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ABSTRACT

Sea surface wind speed (U10) is one of the vital variables for tropical cyclone
analysis in providing accurate wind intensity information to the warning center.
However, rough sea state condition, has caused the U10 observations by buoy to
become unreliable. Although satellite altimeter can measure U10, the operational
Gourrion algorithm was designed for normal sea state conditions. Extreme ocean-
atmospheric interaction worsen by the rain contamination on the altimeter signal has
impaired the quality of the derived U10, hence putting low attention in tropical cyclone
study. This operational U10 product which only incorporates the backscatter and the
surface wave height at Ku-band as principal parameters is insufficient to emulate a
complex cyclone environment. Though higher U10 regime saturated at 20 ms−1 and
heavy rainy conditions have reduced the U10 accuracy, other ocean-related parameters
are worth considering. Therefore, this study was aimed to analyse the altimeter
ocean-related parameters and thus estimate high accuracy U10 for tropical cyclone
wind characterization. This study established a relationship between parameters
response from Joint Altimetry Satellite Oceanography Network (Jason)-2 and Jason-3;
and the coincident U10 from Meteorological Operational (MetOp)-A and MetOp-B
scatterometers in 350 tropical cyclones captured between 2015 and 2018 globally.
Quantitative assessment on the quality of altimeter C-band parameters and other
simultaneously observed radiometric ocean parameters namely brightness temperatures
at 18.7, 23.8, and 34.0 GHz, water vapor content, and liquid water content related to
extreme U10 were presented. Correlation of C-band parameters to U10 outperformed
that of the Ku-band counterpart by at least 29% and the inclusion of radiometric
parameters contributed to a significant error reduction of about 48%. New and high
accuracy U10 models were developed using Multiple Linear Regression and machine
learning techniques namely Artificial Neural Network, Support Vector Machine, and
Gaussian Process Regression. The Gaussian Process Regression with all parameters
considered was proved to be the best model that could estimate U10 up to 35 ± 1 ms−1

with the improvement of 35% and 75% inside the rain and at the higher U10 regime
respectively. The study clearly presented the tropical cyclone wind characters that could
now be objectively estimated. The uncertainty of the derived maximum sustained wind
speed intensity could be reduced to 70% compared to that of operational U10. The
storm center location, eye width, radius of inner and outer circle relatively at 50-
knot and 30-knot respectively were distinguishable and well agreed to the reported
tropical cyclone best-track. This study successfully established the fundamental
analysis on the performance of altimetry and radiometry parameters acquired by Jason
mission and integrate them to represent the tropical cyclone environment. The fine-
scale altimeter along-track resolution of extracted tropical cyclone wind characters is
exclusively demonstrated and has become a vital complement to the optical satellite
image observation.
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ABSTRAK

Kelajuan angin permukaan laut (U10) adalah salah satu pemboleh ubah penting
untuk menganalisis siklon tropika dalam membekalkan maklumat intensiti angin yang
tepat kepada agensi bencana. Walau bagaimanapun, keadaan laut yang bergelora
telah menyebabkan U10 yang diukur oleh pelampung tidak boleh diguna pakai.
Walaupun altimeter satelit dapat mengukur U10, algoritma operasi Gourrion telah
direka untuk keadaan laut yang normal. Hubungan laut-atmosfera yang melampau
diburukkan dengan gangguan hujan terhadap gelombang altimeter telah menurunkan
kualiti pengukuran U10 yang diperoleh, justeru, ia kurang dipertimbangkan dalam
kajian siklon tropika. Produk operasi U10 yang hanya melibatkan serakbalik dan
ketinggian gelombang permukaan laut pada jalur Ku sebagai parameter utama adalah
tidak mencukupi untuk menyamai persekitaran siklon yang kompleks. Walaupun rejim
U10 yang tinggi telah tepu pada 20 ms−1 dan keadaan hujan lebat telah mengurangkan
ketepatan U10, parameter berkaitan dengan lautan perlu dipertimbangkan. Oleh itu,
kajian ini bertujuan untuk menganalisis parameter berkaitan lautan dari altimeter
dan menganggarkan ketepatan tinggi U10 untuk pencirian angin siklon tropika.
Kajian ini membentuk hubungan antara tindak balas parameter dari Joint Altimetry
Satellite Oceanography Network (Jason) -2 dan Jason-3 dan U10 yang sepadan dari
Meteorological Operational Satellite (MetOp) -A dan MetOp-B scatterometer dalam
350 siklon tropika yang dirakamkan pada 2015 dan 2018 secara global. Penilaian
kuantitatif terhadap kualiti parameter di altimeter jalur C dan parameter lautan
yang dicerap oleh radiometer iaitu suhu kecerahan pada 18.7, 23.8 dan 34.0 GHz,
kandungan wap air dan kandungan air atmosfera yang berkaitan dengan terhadap
siklon tropika ditunjukkan. Korelasi parameter jalur C terhadap U10 telah mengatasi
korelasi jalur Ku sekurang-kurangnya 29% dan penglibatan parameter dari radiometer
menyumbang kepada pengurangan selisih sebanyak 48%. Model U10 baharu dan
lebih tepat telah dibangunkan menggunakan teknik Regresi Linear Berganda dan
teknik pembelajaran mesin iaitu Rangkaian Neural Buatan, Mesin Vektor Sokongan
dan Regresi Proses Gaussian. Regresi Proses Gaussian dengan semua parameter
yang dipertimbangkan telah terbukti sebagai model yang terbaik untuk mengira U10
sehingga 35 ± 1 ms−1 dengan penambahbaikan sekurang-kurangnya 35% dan 75% di
dalam hujan dan pada rejim U10 yang lebih tinggi. Kajian ini jelas menunjukkan
ciri angin siklon tropika yang kini boleh dikira secara objektif. Ralat keamatan
kelajuan angin maksimum mampan yang diterbitkan boleh dikurangkan kepada 70%
berbanding dengan keamatan dari U10 sedia ada. Lokasi pusat ribut, lebar mata ribut,
jejari bulatan dalam dan luar siklon pada 50-knot dan 30- knot masing-masing boleh
dibezakan dan dipersetujui terhadap landasan terbaik siklon tropika yang dilaporkan.
Kajian ini berjaya mewujudkan analisis asas mengenai prestasi parameter dari altimeter
dan radiometer yang diperoleh oleh satelit Jason dan menghimpunkan parameter ini
untuk menggambarkan persekitaran siklon tropika. Resolusi altimeter berskala halus
sepanjang trek dalam ciri angin siklon tropika telah diterbitkan secara eksklusif dan
menjadi pelengkap utama kepada pemantuan imej satelit optik.
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CHAPTER 1

