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ABSTRACT 

 

Prestressed concrete sleepers are currently designed based on permissible 

stresses concepts resulting from quasi-static wheel loads. It was designed to exceed 

the mean working load to avoid loss of bond in the prestressing due to cracking of 

the concrete sleepers. These loads allow for static response of the sleeper due to the 

mechanism of vertical load transfer between the rail and sleeper as well as the 

sleeper and ballast interaction. In practice, the designer apply uniform pressure 

distribution beneath each rail seat which is dependent on the track gauge and 

sleeper length as stipulated in many design standards. Applying uniform pressure 

distribution beneath each rail seat may not be necessarily applicable to all in-situ 

sleepers as the contact pressure distribution between sleepers and ballast is mainly 

influenced by the cumulative effect of the traffic loading at various speeds over a 

period of time as well as the quality of ballast maintenance. A significant amount of 

research has been conducted by researchers worldwide over the century in 

postulating a set of hypothetical contact pressure distribution on the sleeper-ballast 

interaction. This leads to predicament as to whether the designed sleepers under the 

assumption of uniform contact pressure distribution had the adequate static load 

capacity to withstand the designed vertical loading but under different contact 

pressure distribution pattern. To solve this predicament, numerical analysis using 

commercially available finite element package, LUSAS, is carried out and 

comparison is made with the experimental test results in validating the finite 

element model. The numerical analysis will be useful in predicting the maximum 

vertical loading prior to the cracking of the sleeper under various hypothetical 

contact pressure distribution patterns. From numerical analysis, prestressed 

concrete sleeper that is placed on ballast has reserve strength in static load capacity 

with a factor between 2.2 and 2.4 of the positive rail seat test load at crack 

initiation. 
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ABSTRAK 

 

Reka bentuk sleeper konkrit prategasan adalah berdasarkan kepada konsep 

tekanan yang dibenarkan, hasil daripada aksi beban kuasi-statik roda. Ia direka 

bentuk untuk melebihi purata beban kerja bagi mengelakkan kehilangan daya 

tarikan di dalam prategasan yang disebabkan oleh keretakan. Beban ini 

membenarkan respon statik oleh sleeper yang disebabkan oleh mekanisma 

perpindahan beban menegak di antara rel dan sleeper serta interaksi antara sleeper 

dan ballast. Pereka bentuk mengenakan tekanan rata yang seragam di bawah setiap 

kerusi rel yang bergantung kepada tolok landasan dan panjang sleeper seperti mana 

ditetapkan di dalam banyak piawaian. Mengenakan tekanan yang seragam di bawah 

kerusi rel mungkin tidak benar untuk semua sleeper di landasan kerana tekanan 

permukaan di antara sleeper dan ballast dipengaruhi oleh kesan kumulatif daripada 

beban trafik pada pelbagai kelajuan pada suatu tempoh serta kualiti 

penyelenggaraan ballast. Jumlah penyelidikan yang ketara telah dilakukan oleh 

para penyelidik di seluruh dunia dalam menyediakan satu set hipotesis tekanan rata 

bagi interaksi sleeper-ballast. Ini membawa kepada persoalan samada reka bentuk 

sleeper dibawah andaian tekanan yang seragam mempunyai kapasiti yang 

mencukupi untuk menahan rekaan beban menegak tetapi di bawah pelbagai bentuk 

hipotesis tekanan rata. Untuk menyelesaikan persoalan ini, analisis berangka 

menggunakan pakej perisian komersil untuk model unsur terhingga, LUSAS, 

dijalankan dan perbandingan dibuat dengan keputusan daripada ujian uji kaji dalam 

mengesahkan penggunaan model unsur terhingga. Analisis berangka ini sangat 

berguna untuk meramalkan beban menegak yang maksima sebaik sebelum 

keretakan sleeper dibawah pelbagai bentuk hipotesis tekanan rata. Berdasarkan 

kepada keputusan analisis berangka, sleeper konkrit prategasan yang diletakkan di 

atas ballast mempunyai kekuatan rizab pada kapasiti beban statiknya iaitu diantara 

factor 2.2 dan 2.4 daripada beban ujian positif kerusi kereta api semasa keretakan 

mula berlaku.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1.  MODERNIZATION OF THE BALLASTED RAILWAY TRACK 

NETWORK IN MALAYSIA 

 

The Government of Malaysia through Keretapi Tanah Melayu Berhad 

(KTMB) is embarking on an exciting challenge in modernizing its ballasted railway 

track through the implementation of double tracking and electrification of its 

railway system on the west coast of the peninsular. 

