TECHNO-ECONOMICS OF RAINWATER HARVESTING TECHNOLOGY FOR DOMESTIC USAGE AND COOLING

ABDURAHIM ALMABRUK SHATEWI

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of engineering (Mechanical Engineering)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > MAY 2008

DEDICATION

Who Always Pushes Me Forward	My Father.
Who Takes Care of Me Growing Up	My Mother.
Whom Take My Success As Guide For Their Succ	ess My Brothers.
Who Smiles For My Smile	My Wife.
Who Gave Me the Knowledge	My Lecturers.
Whom Joined Me This Way My	y Classmates.

Who Ever Supported Me To Accumulate This Research. . ! ! !

Abdurahim Almabruk Shatewi

ACKNOWLEDGEMENTS

First I wish to express my gratitude and greats to *Allah* to facilitate joining this interesting course in **University Technology Malaysia**. Second, I wish to express my appreciation and big thanks to *Associate Professor Dr. Sanjayan Velautham* for his guidance and concern for this project for a better research performance. It was a nice experience to have him as my project supervisor. Thirdly, I wish to express my thanks to *Kolej 10 Management* for their concern. And, I wish to thank *Malaysian Metrology Department PJ* for their corporation. Finally, I wish to express my thanks to *William Solomon Pakinathan* for his assistance during this research.

Abdurahim Almabruk Shatewi

ABSTRAK

Kajian yang telah dijalankan ini adalah berkenaan penggunaan air hujan sebagai bekalan air tambahan bagi kawasan penempatan. Kajian ini menerangkan penggunaan sistem pengumpulan air hujan yang boleh diaplikasikan bagi kawasan penempatan dengan tambahan sistem penyejuk pasif (passive cooling system). Analisa telah dijalankan dengan membina pengkalan data air hujan bagi kawasan kajian tersebut. Penggunaan air bulanan bagi isirumah telah dianggarkan bagi mengenal pasti kapasiti/ukuran untuk sistem pengumpulan air hujan tersebut. Analisa yang telah dijalankan ini seterusnya boleh digunakan bagi mendapatkan kapasiti optima sistem pengumpulan air hujan itu. Satu sistem penyejuk pasif yang menggunakan air hujan sebagai agen penyejuk bertindak untuk mengurangkan suhu dalaman. Sistem penyejuk pasif ini akan menyumbang kepada pengurangan suhu dalaman dan kapasiti penyejukan sistem penghawa dingin yang seterusnya mengurangkan penggunaan tenaga elektrik secara keseluruhannya. Satu analisa juga akan dijalankan keatas sistem *prototype* bagi mendapatkan kos sebenar dari segi ekonomi yang boleh diguna pakai bagi kawasan penempatan. Kajian dari segi ekonomi ini juga merangkumi penjimatan untuk bil air dan elektrik. Penjimatan ini seterusnya boleh digunakan bagi mendapatkan tempoh bayaran balik yang mudah bagi pelaburan permulaan untuk membina sistem tersebut. Dari kajian ini kita boleh membuat perbandingan dan selanjutnya dapat menentukan kebolehupayaan untuk menjalankan kajian ini dari segi penjimatan kewangan dan aplikasi jangka masa panjang bagi sumber air.

ABSTRACT

The study on the use of rainwater as a supplementary water supply for residential dwellings was conducted. This study elaborates rainwater harvesting systems that can be applied at residential dwellings with an additional passive cooling system. The analysis was conducted by building a database of rainfall in the test area. The monthly household use was estimated to determine the sizing for the rainwater harvesting system. This analysis was then used to determine the optimum size of the overall rainwater harvesting system. A passive cooling system using rainwater as the cooling agent was designed to reduce indoor temperatures. This passive cooling would contribute to the reduction of the indoor temperatures and the cooling load of the air conditioning system, which will in turn, reduces electrical energy consumption. A proposed cost analysis will be conducted on the prototype system to determine its economic feasibility to be applied at residential dwellings. This economic review will also included the savings from water and electricity bills. These savings will be used to determine the simple payback period on the initial investment to build the systems. From the study we can make some comparisons and conclude the viability of implementing the system in terms of monetary savings and the long term application of a sustainable and renewable source of water.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	i
	DEDICATION	ii
	ACKNOWLEDGEMENTS	iii
	ABSTRACT	iv
	ABSTRAK	V
	TABLE OF CONTENTS	vi
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF SYMBOLS	xvi
1	INTRODUCTION	1
	1.1 Introduction	1
	1.1.1 Brief History	2
	1.1.2 Cooling Energy Consumption	2
	1.2 Problem Statement	4
	1.3 Aim And Objectives Of Study	4
	1.4 Scope Of Study	5
2	LITERATURE REVIEW	6
	2.1 Introduction	6
	2.2 Rainfall Runoff Available	7
	2.3 Harvested Rainwater Quality	7