INTRODUCTION

1.1 Study Background

Tropical cyclone (TC) is among themost catastrophic natural phenomena known

to humankind. This synoptic rotating storm is formed over a tropical region fueled

by warm surface ocean water with a temperature of 26◦C or higher. Tropical cyclone

always brings together abnormally high wind speed of more than 18 ms−1 and intense

rain up to 50 mmhr−1 with the confluence of the extremely low mean sea level pressure

(MSLP) reaching up to 880 mbar. These, in turn, drive the ocean response in the form

of extreme waves, storm surge and rough currents. When an intense tropical cyclone

made landfall, the accompanying storm surge, strong wind, and heavy rains combined

have caused enormous number of fatalities with the highest events were recorded in the

northern Indian Ocean, western North Pacific and western North Atlantic (Needham

et al., 2015). Table 1.1 indicating the Northwestern Pacific, the Northeast Pacific and

the Atlantic Ocean are the most active regions for tropical cyclone activity (Landsea

and Franklin, 2013). For instance, Typhoon Haiyan in 2013 was one of the most

powerful typhoons ever to make landfall in recorded history. This gigantic typhoon

with a diameter of more than 600 km has hit the Philippine archipelago and was

responsible for 6,300 fatalities, 1,061 missing and 28,689 injuries in the aftermath

(Lagmay et al., 2015). With consistently increasing of the sea surface temperature

over the past three decades, future projections based on theory and high-resolution

dynamical model indicated the global average of the tropical cyclone will be shifting

towards stronger intensity with an upward trend of 2 to 11 % by 2100 (Emanuel, 2005;

Elsner et al., 2008; Knutson et al., 2010; Walsh et al., 2016). Even worse, the global

population density in coastal zones is projected to increase from 87 people/km2 in 2000

to 134 people/km2 by 2050 has put more lives at risk by tropical cyclone impacts (Shi

and Singh, 2003).
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Table 1.1 Annual averaged number of tropical cyclone occurrences in global ocean
basins. (Landsea and Franklin, 2013).

Tropical Storm, Wind >17 ms−1 Hurricane, Wind >33 ms−1

Basin Average Percentage (%) Average Percentage (%)
Atlantic 12.1 14.1 6.4 13.6
NE Pacific 16.6 19.3 8.9 19.0
NW Pacific 26.0 30.2 16.5 35.2
North Indian 4.8 5.6 1.5 3.2
SW Indian 9.3 10.8 5.0 10.7
Australia, SE Indian 7.5 8.7 3.6 7.7
Australia, SW Pacific 9.9 11.5 5.2 11.1
Total 86 100 46.9 100

Appreciating the advent of satellite remote sensing, in modern world, there

is no single tropical cyclone that has gone undetected. Since the 1970s, a major

advance in monitoring tropical cyclone from space emerged with the influential work

of the National Oceanic and Atmospheric Administration (NOAA) scientist Vern

Dvorak (Dvorak, 1975). Monitoring based on subjective image (visible and infrared)

pattern recognition technique from geostationary meteorological satellites permits an

estimation of tropical cyclone density using the satellite cloud patterns and brightness

temperaturewhich is commonly known as theDvorakTechnique (DT). TheDTwas later

enhanced by an improved computer-based objective algorithms routine using infrared

satellite image that led to the development of the Objective Dvorak Technique (ODT)

