inextricably linked to the development of the national economy and society. As a result, there is an increasing demand in the construction sector for climate change adaptation and resource efficiency (Ofori et al., 2002), particularly for future prevention and mitigation (Ofori, 1998). While there is a growing awareness of the need for sustainable construction around the world, demand is still low or even non-existent due to a lack of awareness (Shafii et al., 2006).

Moreover, buildings are also one of the primary drivers of world energy use (Cao et al., 2016). In the United States, buildings absorb roughly 48% of total energy (Manic et al., 2016). The building industry consumes roughly 32% of energy in the EU (Ascione et al., 2015). The built environment, in particular, has a considerable impact on a society's ability to deal with climate and sustainability challenges, such as energy consumption (Santamouris et al., 2001), ability to cope with acceptable temperature conditions (Chee et al., 2011), and sustainable building is being used to investigate and address concerns such as emissions and waste, as well as building and renovation consequences (Hammond & Jones, 2008. As a result, there is a constant need to comprehend creative building-scale solutions that might contribute to a more environmentally friendly and resource-conserving metropolis.

1.2 Research Aim

The aim of this research is to study elements of timber prefabricated building systems in order to achieve sustainable planning in Singapore.

1.3 Research Questions

- i. What are the current needs of sustainable industrial planning in Singapore ?
- ii. How does building construction can minimize waste in built environment and ensure environmental friendly ?
- iii. What are the building material needed to enhance the development of timber prefabrication systems in Singapore ?

1.4 Research Objectives

- i. To identify aspect of sustainable planning in Singapore to achieve high quality life.
- ii. To use timber prefabricated construction as a strategy to contribute minimize waste in built environment.
- iii. To introduce mass engineered timber (MET) and required guidelines as a sustainable construction material in Singapore.

1.5 Significance of Research

The purpose of this research is to identify the benefit of using timber prefabrication building systems through a review of relevant literature for urban dwellers in Singapore towards the main issue and challenges in paradigms for sustainable development and enhance living environment. Thus, revealing the impacts and factors of timber prefabricated building construction towards sustainable approach for the built environment. Despite the growing popularity of timber as a structural material in many European countries, it has not been widely adopted in Singapore, as evidenced by the fact that several mass engineered timber (MET) projects completed in Singapore are primarily limited to low-rise buildings with no more than 10 floors.

By going beyond typical methods of introducing MET as an alternate building material option for new constructions in Singapore, the proposal is expected to shed light on the Singapore construction sector. In this way, MET is finally realizing its potential to revolutionize the construction industry by pushing the boundaries of timber construction, and Singapore will be the next country to make a breakthrough with the development of high-rise buildings in timber construction.

1.6 Research Scope

The research of this study focuses on the impact of timber prefabrication building systems toward sustainable planning. The relation between built environment and the three aspects of sustainability, consist of environmental, social and economy will benefit the quality of life. Moreover, timber as a sustainable material will be discussed in detail on the building performance and building guidelines to be referred to in Singapore. Other than that, the research will discuss building system of Mass Engineered Timber (MET) as an approach for enhancing timber prefabrication to help in reducing waste and benefit the environment.

Several case study and literature review timber prefabricated will help to find out several scope and point to highlight in the concept of sustainable planning. The result will be obtained through several case studies for a reference. The research will conclude to a comprehensive scheme for sustainable planning using timber prefabricated architecture.