2.4	Rainwa	ter Harv	esting System	8
	2.4.1	Tank		9
	2.4.2	First Flu	ush Diverters	10
	2.4.3	Leaf Sc	reen	11
2.5	Passive	Cooling	Techniques	12
2.6	Evapor	ative Co	oling To Supply Cool Air	13
	2.6.1	Evapora	ative Cooling Systems	14
		2.6.1.1	Direct Evaporative System	14
		2.6.1.2	Indirect Evaporative Cooler	14
		2.6.1.3	Indirect-Direct Evaporative Cooler	15
	2.6.2	Evapora	ating Cooling Advantages	16
2.7	Ventila	ation To	Remove The Heat	17
	2.7.1	Natural	Ventilation	17
		2.7.1.1	Fan Ventilation	17
		2.7.1.2	Attic And Roof Ventilation	17
		2.7.1.3	Solar Chimneys	18
2.8	Block	Heat Fro	m Entering The Building	18
	2.8.1	Shading	5	19
		2.8.1.1	Exterior Shading	19
		2.8.1.2	Interior Shading	20
	2.8.2	Roof Ir	sulation	20
		2.8.2.1	Painting By White Cement	26
		2.8.2.2	Vermiculite-Cement Thermal Insulation	26
		2.8.2.3	Roof Pond Cooling And Heating	26
		2.8.2.4	Evaporative Cooling	26
		2.8.2.5	Broken White Glazed Tile Pieces Stuck	27
			Over The Roof	_,
			Air Void Thermal Insulation on the roof	27
		2.8.2.7	Sania Thermal Insulation	27

3	RESEARCH METHODOLOGY	29
	3.1 Introduction	29
	3.2 A Selection Case Study	30
	3.3 Rainwater Harvesting System Design	31
	3.4 Passive Cooling System Design (Spray Water On The	32
	Roof)3.5 Fabrication And Installation Of Both Systems Prototype	33
	3.6 Prototype Testing And Checking	33
	3.7 Experimental Data Acquisitions	33
	3.7.1 Rainwater Harvesting System Data	33
	3.7.2 Spray Water On The Roof System Data	34
	3.8 Result Analysis Of Technical Data	34
4	RAINWATER HARVESTING DESING CONCEPTION AND CALCULATIONS	35
	4.1 Introduction	35
	4.2 The Conception Of Design	35
	4.2.1 Catchment Surface	36
	4.2.1.1 Metal	37
	4.2.1.2 Clay/Concrete Tile	37
	4.2.1.3 Composite Or Asphalt Shingle	38
	4.2.1.4 Wood Shingle, Tar, And Gravel	38
	4.2.2 The Amount Of Rainwater	38
	4.2.3 Conveyance Systems (Gutters And Downspouts)	39
	4.2.3.1 Gutters	40
	4.2.3.2 Downspouts	41
	4.2.4 Roof Wash (Leaf Screens And First-Flush Diverters)	41
	4.2.4.1 Leaf Screens	41
	4.2.4.2 First-Flush Diverters	42
	4.2.5 Storage Tanks	43

4.2.5.1 Storage Tank Basics	44
4.3 Rain Water Harvesting Calculations And Fabrication	44
4.3.1 Catchment Surface	46
4.3.2 Conveyance Systems (Gutters And Downspouts)	47
4.3.2.1 Gutters	47
4.3.2.2 Downspouts	47
4.3.3 Roof Wash (Leaf Screens And First-Flush	49
4.3.3.1 Leaf Screen	49
4.3.3.2 First Flush Diverter	50
4.3.4 The Tank	53
4.3.4.1 The Tank Volume Calculation	54
4.3.5 The Distribution Pipes	55
4.3.6 The Pump	55
4.3.7 The Water Spry On The Roof Pipe	56
4.3.7.1 First Trail	57
4.3.7.2 Second Trail	59
RESULTS AND ANALYSIS	61
5.1 Introduction	61
5.2 Rainwater Harvesting	61
5.2.1 Rainwater Harvesting System	61
5.2.2 The Harvested Rainwater	63
5.2.3 Harvested rainwater quality	66
5.3 The Passive Cooling System (Spray Water On The Roof)	67
5.3.1 The Experimental Results Of Temperature	70
Distribution	70
5.3.1.1 Dry Test	70
5.3.1.2 Continued Spray Water On The Roof	73
5.3.1.3 Intermittent Spray Water On The Roof	77