(Velden et al., 1998). However, significant inadequacy of ODT in estimating intensity

below hurricane (33 ms−1) and typhoon (28.5 ms−1) strength with complex manual

interpretation analysis to locate the eye of storm position in the algorithm have resulted

to the development of the Advanced Objective Dvorak Technique (AODT) (Olander

et al., 2004). The AODT has capability to automatically estimate the tropical cyclone

intensity regardless of the lifecycle stages which inspired the later work by Olander

and Velden (2007) in development of fully automated computer-based objective called

AdvancedDvorak Technique (ADT). This technique significantly exceeds the limitation

of all DT variants and continuously serving to provide tropical cyclone intensity

guidance in many tropical cyclone warning centres globally, with minimal regional

modifications (Velden et al., 2006; Knaff et al., 2011). Following the advancement

series of DT, Current Intensity (CI) and Saffir-Simpson Hurricane Scale (SSHS) as

shown in Table 1.2 were often considered as emergency state indicators for response
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team to make necessary action based on the potential damage caused by the landfalling

tropical cyclone.

Implementing continuous work on series of Dvorak techniques, remote sensing

images have been the major sources of information in resolving tropical cyclone

characters. In addition, the low-altitude (3 km) flying aircraft equipped with

dropwindsondes and Stepped Frequency Microwave Radiometer (SFMR) instruments

is regularly deployed to estimate higher density and highly accurate tropical cyclone

parameters specifically over the Atlantic basin. Although MSLP is considered the

most accurate and reliable TC parameter that can be measured, it is more informative

to relate tropical cyclone destructive potential to the maximum wind speed near to

the surface of which the damaging strength of landfall tropical cyclone can be deduced

(Kossin and Velden, 2004). Following this understanding, few works have been done to

develop a wind-pressure relationship for tropical cyclone events (Knaff and Zehr, 2007;

Courtney, 2009; Choi et al., 2016). For this reason, agencies such as Joint Typhoon

WarningCenter (JTWC), the Central PacificHurricaneCenter (CPHC) and theNational

Hurricane Center (NHC) define the tropical cyclone intensity as the 1-min maximum

sustained wind (MSW) at 10 m height above the sea surface (U10) – a difficult quantity

to measure from an aerial satellite image. The MSW and radius of maximum wind

(RMW) collectively resolve the wind radii extent of significant wind speed thresholds

at 34-, 50-, and 64-kt (1 kt = 0.514 ms−1) wind radii which currently used over the

Atlantic. An intensive study by Wang and Wu (2004) has classified tropical cyclone

structure based on wind speed and pressure parameters, including low-level cyclonic

circulation (such as the outermost closed isobar, or radius of MSW 15 ms−1), RMW

and eyewall (symmetric or asymmetric). On contrary to Wang and Wu (2004) who

defined the inner core structure has twice the radius of RMW (which includes deep

eyewall clouds, storm eye and convective asymmetric eyewall), Maclay et al. (2008)

traditionally described the inner core by the eye diameter and RMW only. Although

the wind speed at 10 meter height from the sea surface – called U10 – inside the tropical

cyclone can be estimated, it is highly challenging task to infer the storm structure from

the U10 estimates.
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Even though much information of TC intensity, location and tracks delivered

from various remote sensing measurements to the warning centres, there is little to

no improvement of operational forecasting tropical cyclone intensity (Landsea and

Cangialosi, 2018). The fact that tropical cyclone intensity is having a direct relationship

with the wind speed, it demands this utmost important parameter be primarily and

objectively estimated. Although the previously mentioned technique provides an

acceptable estimation of tropical cyclone intensity, none of these includes any direct

measurement of U10 to estimate the MSW. This is because the images provided by

the satellite have restricted the estimation of highly dynamic sea surface wind speed

beneath the expansive cloud covers inside the extreme tropical cyclone. The limitation

of cloud-top pattern and infrared imagery in the series of DT has led Quilfen et al.

(2010) to conclude and reconsider that aircraft reconnaissance and satellite microwave

data are crucial and providing complement observations for wind speed parameter.

To illustrate this capability, several studies had derived U10 from microwave

radiometer (Bessho et al., 2006; Sriver et al., 2008), scatterometer (Chavas and

Emanuel, 2010; Chan and Chan, 2012; Klotz and Jiang, 2016; Liu and Tang, 2016)

and altimeter (Quilfen et al., 2006; Carrère et al., 2009) to analyse the tropical cyclone

characters. Both active and passive microwave analyses had shown promising results to

be assimilated and operationally used. However, the challenges of retrieving the wind

speed from these sensors are consistently restricted by the condition of high U10 (> 15

ms−1) in which the sea surface was no longer simply related to the wind. Additional

attenuation of the backscatter induced by the precipitation inside the tropical cyclone

had reduced the accuracy of the reflected backscatter. With the ongoing development of

more accurateU10 retrieval algorithms for radiometer (Mai et al., 2016;Yin et al., 2017),

scatterometer (Fore et al., 2012; Alsweiss et al., 2014; Stiles et al., 2014) and altimeter

(Quilfen et al., 2011; Gu et al., 2011; Qin et al., 2014), this can lead to the potential

synergy between active and passive measurements to determine the tropical cyclone

wind character eventually. Polar-orbiting radiometer, scatterometer and altimeter are

potential in assisting and providing vital U10 information under extreme environment

such as tropical cyclone globally.
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Table 1.2 Dvorak current intensity chart for tropical cyclone (NOAA).
Current Mean Wind Speed Mean Sea Level Pressure Saffir