This includes the already completed Rawang-Ipoh Project, the ongoing 

Ipoh-Padang Besar Project and the Seremban-Gemas Project as well as the 

upcoming Gemas-Johor Bahru Project. Total project cost of the modernization of 

this ballasted railway track is approximately RM 30 billion.  

The modernized ballasted track is designed to replace the colonial track of 

90 km/h top speed with the 140 km/h maximum operational speed which could go 

up to its limit of 160 km/h on certain stretches. This will directly reduce the transit 

time for both passengers and goods traffic which in return will stimulate 

developments and economic growth along its corridor. 

Once the network between Johor Bahru and Padang Besar is completed, it 

will further spur and enhance the growth of international container traffic through 

train services between the ports of Malaysia. It will definitely pave the way for the 

success of the Indonesia-Singapore-Malaysia-Thailand Growth Region. 
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1.2. FUNCTIONS OF TRACK COMPONENTS AND THE LOAD PATH 

 

The design of a railway system is typically divided into two main 

components namely the design of trains or rollingstock and the design of the 

supporting structure (Remennikov, Kaewunruen, 2008). It is expected that the track 

structures will guide and facilitate the safe, economic and smooth passages of any 

passenger and freight trains. 

By considering the static and dynamic loads acting on the track structure, 

railway track structures is primarily analysed and designed to avoid excessive 

loading which may induce damage to the track substructure and superstructure. 

This include track components such as rails, rail pads, mechanical fasteners and 

concrete sleepers (superstructure) as well as geotechnical systems such as ballast, 

sub-ballast and subgrade or formation (substructure). Fig. 1.1 shows the cross 

sectional layout of a typical ballasted track (Selig & Waters, 1994). 

 

 

As a longitudinal steel members positioned on the equally spaced sleepers, 

rails are the critical component in guiding the rolling stocks. Its main function is to 

accommodate and transfer the loads from the rolling stock to the supporting 

sleeper. With adequate strength and stiffness in the rails, a steady shape and smooth 

track is maintained and various forces exerted by travelling rolling stocks are 

resisted. In modern electrified track, rails had additional function of serving as an 

electrical conductor for railway signaling system. 

Figure 1.1: Cross sectional layout of a typical ballasted track (Selig & Waters, 1994) 
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Both mechanical fasteners and rail pads are the primary components of the 

fastening systems. Apart from keeping the rails in position on the sleepers, the 

mechanical fasteners withstand the three dimensional forces of vertical, lateral and 

longitudinal as well as the overturning movements of the track. Mechanical fastener 

also transfer forces caused by wheels, thermal change and natural hazard from rails 

to the adjacent set of sleepers.  

As the other primary components of the fastening systems, rail pads which 

are placed on the rail seat are essential in filtering and transferring the dynamic 

forces from the rails and mechanical fastener to the sleepers. The dynamic force is 

predominantly from the travelling rolling stocks and the high damping coefficient 

of the rail pads considerably reduces the excessive high-frequency force 

components to the sleepers. The resiliency provided by the rail pads to rail-sleeper 

interaction has resulted in the alleviation of rail seat cracking and contact attrition. 

Sleepers are part of the track component that rest transversely on the ballast 

with respect to the longitudinal rail direction. It was first made using timber before 

evolving to steel, reinforced concrete and to the most common type seen today, 

prestressed concrete. This evolution is closely related to improve durability and 

longer service life span. In terms of its functionality, sleepers are critical in (i) 

providing support and restraint to the rail in vertical, longitudinal and lateral 

direction, (ii) transfering load from the rail foot to the underlying ballast bed, and 

(iii) retaining proper gauge and inclination of the rail by keeping anchorage for the 

rail fastening system.    

Underneath the sleepers in providing tensionless elastic support is ballast, a 

free-draining coarse aggregate layer typically composed of crushed stones, gravel, 

and crushed gravel. Depending on the local availability, basalt and granite are 

usually the selected material for ballast due to its strength characteristic for load 

transfer. In between the ballast and the underlying subgrade is sub-ballast, 

commonly composed of broadly graded slag, broadly sand-gravel or crushed 

aggregate. The last support to sustain and distribute the resultant downward 

dynamic loading along its infinite depth is subgrade or also known as formation. 