5

		5.3.2 Passive cooling results analysis	82
		5.3.2.1 Water tank temperature	82
		5.3.2.2 Roof temperature	83
		5.3.2.3 Room temperature	85
		5.3.3 Water losses during the passive cooling tests	86
		5.3.4 Actual pump working duration time	87
6	TE	CHNO-ECONOMICS ANALYSIS	90
	6.1	Introduction	90
	6.2	Techno-Economics of Rainwater Harvesting	90
		6.2.1 Estimation of water demand	90
		6.2.2 The harvested rainwater amount by a house roof	91
	6.3	Techno-Economics of Cooling By Spray The Water On	95
		The Roof 6.3.1 The electrical consumption of the water pump and	95
		the water losses6.3.2 Heat gain reduction through the roof	96
		6.3.3 Passive cooling system water amount needed	101
		6.3.4 The cost of the system equipment and installation	101
	6.4		101
	0.4	6.4.1 Harvested rainwater saving	102
		6.4.2 The saving due to the cooling by intermittent spray	102
		water on the roof6.4.3 The cost of the system equipment and installation for actual house	103
7	CO	DNCLUSION AND RECUMENDATION	105
	7.1	Conclusion	105
	7.2	Recommendation	106
REFERENC	CES		107
Appendices	A-	- C	110-117

LIST OF TABLES

TABLE NO.	TABLE TITLE	PAGE
2.1	Harvested rainwater quality results	8
2.2	Performance of different passive techniques	28
4.1	Runoff coefficients based on surface type	39
5.1	Theoretical and practical harvested rainwater for few days	64
5.2	Two harvested rainwater samples analysis	66
5.3	Water losses	87
5.4	Pump actual working duration time	88
5.5	comparison between continued sprayed and intermittent methods	88
6.1	Indoor Water Demand	91
6.2	Outdoor Water Demand	91
6.3	Pump electrical consumption and water losses for all the tests	96
6.4	Roof and Room temperatures for both Dry and Wet roofs	98
6.5	System cost details	102
6.6	Compulsory parts cost details	103

LIST OF FIGURES

TABLE NO.	TITLE	PAGE
2.1	Min and Max Rainfall Data for Johor	7
2.2	Rainwater Harvesting System	9
2.3	Polypropylene and Galvanized Steel Tanks	10
2.4	Stand Pipe First Flush Diverter with Ball Valve	11
2.5	Leaf Screen	12
2.6	Direct evaporative system	14
2.7	Indirect evaporative cooler	15
2.8	Indirect-direct evaporative cooler	16
2.9	Types of roof vents.	18
2.10	Summer and winter roof overhang	19
2.11	Bar roof with out any treatment	21
2.12	Roof with insulation beneath	21
2.13	Wetted roof surface (evaporative cooling)	22
2.14	Roof with movable insulation and roof pond open pond during night	23
2.15	WhiteCap TM Roof Spray Cooling System	24
3.1	Flowchart of the research methodology	30
3.2	Rainwater harvesting system	31

3.3	Passive cooling systems (spray water on the roof)	32
4.1	Footprint area of catchment surface	37
4.2	Dowenspots – roof area relation	41
4.3	Leaf screen	42
4.4	First-flush diverters pipe	44
4.5	Case study in kolge 10 UTM Skudi	45
4.6	Sketch for the building including the systems components	45
4.7	The complete system installed to the building	46
4.8	The downspouts pipes	48
4.9	The gutters after the installation	49
4.10	Leaf Screen	50
4.11	The dimensions of the first flush divert	52
4.12	The first flush diverts	53
4.13	Polyethylene tank	54
4.14	Tank dimensions (sketch drawing)	55
4.15	Distribution pipes and Water pump	56
4.16	Water spray first trail	57
4.17	Water spray pipe first trail	58
4.18	First trail wet roof surface	58
4.19	Water spray second trail	59
4.20	Second trail wet roof surface	60
5.1	Sketch for the tank dimensions	63