Intensity (CI) (knots) (ms−1) Atlantic (mb) Pacific (mb) Simpson Category
1.0 25 13 - - -
1.5 25 13 - - -
2.0 30 15 1009 1000 -
2.5 35 18 1005 997 -
3.0 45 23 1000 991 -
3.5 55 28 994 984 -
4.0 65 33 987 976 1 (64-83 kts)
4.5 77 40 979 966 2 (84-96 kts)
5.0 90 46 970 954 2 (84-96 kts)
5.5 102 52 960 941 3 (97-113 kts)
6.0 115 59 948 927 4 (114-135 kts)
6.5 127 65 935 914
7.0 140 72 921 898
7.5 155 80 906 879 5 (136+kts)
8.0 170 87 890 858

1.2 Research Motivations

The availability of in-situ (e.g., anemometer on buoy) U10 measurement is

scarce and unfeasible in almost all basins for tropical cyclone analysis. In lieu of in-situ

observations, visible and infrared images provide synoptic and temporal information

for monitoring and tracking the tropical cyclone. Since the early 1970s, the satellite DT

persistently exploits the satellite cloud image pattern (e.g., eye, shear, banded, central

dense overcast) and infrared cloud-top temperature to estimate the tropical cyclone

CI numbers and trajectory. Contradicting to tropical cyclone tracking, the intensity

estimates have not shown significant progress for over a decade (Rappaport et al.,

2009). There is no reduction of intensity forecast error has been recorded for the past

30 years, mainly due to the low accuracy U10 estimation in tropical cyclone (DeMaria

et al., 2014). The higher atmospheric level measurement from optical images has little

relevance to oceanography for which the U10 that interacts with the ocean’s surface.

This is problematic to the spaceborne optical measurement which primarily covered

with expansive cloud shield leading to masking important data within and beneath the

cloud top layer and inheriting the different types of errors particularly from unfavorable

weather condition. Kotal et al. (2019) have shown that misestimation of tropical

cyclone intensity from cloud tracking corresponds to the U10 error of 10 to 15 ms−1 (20

to 30-kt). This is unacceptable considering the difference in RMW extent thresholds
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used by the agency to classify tropical cyclone strength from initial stage (30-kt) to

early mature stage (50-kt) that must be lower than the abovementioned errors. Thus,

it is very important to have a robust objective method which defines the “true wind”

by a reflected tracer representing the situation at the sea surface level to be adopted to

achieve more accurate tropical cyclone wind analysis.

The fact that microwave sensors are nearly weather independent and having

strong ocean interaction in signal thus considered as the alternative in tropical cyclone

U10 measurement. Microwave radiometer such as WindSat and AMSR-2 on board

of Coriolis and GCOM-W satellite respectively has demonstrated that the brightness

temperature (TB) can retrieve tropical ocean surface U10 (Kim and Lyzenga, 2008; Yao

et al., 2015; Hong et al., 2015). A study conducted by Yin et al. (2017) has successfully

developed an algorithm to retrieve wind speed above 20 ms−1 by using 6.8- and 10.7-

GHz brightness temperature at great accuracy. However, Yang et al. (2014b) have

reported that microwave radiometer resolution of 50 km x 70 km is often much coarser

to present the fine-scale tropical cyclone structures thus determine the storm’s eye and

the RMW. Hence, it is best to have higher spatial-resolution and active microwave

measurement to retrieve dynamic tropical cyclone wind speed.

On the other hand, the backscatter signal emitted by an active microwave sensor

has direct contact with the ocean surface roughness that was in equilibrium induced to

the wind. Undeniable strength of daily radar scatterometer observation to operationally

measure the ocean surface wind at speed of 1.5 ms−1 and 20◦ directional accuracy has

proved to be the vital element in estimating the TC intensity (Quilfen et al., 2007; Liu

and Tang, 2016). Take MetOp-A and MetOp-B scatterometer for instance, retrieving

wind speed with nominal 12.5 km spatial resolution with the developed model function

has consistently underestimated wind speed above 30 ms−1 (Fore et al., 2012; Stiles

et al., 2014; Alsweiss et al., 2014), hence necessary calibration had been considered

(Chou et al., 2013). Great attention on satellite scatterometer shows promising progress

in tropical cyclone wind speed study and similar efforts should also be applied to the

altimeter and radiometer which can offer more accurate wind speed inside this extreme

event.
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The polar orbiting altimeter has taken little attention in TC study because of the

information in narrow instantaneous field of view (IFOV)was limited to represent larger

storm extent. Yet, the altimeter satellite such as Jason-2 and Jason-3 (Jasons) has higher

along-track resolution to allow fine-scale tropical cyclone U10 profile presentation.