1.7 Theoretical Framework

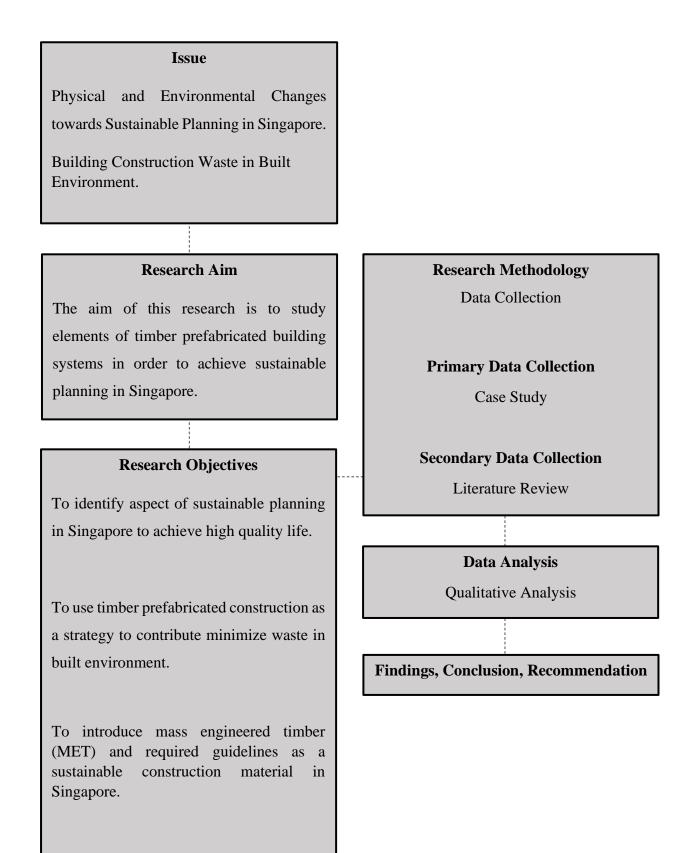


Figure 1.2 : The Theoretical Framework

1.8 Research Methodology

The aim of this research is to study on the impact of timber prefabrication building systems toward sustainable planning. Thus, the research methodology acts as a mechanism to recognize the research paradigm and the direction of research. The research gap has been identified as a data collection. The data collection consists of primary and secondary data. The primary data is several case studies on local international projects that use timber prefabrication systems into the design. The secondary data is obtained from articles, journals and reports. All the data have been used to gather data on related topics of timber prefabricated architecture towards sustainable planning. This is important to fulfil the objectives of the research in providing sustainable solutions.

1.9 Summary

This chapter discovers the main issue and problem of the research that has been done on sustainable planning using timber prefabricated architecture, thus, the aim and research objectives are developed in order to respond to the problem statements with applicable literature reviews and case studies. Based on the aim and objectives, the scope of thesis and significance of study are identified as an overview of the thesis result. A series of background studies are explored more in Chapter 2 in accordance with the aim and objective of this thesis.

REFERENCES

- Architizer (2021). Singapore Sustainability Academy retrieved from https://architizer.com/projects/singapore-sustainability-academy/
- Abrahamsen, R. (2017). Mjøstårnet-Construction of an 81 m tall timber building. *Internationales Hoizbau-Fourm IHF*, 1–12. https://www.moelven.com/globalassets/moelven-limtre/mjostarnet/mjostarnet---construction-of-an-81-m-tall-timber-building.pdf
- Abrahamsen, R. (2018). *Mjøstårnet 18 storey timber building completed Mjøstårnet 18 storey timber building completed*.
- Acler, E. (2017). Nanyang Technological University Sports Hall. Nanyang Technological University 23. Internationales Holzbau-Forum IHF 2017 Nanyang Technological University Sports Hall – Singapore / E. Acler 1 Nanyang Technological University Sports Hall – Singapore, 1–13. http://www.ntu.edu.sg/AboutNTU/CorporateInfo/Pages/Intro.aspx
- Aye, L., Gunawardena, T., Mendis, P., Ngo, T., Aye, L., & Alfano, J. (2014). Sustainable Prefabricated Modular Buildings. 1–8. https://doi.org/10.13140/2.1.4847.3920
- BCA (2017). Raising Construction Productivity and Changing Design and Construction Processes toward Sustainability. Build Smart. Singapore. Building and Construction Authority.
- BCA (2018). Design for Manufacturing and Assembly (Dfma) Mass Engineered Timber Singapore: Building and Construction Authority