5.2	Fully shading roof	68
5.3	Six point's data logged	69
5.4	Dry test 1-1	71
5.5	Dry test 1-2	72
5.6	Wet roof tests 2-1	73
5.7	Wet roof tests 2-2	74
5.8	Wet roof tests 2-3	75
5.9	Wet roof tests 2-4	76
5.10	Intermittent spray water tests 3-1	78
5.11	Intermittent spray water tests 3-2	79
5.12	Intermittent spray water tests 3-3	80
5.13	Intermittent spray water tests 3-4	81
5.14	Water tank temperatures for all the tests	82
5.15	Water tank temperatures for no sunny tests	83
5.16	Roof temperatures for all the tests	84
5.17	Roof temperatures for no sunny tests	84
5.18	Room temperatures for all the tests	85
5.19	Room temperatures for no sunny tests	86
6.1	Annual rainfall for the last ten years	92
6.2	Monthly rainfall 2007-08	93
6.3	Monthly harvested rainwater 2007-08	93
6.4	Harvested rainwater Daily avarage per month 2007-08	94

6.5	Monthly extra harvested rainwater	94
6.6	Daily average extra harvested rainwater	95
6.7	Heat gain for both dry and wet roof of cas study bulding	99
6.8	The reduction heat gain cause of wet roof of case study	99
	building	
6.9	Heat gain for both dry and wet roof for actual house	100
6.10	The reduction heat gain cause of wet roof for actual house	101
6.11	System installed to actual house	104

LIST OF SYMBOLS

A_1	-	Cross-section area of downspouts pipe (1)
A_2	-	Cross-section area of downspouts pipe (2)
A ₃	-	Cross-section area of main downspouts pipe
A _{roof}	-	Catchment surface footprint area
COP	-	Air-condition unit coefficient of performance
CR	-	Run of coefficients
D _(0.85)	-	The deference $(WT - W_{(0.85)})$
D _(0.95)	-	The deference $(WT - W_{(0.95)})$
Н	-	Water level height in the tank
Н	-	Pump head
HP	-	Pump Hours power
L _{max}	-	Maximum pipe length
L _{min}	-	Minimum pipe length
m_1	-	Water mass flow rate through downspouts (1)
m ₂	-	Water mass flow rate through downspouts (2)
m ₃	-	Water mass flow rate through main downspouts
Q	-	Pump Water flow
-		

Q - Heat transfer rate

Q_{cooling}	-	The removed heat by air-condition unit
R_0	-	Overall thermal resistance
TD	-	Temperature difference
$T_{\rm H}$	-	High temperature (roof)
T_L	-	Low temperature (room)
U	-	Overall heat transfer coefficient
V	-	Water volume (liter)
V1	-	Tank Rectangular part volume
V2	-	Tank parabolic part volume
W _(0.85)	-	Calculated Harvested rainwater when $(CR = 0.85)$
W _(0.95)	-	Calculated Harvested rainwater when $(CR = 0.95)$
$\mathbf{W}_{\mathrm{cooling}}$	-	The energy consumption by the air-condition unit
W _{Harvested}	-	Harvested rainwater in liters
W _{Rainfall}	-	Rainfall amount in mm
WT	-	Harvested rainwater amount in the tank
Y	-	Parabolic width on the water level

CHAPTER 1

INTRODUCTION

1.1 Introduction

The never-ending exchange of water from the atmosphere to land and the oceans and back again is known as the hydrologic cycle. All forms of precipitation (hail, rain, sleet, and snow), and consequently all movement of water in nature, forms part of this cycle. Precipitation stored in streams, lakes and in soil evaporates while water stored in plants transpires to store of water in the atmosphere. When the atmospheric conditions reach a level of super saturation, a stat achieved as a result of increased humidity combined with changes in temperature and pressure, this water is released in the form of rain, sleet, snow or hail, which falls as a result of the force of gravity to the earth. The cycle continues, and results in shifting water from sea level all the way into the mountains and back into rivers, lakes and the sea etc.

Rainwater harvesting is the collection and storage of rainwater from roofs or catchment surface for future use. The collected water is stored in tanks for future use. The usage way (water distribution) is depending on the rainwater applications. Did you know that although 70% of the earth is covered with water, only 3% of this water is fresh water? Out of this, 2% is locked in the form of ice, and it is only the balance 1% of water that recycles through the evaporation, condensation cycle, that flows into the rivers and lakes, to be used mankind [1]. So, the aim of this technique is to collect fresh water (rainwater) to improve the mankind uses especially in dry regions. Rainwater is

valued for its purity and softness. It has a nearly neutral pH, and is free from disinfection by-products, salts, minerals, and other natural and man-made contaminants accept the development area (acid rain). If the rain fall persists for long time only the fist part of rain will be bulleted.