Instead of few studies are working on resolving the outer-core of low-to-moderate U10

(Quilfen et al., 2006; Carrère et al., 2009), limited study focused on inner-core of

higher U10 profile estimation. Motivated by the remarkable altimeter derived high U10

algorithm developed by Young (1993), the later developed algorithms have surprisingly

estimated winds up to 50 ms−1 (Gu et al., 2011; Quilfen et al., 2011; Qin et al., 2014)

but the rain contamination to the signal was not accounted. Furthermore, the altimeter

derived U10 variable is accompanied by an extra sea state condition information at 5 to

10 km along-track spatial resolution can be beneficial in investigating extreme dynamic

variation (Quilfen et al., 2006; Li et al., 2018).

Most altimeters have dual frequency radar and additional radiometer onboard

allowing comprehensive information on atmospheric response (Quartly, 1997;

Tournadre et al., 2009; Ali et al., 2015). Such information could enhance understanding

on atmospheric related parameters and thus improve the accuracy of estimated U10. To

develop all-inclusive algorithm to fit with all altimeter missions is not a straightforward

task particularly where different satellite mission provides various number of additional

parameters at different frequencies. However, no study has established the fundamental

basis of incorporating all these parameters to estimate U10 even in a single altimeter

mission. Most studies solely focus on development of new model based on collocated

higher U10 reference regardless of critical analysis about the complementation of

onboard radiometric parameters (Quilfen et al., 2010; Qin et al., 2014). Therefore,

this study motivates assessment of altimeter derived parameters for exploiting their

advantages in U10 estimation inside tropical cyclone environment.

1.3 Problem Statements

The limitation of the optical images fromGeostationaryMeteorological Satellite

(GMS) is their inability to provide information on the situation occurring beneath the

cloud cover. The DT tracks cloud patterns and features at higher altitude to estimate
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the U10 which has led to major uncertainty in classifying the tropical cyclone intensity

(Emanuel and Zhang, 2016). Although satellite altimeters can provide global U10

measurement at accuracy of 1.5 ms−1 (Ribal and Young, 2019), the application was

only limited to a neutral atmospheric condition. Studies reported that the inverse

physical and empirical relationship between the Jasons Ku-band backscatter to U10

can only hold for measurement up to 20 ms−1 because of the models were designed

only for normal atmospheric stability and rain-free environment (Abdalla, 2012; Ribal

and Young, 2019). The models are however unreliable during off-normal condition

such as in the tropical cyclone, where the U10 accuracy is significantly reduced due to

complex atmospheric interaction (Chavas et al., 2017). For that reason, some studies

suggested to explore conditions that significantly impaired the altimeter signal and

remarkably undermined the accuracy of U10 product especially at the speed greater

than 20 ms−1 (Zhao and Toba, 2003; Young et al., 2017). Estimating U10 in such

extreme environment of tropical cyclone is exceptionally difficult considering rapid

variation in low-to-high regimes with additional signal attenuation from various rain

rate episodes (Carrère et al., 2009).

Tropical cyclone permits complex ocean-atmospheric relation and thus physical

correlations established in normal condition were no longer valid. Operational models

commonly developed from Ku-band related parameters were not providing inadequate

information of the real tropical cyclone. For instance, the increasing U10 induces

saturation state at 15 ms−1 despite higher sea state roughness is available (Gourrion

et al., 2002; Abdalla, 2012) and the additional rain contamination superimposed in the

backscatter is almost unconsidered and left without correction (Young, 1993; Quilfen

et al., 2011). Thus, this has led the existing Jasons U10 algorithms to become unreliable.

Although Ku-band backscatter shows great sensitivity to higher U10, other frequency

lower than Ku-band was suggested to be less affected by the rain (Quartly, 2015).

TheU10 estimation should fully utilize the advantage of dual frequency altimeter

data to deal with complex ocean-atmosphere conditions and leverage the limitation

provided by the single Ku-band estimation model. Several other surpluses including

the ocean geophysical and backscatter related parameters simultaneously observed by

multiple sensors onboard have potential to describe this complex TC environment. Yet,

8



integrating those multiple parameters is not straightforward because of the complex

multi-relationship established between them (Ali et al., 2015). There is no clear

justification and immature physical relations between each parameter in emulating the

tropical cyclone environment. Poor understanding of the relationship between remotely

sensed ocean parameters and U10 in this environment has led to 5 to 14% uncertainty

(Powell, 2010). Thus, the comprehensive understanding about parameters relationship

to U10 is needed before a new model can be developed.

Among all parameters studied, the best parameter combination in developing

a new U10 model is uncertain. The parameters might contain redundant information,

if worse, can degrade the quality of the model when unnecessary higher dimensions

are considered (Jiang et al., 2020; Wang et al., 2020). When decided, incorporating

those parameters into a single model is another issue. Not all parameters showing

a similar perfect linear trend to the U10. Studies suggested that even the principal

backscatter could modify itself to an exponential form when considering wider U10

range (>20 ms−1) (Quilfen et al., 2011). Radiometric quasi-linear connections to

the U10 and additional inter-parameter relationships among the inputs are another

troublesome aspect need to be reviewed (Bushair and Gairola, 2019; Varma et al.,

2020). To contemplate these concerns, a comprehensive and intelligent technique is

required to integrate all possible complex relationships. Furthermore, in a real tropical

cyclone, the attributes of U10 and all parameters are unique and vary drastically to

different event and hourly period interval (McTaggart-Cowan et al., 2007). A developed

model should be smart enough to sensitively identify slight variations and adjusting

itself by compromising all the combined parameters in inversing the tropical cyclone