- Bertelsen, S. (2004). *LEAN CONSTRUCTION : WHERE ARE WE AND HOW TO PROCEED ? 1*(October), 46–69.
- Canadian Wood Council. (2017). Brock Commons Tallwood House. *Naturally Wood*, 1–40.
- Chee, L., Chang, J. H., & Wong, B. C. T. (2011). Introduction -'Tropicality-inmotion': Situating tropical architecture. *Singapore Journal of Tropical Geography*, 32(3), 277–282. https://doi.org/10.1111/j.1467-9493.2011.00433.x
- Delfania, M., Ibrahim, R., Raschid, M. Y. M., Hejazi, F., & Haron, nurul A. (2016). *Towards Designing Modular of Industrialized Building System.* 5, 387–391.
- Department of Statistics Singapore accessed on 2018-06-23. [Online]. Available: https://www.singstat.gov.sg/
- Ding, G. K. C. (2008). Sustainable construction-The role of environmental assessment tools. *Journal of Environmental Management*, 86(3), 451–464. https://doi.org/10.1016/j.jenvman.2006.12.025
- Espinoza, O., Trujillo, V.R., Mallo, M.F.L., Buehlmann, U. (2016). Cross-laminated timber: status and research needs in Europe. *Bioresources* 11, 281–295
- Evison, D.C., Kremer, P.D., Guiver, J. (2018). Mass timber construction in Australia and New Zealand—status, and economic and environmental influences on adoption. *Wood Fiber Sci.* 50, 128–138
- Fast, P., & Jackson, R. (2017). Brock Commons A Case Study in Tall Timber. June, 50–52.
- Flynn, A., Yu, L., Feindt, P., & Chen, C. (2016). Eco-cities, governance and sustainable lifestyles: The case of the Sino-Singapore Tianjin Eco-City. *Habitat International*, 53, 78–86. https://doi.org/10.1016/j.habitatint.2015.11.004

- Forest Products Laborator (2000). Wood Handbook: Wood as an Engineering Material. *University Press of the Pacific, Honolulu*
- Fujii, T., & Ray, R. (2019). Singapore as a sustainable city: Past, present and the future.
- Goodier, C., Gibb, A., Goodier, C., & Gibb, A. (2007). Construction Management and Economics Future opportunities for offsite in the UK Future opportunities for offsite in the UK. October 2014, 37–41. https://doi.org/10.1080/01446190601071821
- Hammond, G. P., & Jones, C. I. (2008). Embodied energy and carbon in construction materials. *Proceedings of Institution of Civil Engineers: Energy*, 161(2), 87–98. https://doi.org/10.1680/ener.2008.161.2.87
- Höök, M., & Stehn, L. (2010). Construction Management and Economics Applicability of lean principles and practices in industrialized housing production Applicability of lean principles and practices in industrialized housing production. November 2014, 37–41. https://doi.org/10.1080/01446190802422179
- Hwang, B. G., & Tan, J. S. (2012). Green building project management: Obstacles and solutions for sustainable development. *Sustainable Development*, 20(5), 335–349. https://doi.org/10.1002/sd.492
- Jones, K., Stegemann, J., Sykes, J., Winslow, P. (2016). Adoption of unconventional approaches in construction: the case of cross-laminated timber. *Construct. Build.*
- Kremer, P.D., Symmons, M. (2016). Overcoming Psychological Barriers to
 Widespread Acceptance of Mass Timber Construction in Australia. Forest &
 Wood Products Australia Limited, Melbourne

Lan, L., Wood, K. L., & Yuen, C. (2019). A holistic design approach for residential net-zero energy buildings: A case study in Singapore. *Sustainable Cities and Society*, 50(May), 101672. https://doi.org/10.1016/j.scs.2019.101672