1.1.1 Brief history

Collecting and storing rainwater is not a new idea. While the origin of rainwater catchments systems are not known precisely, historical evidence suggests structures for holding runoff water date back to the third millennium BC[2]. Historical structures range from saucer like ground catchments and below ground cisterns to above ground rooftop runoff storage tanks, have been found in numerous locations in Middle Eastern, Asian and Mediterranean countries as Negev desert, , India, Greece, Italy, Egypt, Turkey and China. It is found in Mexico, Taxes and Arizona as well. Historically, harvested rainwater provided water for daily life use as drinking, cooking, washing and landscape watering. Once urban areas started to develop, centralized water supply systems replaced the need to harvest water [3].

1.1.2 Cooling energy consumption

The main contributor to increasing atmospheric carbon dioxide (CO_2) concentration is the combustion of fossil fuels from electricity generation, commercial and domestic uses. The demand for energy is expected to grow rapidly in developed countries as well as in the developing countries as they attempt to obtain a higher standard living. This increase energy demand and consequently increase carbon dioxide concentration in the atmosphere.

As energy costs rise, and the public becomes more aware of the environmental damage arising from current energy use patterns. In most of hot just as much energy, if not more, may be used for cooling to achieve the thermal comfort. Refrigeration and air conditioning systems have a major impact on energy demand with roughly 30% of total energy consumption in the world [4]. With fossil fuels fast depleting, it is imperative to look for refrigeration systems that require less high-grade energy for their operation. A minimum amount of energy should be use for cooling.

Typically, air-conditioning accounts for 60% of electricity consumption in commercial buildings in the hot and humid Southeast Asian Region [5]. Residential households in urban and suburban areas use air-conditioning for thermal comfort increasingly. Typically, one air-conditioner will be initially installed in the main bedroom of a house. With increase in disposable income, a household would add second, third and possibly more units to other bedrooms and common rooms. There is increasing penetration of air-conditioning, both in terms of number of households and in terms of number of air-conditioners per households, that the air-conditioning industry reports increasing annual number of units sold that approaches 5% of the number of households in Malaysia and Thailand. When air-conditioning is used, it contributes 70% of electricity consumption in a household [5]. Alternative methods, using passive cooling techniques, can assist in reducing the conventional energy consumption in buildings. Researchers have shown that about 50% of the heat gains for a single-story building come through the roof [6]. The conventional approaches to reduce heat flux through the roof into a building include increasing thickness of the roof, providing insulation and false ceilings, shading the roof and using reflective finish or coating. In hot dry areas, however, this can be achieved by an open pond, thin water film and spraying water on the roof [7]. The passive cooling is a feasible technology that can reduce mechanical cooling and energy requirement in air conditioning application that will effect to decrease emissions from electricity generation.

1.2 Problem Statement

Malaysia is tropical region (hot, humidity and raining weather). Rainwater harvesting can be supplementary water source for residential dwelling. The study will predicts how much rain water can be harvested. Also it will show, whether the harvested rainwater will be partial coverage of the water requirements of daily usage (drinking, cooking, shower, washing, toilet flush, washing front yard, watering plants and washing cars ...ect), during whole of the year, or it will be full coverage. The harvesting rainwater can be used for passive cooling technique (spry water on the roof) to reach the thermal comfort.

1.3 Aim and Objectives of Study

An overall goal of this study is to meet water demand for residential dwelling. The study will show how much the harvested rain water well reduces the usage of the public water supply. In other wards, how much the water bill can be reduced? On the other hand, by using the harvesting rainwater for passive cooling technique (spry water on the roof), well decrease the cooling electrical energy (air-condition) to reach the thermal comfort.

The objectives of this study by using case study of rainwater harvesting system and passive cooling technique (spray water on the roof) as the following:

1. Fundamental study of rainwater systems used for rain harvesting.

2. To Acquit observables facts in implementing rainwater harvesting techniques with residential dwellings.

3- To find out the performance passive cooling technique (spraying water on the roof).