U10. Although the conventional regression technique is easy (Barhmi et al., 2019;

Casella, 2019), fitting those parameters to a single line model equation might appear

to be improper. More advanced computational technique is required when considering

complex conditions. In contrast to the conventional regression, the developed model

should also meet model generalization and robustness criteria when dealing with rain

contamination in high U10 condition and when applying to unique and independent

tropical cyclone scenario.
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The model should provide continuous depiction of sensible U10 approximation

pattern especially in the region close to the tropical cyclone centre and consequently

feasible to study wind characters from altimeter fine-scale resolution. Currently the

cloud images, however, give no indication about the real condition at sea surface

level, thus neglecting sea state information to be accounted for lifecycle analysis (Zeng

et al., 2010). The scatterometer with nominal spatial resolution of 25 x 25 km2

experienced U10 underestimation in all tropical cyclone areas and the largest difference

was found at near the eyewall section (Chou et al., 2013). Higher Jasons along-track

resolution can offer finer scale of near the tropical cyclone centre where very dynamic

ocean-atmospheric conditions are always exist (Scharroo et al., 2005). With existing

operational U10 product despair specifically inside the rain and high U10 range, no

convincing attempt has been made. Therefore, it is recommended that continuous work

needs to be done in exploiting active microwave observation such as Jason-2 and Jason-

3 altimeters, in estimating and establishing complex ocean-atmosphere relationships

with more accurate tropical cyclone wind characters.

1.3.1 Research Questions

Based on the abovementioned problem statements, four research questions are

designed.

(i) What is the limitation of the current operational satellite altimeter and

scatterometer product in representing the U10 inside the tropical cyclone

conditions??

(ii) Towhat extent the simultaneous satellite altimeter and radiometer derived ocean

parameters can emulate the real U10 relationships in a complex tropical cyclone

condition?

(iii) Which combination of satellite altimeter and radiometer related parameters

performed at best with more intelligent regression technique for highly accurate

tropical cyclone U10 derivation?

(iv) How the improvedU10 estimates help in deducing instantaneous tropical cyclone

wind characters?
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1.3.2 Aim and Objectives

This study aims to analyse multiple altimeter ocean-related parameters and

numerically estimate highly accurate U10 for describing the tropical cyclone wind

characteristics. Therefore, to achieve the aim, four main specific objectives are

designed.

(i) To assess the quality of operational U10 products measured from MetOps

scatterometer and Jasons altimeter in tropical cyclone environment.

(ii) To establish the relationships between altimeter and radiometer derived ocean

parameters to the U10 in the tropical cyclone condition.

(iii) To develop and validate the newU10 estimationmodel from Jason-2 and Jason-3

altimeter measurements using machine learning regression techniques.

(iv) To derive the tropical cyclone wind characters from the new U10 model and

compare their pattern agreement to the verified best track report.

1.4 Scope of Study

Tropical cyclone events that reached at least tropical storm intensity occurred

in 2015 to 2018 globally were used for this study. As this study is not intended to

explore the climate variability of the tropical cyclone phenomenon globally, these 4-year

observations are considered sufficient to comprehend the technical aspect of altimeter

satellite in modelling tropical cyclone U10 within the diverse geographical influences of

natural phenomena. Furthermore there are several most intense tropical cyclone events

recorded within this period such as Hurricane Maria 2017 and Typhoon Mangkhut

2018 that directly hit Caribbean’s countries and the Philippines to the wider South

China Sea’s countries respectively. Despite that all ocean’s basins were considered,

this study committed to demonstrate and extensively discuss the tropical cyclone events

within the regions of the Pacific and Atlantic oceans. It is important to note that

this study only investigates tropical cyclone with at least 30-km distance from land.

The observation involved isolates this criterion to preserve good quality of ocean-
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atmospheric interactions by discard land contamination to the altimetric signal and

various land structure led to complex atmospheric interaction.

As the most intense tropical cyclone category is called Typhoon in Northwest

Pacific and Hurricane in Northeast Pacific and Atlantic, these are the top three regions

that actively hit by the tropical cyclone accordingly. Thus, more details discussion

and examples will be focused on these regions The annual reports released by the

JMA (JMA, 2017, 2018) shows that Northwest Pacific has the highest concentration

of tropical cyclone activity with 26 and 27 of tropical storm (TS) intensity or higher

observed in 2016 and 2017 respectively, exceeding the climatological normal frequency

of 25.6. For Northeast Pacific (Kimberlain, 2017) and Atlantic (Beven, 2017), the

occurrences of tropical storm strength reported by NHC in 2016 was 21 and 15 in

comparison to their climatological normal frequency of 15 and 12 respectively. A

study reported that typhoons could occur in any season, unlike hurricanes which happen

almost entirely from June to November. However, both typhoons and hurricanes take

place most frequently in the late summer and during the fall seasons where heat energy

budget stored at maximum inside the earth’s ocean (Pun et al., 2011; D’ASARO et al.,

2011). This study includes all events developed within the global main basins at

the latitude of 0◦ to 45◦N/S with their intensity category officially published by the

tropical cyclone warning centre (TCWC). However, a major discussion highlighted the

events that have been investigated thoroughly by the scientific community with at least

sustained significantly in the typhoon/hurricane category.