Subgrade includes existing soil and rock as well as other structures such as pile 

embankment and the recent high performance materials of geotextiles and 



  4

geofabrics. To prolong track serviceability, the infinite depth of subgrade must have 

adequate bearing capacity, provide good drainage and yield tolerable smooth 

settlement.   

 

1.3. PROBLEM STATEMENT 

 

As reviewed by Doyle (1980), one of the main functions of prestressed 

concrete sleepers is to transfer the vertical loads to the ballast and formation. This 

vertical loads subject the sleeper to bending moment which is dependent on the 

pressure distribution exerted by the ballast underneath the sleeper. 

In practice, a uniform pressure distribution is assumed in design to calculate 

the static load capacity of the sleeper in withstanding the bending stresses. This also 

lead to a four point bending moment test at the rail seat in the laboratory (AS 

1085.14-2003) based on the assumption that the sleepers would behave similar to 

those of the in-situ ones. (Remennikov, Murray, Kaewunruen, 2008) 

However, this assumption is not completely true as the bearing pressure 

distribution on the sleeper-ballast interaction is mainly depending on the degree of 

voids in the ballast underneath the sleeper. The major influence factors in 

determining the degree of voids are the traffic loading and train speed. Both factors 

are time dependent as cumulative effect of the traffic loading at various speeds will 

gradually change the structure of the ballast and the subgrade. A remarkable effort 

by Talbot (1913-1940), other researchers and standards have postulated a set of 

hypothetical bearing pressure distribution on the sleeper-ballast interaction and 

their corresponding bending moment diagrams. 

Therefore, quantifying the rail seat load and the bearing pressure 

distribution is the most critical steps in designing the sleeper to withstand vertical 

loading. Numerical analysis using a commercial finite element package, LUSAS, 

was carried out to check on the assumption made on the laboratory test as well as to 

check whether the assumption of uniform pressure will provide an overestimate of 
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the sleeper’s static load capacity in relative to other hypothetical bearing pressure 

distribution.  

The preliminary applied rail seat load in the design and numerical analysis 

will be based on 20 tonne axle load which is the maximum imposed load as 

regulated by the Malaysian Railway Authority although it is acknowledged 

excessive wheel load over 400 kN due to wheel or rail abnormalities may occur 

once or twice in the sleeper’s design life span of 50-100 years (Kaewunruen, 

Remennikov, 2009). This is considered a rare event and it is not economic to design 

sleeper for such a high static load capacity. 

Subsequently, the rail seat load will be increased if the bending stress limit 

is not exceeded. If the bending stress is exceeded prior to rail seat load based on 20 

tonne axle load, a lower load will be applied to predict what load the sleepers will 

fail under flexure. 
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1.4 . OBJECTIVES OF THE STUDY 

 

The objective of this study are : 

a) To develop two-dimensional model of presetressed concrete sleepers using 

finite element analysis modelling; 

 

b) To compare the finite element analysis model with the load-deflection 

response of the centre negative moment experimental test as previously 

conducted by Kaewunruen and Remennikov (2006a); 

 

c)  To verify if the assumed uniform bearing pressure distribution on the 

sleeper-ballast interaction is not underestimating the design if other 

hypothetical bearing pressure distribution pattern occurs; 

 

d) To predict the maximum vertical static loading capacity at crack initiation 

stage and ultimate state on various hypothetical bearing pressure 

distribution patterns.   

 

 

 

 

 

 



  7

1.5. SCOPES OF THE STUDY 

 

The scope of this study are : 

a) To review the analysis and design of monoblock prestressed concrete 

sleepers by referring to Section 4 of AS 1085.14-2003 as practiced by the 

track designer of KTM Double Track Projects; 

 

b) To perform numerical analysis using finite element software, LUSAS, with 

various hypothetical bearing pressure distribution on the sleeper-ballast 

interaction as the controlled variable. 

 

c) To apply specification of sleeper dimension, rail seat loading, material 

properties and other technical parameters based on the centre negative 

bending moment test carried out by Kaewunruen and Remennikov (2006a). 

The ballast stiffness will be based on technical specification used in KTM 

Double Track Project. 

 

d) To only consider quasi-static wheel loads in the full scale experiments and 

numerical analysis, impact loads are omitted. 

 

e) To only consider independent, closely spaced, discrete and linearly elastic 

springs for the beams on elastic foundation. Continuum approach is omitted 

as effects on local pressure distribution are assumed negligible in the 

transverse direction of the track. 

 

 

 

 