Lyons, M. (2009). A COMPARATIVE ANALYSIS BETWEEN STEEL, MASONRY AND TIMBER FRAME CONSTRUCTION IN RESIDENTIAL HOUSING

- Mankowski, M., Morrell, J.J. (2000). Incidence of wood-destroying organisms in Oregon residential structures. For. Prod. J. 50
- Mater. 125, 690–702. Schmidt, J., Griffin, C.T. (2013). Barriers to the Design and Use of Cross-Laminated Timber Structures in High-Rise Multi-Family Housing in the United States. Structures and Architecture, pp. 2225–2231
- Matoski, A., & Ribeiro, R. S. (2016). Evaluation of the acoustic performance of a modular construction system : Case study. APPLIED ACOUSTICS, 106, 105– 112. https://doi.org/10.1016/j.apacoust.2016.01.004
- Ofori, G. (1998). Sustainable construction: Principles and a framework for attainment - Comment. *Construction Management and Economics*, 16(2), 141– 145. https://doi.org/10.1080/014461998372448
- Park, M., Ingawale-verma, Y., Kim, W., & Ham, Y. (2011). Construction Policymaking : With an Example of Singaporean Government 's Policy to Diffuse Prefabrication to Private Sector. 15, 771–779. https://doi.org/10.1007/s12205-011-1243-4
- Pasquire, C. L., & Connolly, G. E. (n.d.). *LEANER CONSTRUCTION THROUGH OFF-SITE MANUFACTURING*. 1–13.
- Quesada-Pineda, H., Smith, R., Berger, G. (2018). Drivers and barriers of cross laminated timber (Clt) production and Commercialization: a case of study of Western Europe's Clt industry. *Bioproducts Business* 3, 29–38

- Revi, A., Satterthwaite, D., Aragón-Durand, F., Corfee-Morlot, J., Kiunsi, R. B. R., Pelling, M., Roberts, D., Solecki, W., Gajjar, S. P., & Sverdlik, A. (2014). Towards transformative adaptation in cities: The IPCC's Fifth Assessment. *Environment and Urbanization*, 26(1), 11–28. https://doi.org/10.1177/0956247814523539
- Santamouris, M., Papanikolaou, N., Livada, I., Koronakis, I., Georgakis, C., Argiriou, A., & Assimakopoulos, D. N. (2001). On the impact of urban climate on the energy consuption of building. *Solar Energy*, 70(3), 201–216. https://doi.org/10.1016/S0038-092X(00)00095-5
- Seetoh, K. C., & Ong, A. H. F. (2008). Achieving sustainable industrial development through a system of strategic planning and implementation: The Singapore model. *Spatial Planning for a Sustainable Singapore*, 113–133. https://doi.org/10.1007/978-1-4020-6542-2_7
- Shafii, F., Arman Ali, Z., & Othman, M. Z. (2006). Achieving sustainable construction in the developing countries southeast asia. *Proceedings of the 6th Asia-Pacific Structural Engineering and Construction Conference (APSEC* 2006), 1(September 2006), 5–6

Soh, Y., & Leng, S. (n.d.). Sustainable Building and Construction in Singapore. 1–8.

- Tan, P. Y., & Abdul Hamid, A. R. bin. (2014). Urban ecological research in Singapore and its relevance to the advancement of urban ecology and sustainability. *Landscape and Urban Planning*, 125, 271–289. https://doi.org/10.1016/j.landurbplan.2014.01.019
- Tan, P. Y., Wang, J., & Sia, A. (2013). Perspectives on five decades of the urban greening of Singapore. *Cities*, 32, 24–32. https://doi.org/10.1016/j.cities.2013.02.001

- Tan, Y., Shen, L., & Yao, H. (2011). Sustainable construction practice and contractors' competitiveness: A preliminary study. *Habitat International*, 35(2), 225–230. https://doi.org/10.1016/j.habitatint.2010.09.008
- United Nations, & Nations, U. (2014). World Urbanization Prospects: The 2014 Revision, CD-ROM Edition. 1–20.
- University of British Columbia. (2016). Brock Commons UBC Tall Wood Building. *Forestry Innovation Investment, June*, 2016. https://www.youtube.com/watch?v=GHtdnY_gnmE
- Yin, B. C. L., Laing, R., Leon, M., & Mabon, L. (2018). An evaluation of sustainable construction perceptions and practices in Singapore. *Sustainable Cities and Society*, 39(March), 613–620. https://doi.org/10.1016/j.scs.2018.03.024

•