The advantage of the polar-orbiting satellite altimeter is its global coverage

which includes all ocean basins covering all active tropical cyclone regions and events.

Asmost of the altimeter satellite is nowoperating at the same dualKu/C frequency band,

this study only focuses on themost discussed altimeter derived parameters from Jason-2

and Jason-3 missions (Jasons) to develop the fundamental understanding. High quality

ocean’s data assurance enables Jasons to be used extensively as benchmark for wider

altimeter’s application fields even to extreme events such as tsunami (Gower, 2005),

extreme waves (Woo and Park, 2021), extreme wind (Li et al., 2017), and tropical

cyclone (Quilfen et al., 2006). This study presumed that the basic knowledge unfolding

through this study can be used as the underlying foundation for other altimeter satellites.
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The operational U10 product was initially assessed for its applicability and compared

along with the developed models. The Level-1B of research quality Geophysical Data

Record (GDR) products for Jason-2 and Jason-3, that contain quality assured derived

ocean parameters were used as a core dataset. At this level, the dataset is presented

in geolocation along track swath, corrected systematic error, calibrated measurements

to all their predecessor mission programs, and has been converted to sensor units such

as backscatter in decibel (dB) and brightness temperature in Kelvin (K). The random

error existed is anticipated caused by the complex atmospheric interactions inside the

tropical cyclone, in which, this is the core data investigate throughout this study.

Level-2 ocean surface wind vector data products from MetOp-A and MetOp-B

scatterometers (MetOps) were used only to validate all Jasons’s derived parameters

observed in the tropical cyclone environment. Dataset at this level has been processed

into geophysical product, but retaining its Level-1 spatio-temporal resolutions, with

several corrections imposed such as atmospheric emission and attenuation caused

by water vapor. Many studies demonstrated this product exhibits high wind vector

quality even in extreme tropical cyclone environment (Zabolotskikh et al., 2014a;

Tamizi et al., 2020). This dataset was first calibrated following Chou et al. (2013)

to the dropwindsonde measurement inside the tropical cyclone before it was used as

the reference in building the U10 model. Apart from the altimetric dual-frequency

backscatter, this study also assessed the dual-frequency significant waves height,

radiometric brightness temperatures and its derived water content in relation to tropical

cyclone U10 with reference from calibrated MetOps. These parameters are anticipated

to play a significant contribution in providing enough information to emulate the real

complex tropical cyclone environment, much needed in developing the U10 model

process. Even the HWind (considered as the best quality of U10 in TC) is available

only for several TC cases, this data was limited and only used as a trend validation to

the developed Jasons U10 models.

The conventional regression technique was applied to give simple indication

about the relationship of altimetry parameter and only used for pre-assessment. The

primary focus is on several machine learning (ML) approaches in developing the

tropical cyclone U10 model. The complex multi-relation parameters that existed are
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anticipated to provide an ill-posed solution to the conventional technique, thus more

advanced non-parametricmodellingwas considered. These include the implementation

of Artificial Neural Network (ANN), Support Vector Machine (SVM), and Gaussian

Process Regression (GPR). This study not intended to delve thoroughly into each ML

hyperparameter setup in computer analysis perspective, butmore focus on the algorithm

comparison based on the interaction of altimetry parameters towards complex tropical

cyclone condition. The applicability and unique advantage of the derived tropical

cyclone characters from the Jasons’ U10 profile is the major highlight. For this study,

the estimated characters of the tropical cyclone center location, maximum sustained

wind, storm’s radius and the radial extend of tropical cyclone size are anticipated and is

one of the novel altimeter U10 studies for tropical cyclone ever conducted. To compare

the estimated tropical cyclone characters, the best-track (TCBT) reports from different

tropical cyclone warning agency (e.g., NHC, JMA) are used for validation (Kruk et al.,

2010).

In managing a huge amount of numeric data and conducting complex

computation scientific study, MATLAB language environment is embarked as the main

processing platform. MATLAB is a programming platform that employs matrix-based

language to allow most expression and computational mathematics. All non-imaging

remote sensing data contains a large matrix dataset that can be easily handled in the

MATLAB environment makes this processing software the core element as this study

progresses. This study also implemented the Machine Learning and Deep Learning

Toolbox developed by MathWorks purposely for the MATLAB environment. All the

machine learning processing frameworks used were computationally stable with high

quality guaranteed and thus left for further exploration on their multiple techniques

comparison in developing the best tropical cyclone U10 model. Finally, all figures

presented in this study were primarily produced by the MATLAB software.