REFERENCES

- 1. Jitender Dev Shhgal, Guid To Rain Water Harvesting In Malaysia, Rotary Club Of Johor Bahru, 2005.
- 2. Heather Kinkade-Levario, ASLA, *Rainwater Harvesting And Storm Water Recycling*, national conference 2002, http://www.forgottenrain.com.
- Dr. Hari J. Krishna, P.E., *The Texas Manual on Rainwater Harvesting, Texas Water Development Board*, 3rd Edition, Contract Manager, Austin, Texas.
- S. Arivazhagan, R. Saravanan, S. Renganarayanan, *Experimental studies on HFC based two-stage half effect vapor absorption cooling system*, Applied Thermal Engineering 26 (2006) 1455–1462.
- Prapapong Vangtook, Surapong Chirarattananon. Application of Radiant Cooling as A passive Cooling Option in Hot Humid Climate. *Building and Environment*. 42 (2007) 543–556.
- N.M. Nahar , P. Sharma, M.M. Purohit. Studies on Solar Passive Cooling Techniques for Arid Areas. *Energy Conversion & Management*, 40 (1999) 89-95.
- Runsheng Tang, Y. Etzion. On Thermal Performance Of An Improved Roof Pond For Cooling Buildings, *Building and Environment* 39 (2004) 201 – 209.
- Ramalan Bermusim oleh Model ECMWF bagi Tempoh Mei Hingga Oktober 2007, Jabatan Meteorologi Malaysia, Kementerian Sains Teknologi dan Inovasi, 20th April 2007.
- 9. Patricia H. Waterfall, *Rainwater Harvesting for Landscape Use*, 2nd Edition, Extension Agent, University of Arizona, 2006.

- 10. Mohamad Afifi Abdul Mukti et. all, *Rainwater Harvesting an Opportunity Neglected*, University of Technology Malaysia, 2004.
- 11. D. Brett Martinson, Terry Thomas, *Quantifying the First Flush Phenomenon*, Development Technology Unit, School of Engineering, University of Warwick, 2006.
- 12. Lib Reid-McGowan. *Passive Cooling for Your North Carolina Home*. North California solar center. 2000.
- N.M. Nahar , P. Sharma, M.M. Purohit. Performance of Different Passive Techniques for Cooling of Buildings in Arid Regions, India, *Building and Environment*, 38 (2003) 109 – 116.
- R. A. Bucklin, J. D. Leary, D. B. McConnell, E. G. Wilkerson. Fan and Pad Greenhouse Evaporative Cooling Systems¹. University of Florida IFAS. 2002.
- 15. Richard Bourne. *Advanced Evaporative Cooling with Paper* (P500-04-016-A1). Davis Energy Group, California Energy Commission. 2004.
- 16. Southwest Energy Efficiency Project. *Evaporative Cooling Policy and Program Options: Promising Peak Shaving in a Growing Southwest*. Midwest Research Institute National Renewable Energy Laboratory Division.
- J. R. Camargo, E. Godoy Jr (Universidade de Taubaté UNITAU), C. D. Ebinuma, (Universidade do Estado de São Paulo). An Evaporative and Desiccant Cooling System for Air Conditioning in Humid Climates, *Journal of the Brazil Soc. of Mech. Sci. & Eng*, 2005.
- Dilip Jain. Development and Testing of Two-stage Evaporative Cooler. India, Building and Environment, 42 (2007) 2549–2554.
- Dilip Jain. Modeling of Solar Passive Techniques for Roof Cooling in Arid Regions, India, *Building and Environment*, 41 (2006) 277–287.
- 20. Nogales Demonstration, Dennis DeConcini Poe. *WhiteCapTM Roof Spray Cooling System.* Department of Energy by the Pacific Northwest, USA, 1997.

- Sudaporn Chungloo, Bundit Limmeechokchai. Application of Passive Cooling Systems in The Hot and Humid Climate: The Case Study of Solar Chimney and Wetted Roof in Thailand, *Building and Environment*, 42 (2007) 3341–3351.
- 22. Frank. M. White. Fluid Mechanics. New York, McGraw-Hill, 1986.
- 23. Malaysian Metrological Department website, for the daily relative humidity, http://www.met.gov.my/english/service/observation/humidity.html.
- 24. Edward G. Pita. *Air Conditioning Principles And Systems An Energy Approach*.2nd edition. Englewood Cliffs, N. J. Prentice-Hall.1989.
- 25. American Society of Heating, Refrigerating and air Conditioning engineers, INC. ASHRAE Hand book 1985 fundamentals SI Edition.