1.5 Significance of the Study

Monitoring tropical cyclones is amajor application ofweather satellites. Almost

all operational centres worldwide depend on remote sensing satellite observations for

monitoring and predicting tropical cyclone trajectory and strength intensity. The work
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on monitoring this extremely disastrous event has involved many satellite platforms

with different characteristics consideration: type of sensor, spatial resolution and orbital

parameter (e.g., altitude, inclination and swath). Focusing on the open-ocean state, this

study is anticipated to prove the concept of estimating a wide range of U10 at near sea

surface level under undesirably extreme tropical cyclone conditions, which no other

satellites can provide except altimeter and scatterometer. Therefore, the finding can

provide sea surface information that is always negligence and absent in satellite optical

data with expansive clouds images. The already available missions can now provide an

objectively estimated and more reliable U10, which is at best acquired by flying aircraft.

All regions now could utilize this product despite spending high costs and embracing

dangerous risks from aircraft missions, which for long become the golden fortune

only for NHC, U.S. Besides, the established product should also be considered as the

replacement for aircraft observations incorporated into HWind U10 analysis (which

considered as in-situ U10 observation in tropical cyclone) that later will be available to

not only NHC’s region, but all tropical cyclone events globally.

The polar-orbiting satellite acquisition scheme of microwave sensors allows this

processing framework to be implemented consistently at all regions once established.

Unlike images from geostationary satellites, the analysis framework was developed and

only applicable at regional level. With the similar polar-orbiting acquisition technique,

future satellite missions have committed to launch multi-sensors of microwave

radiometer, scatterometer and altimeter installed on the same platform such as Hai-

Yang series (from HY-2A to HY-2H). The successor of Jason series mission called

Sentinel-6 having almost similar sensors specification (cooperation between NASA

and EUMETSAT), was launched in November 2020 and is expected to operate at least

until 2032 (Scharroo et al., 2016; Donlon et al., 2021). This study could provide

basic fundamental knowledge of the sensors’ applicability in extreme environment to

be ventured over the next decade.

Besides, the scenario of increasing tropical cyclone intensity under future

climate change poses the coastal population and environment to be more vulnerable

towards this deadly disaster (Moon et al., 2019). The near real-time intensity estimates

from the satellites play a vital element for all tropical cyclone warning centers in
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advising the public, government and emergency response team. This study is projected

to provide complementary TCBT information of the tropical cyclone size and characters

based on the estimates JasonsU10 and support the agencies to better consult the response

team of the incoming tropical cyclone hazard. False and inaccurate alarms can result in

thousands of dollars and hundreds of man-hours wasted in needless storm preparation

if overestimated, or on the other hand, can lead to unexpected storm impacts due to an

unanticipated landfall and jeopardizing lives. Thus, improved accuracy of U10 retrieval

to estimate tropical cyclone characters can reduce needless evacuation and increase the

confidence in the advance warning system.

As climate change is now a global concern, the tropical cyclone with greater

intensity becoming the new emerging risk to several regions such as the South China

Sea (Chen et al., 2017, 2019a; Shao et al., 2019). The tail-wind effect with heavy

orographic rain is occasionally felt by the north Sabah, east coast of peninsularMalaysia,

and along the Titiwangsa Mountain range when the tropical cyclone paths move into

their offshore stretch (Tan et al., 2011). This can trigger several cascading multi-

hazard consequences, such as landslides and debris flows, as well as to the wider

water pollution, sanitation services and health sectors if the affected city is not resilient

enough to this new emerging risk (Wdowinski et al., 2017; Purwar et al., 2020).

Hence, this study aims to extend its contribution to the Sustainable Development Goal

(SDG), a strategic plan of the United Nation (UN) Development Program (UNDP) for

a better and more sustainable future for all. The technical guideline of handling more

accurate U10 in tropical cyclone from long historic altimeter data record is expected

to provide additional information to environmentalist, climatologist and government’s

policy makers to engage the challenges outlined in SDG Goal 13: Climate action, as

demonstrated in several studies (Burby, 2006; Sharma and Patwardhan, 2008; Barbier,

2015). The more accurate tropical cyclone information is also anticipated to help

agencies analyze the human impact of geophysical disasters, which are 91% climate-

related that have killed more than 1.3 million people and left 4.4 billion injured over the

past two decades (Nations, 2015). Besides, this study is foreseen to work together in

Sendai Framework for Disaster Risk Reduction (DRR) 2015 – 2030 under the Priorities

for Action: Priority 1 – Understanding disaster risk (UNISDR, 2015). This study

provides science-based information to the agency in understanding and managing the
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exposure and vulnerability of humans and assets towards DRR caused by the tropical

cyclone.

1.6 Brief of Thesis Structure

This thesis consists of five main chapters. Chapter 1 is an introduction

that provides a background of the proposed study along with motivation, problem

statements, objectives, research questions, scopes and significances of this study.

Chapter 2 will cover the literature review of the related topics and emphasize the

application and current limitation of polar-orbiting altimeter satellites forU10 estimation

in tropical cyclone conditions. The discussion also includes the physical understanding

of selected parameters concerning U10 inside tropical cyclone and a previous attempt

at machine learning applications. Chapter 3 will discuss in detail the proposed

methodology which will be used in this study including, satellites data descriptions,

events selection, data filtering, data quality control, data pre-processing, and theoretical

machine learning frameworks. All selected results, analysis and discussion are put

together in Chapter 4, while Chapter 5 overlay the conclusions and recommendations

of the study.
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