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ABSTRACT 

Vertical land motion is associated with land geohazards that portrays land 

movement in subsidence and uplift. As Malaysia is exposed to the tropical climate, 

heavy rain will cause the floodwater to submerge land or coastal areas, particularly in 

the presence of land subsidence. This could result in severe environmental 

consequences, such as inundation and economic losses. Therefore, this study presents 

an approach to estimate the rate of vertical land motion using multi-sensor technology, 

which are the Global Positioning System (GPS), Gravity Recovery and Climate 

Experiment (GRACE), and integrating them with the satellite altimeter minus tide 

gauge techniques. The four objectives of this study were to improve the accuracy of 

the vertical component on GPS measurement by mitigating the effects of seasonal 

variations, to derive the deformation of the Earth surface induced by hydrological 

loading and tectonic motion on GRACE measurement, to quantify the coastal vertical 

land motion using satellite altimeter minus tide gauge technique, and to integrate the 

vertical land motion rates within a 19-year period, from 1999 to 2017, for the region 

of Malaysia using space-based geodetic techniques. The methodology used was to 

firstly generate GPS vertical position time series from Bernese 5.2 software by 

considering the diverse geophysical sources on seasonal variations. Then, the vertical 

displacement of the Earth’s surface was derived from the GRACE measurement. This 

was followed by the quantification of coastal vertical land motion using direct and 

advanced approaches. Finally, the rate of vertical land motion was then derived from 

each multi-sensor space-based geodetic technique before it was integrated using the 

least-squares collocation method over the Malaysian region. As Malaysia experiences 

land subsidence and uplift based on the integrated vertical land motion rates, as such 

the analysis of vertical land motion trend produced novel findings. The absolute 

motions indicated an overall displacement from a subsidence rate of -20 mm/yr. to an 

uplift of 5 mm/yr. A significant subsidence rate was observed at specific areas in 

Peninsular Malaysia due to groundwater extraction and natural compaction, except for 

Pantai Tok Jembal, which experienced coastal erosion. In East Malaysia, other areas 

encountered land subsidence due to peatlands, excluded Kota Belud and Kota Marudu 

as the groundwater development project had taken place at these areas, which gave 

proof of the dominant effect of land subsidence in Malaysia. In conclusion, the 

integration of multi-sensor technology in quantifying vertical land motion rates would 

not only help researchers obtain insight into the motion trends, but it also serves as a 

key to forecast the necessities of populations and environment, thus implementing 

appropriate monitoring and prevention measures for future geohazard risk assessment. 
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ABSTRAK 

Pergerakan tanah menegak dikaitkan dengan kejadian bahaya geologi darat 

yang menggambarkan pergerakan tahap tanah secara menurun dan menaik. Oleh 

kerana Malaysia terdedah kepada iklim tropika, hujan lebat boleh menyebabkan air 

banjir menenggelami kawasan darat dan pesisir pantai, terutamanya dengan apabila 

berlaku pergerakan tanah secara menurun. Ini boleh mengakibatkan kesan kepada 

alam sekitar seperti banjir dan kerugian ekonomi. Oleh yang demikian, kajian ini 

dijalankan bertujuan untuk mengukur kadar pergerakan tanah secara menegak 

berdasarkan inetgrasi teknologi berbagai sensor: iaitu Sistem Kedudukan Global 

(GPS), Gravity Recovery and Climate Experiment (GRACE), dan 

mengintegrasikannya dengan altimeter satelit tolak tolok pasang surut. Empat objektif 

kajian ini adalah untuk meningkatkan ketepatan komponen menegak pada pengukuran 

GPS dengan mengurangkan kesan variasi bermusim, untuk memperoleh perubahan 

bentuk permukaan bumi yang disebabkan oleh beban hidrologi dan gerakan tektonik 

pada pengukuran GRACE, untuk mengukur pergerakan menegak bagi kawasan pantai 

menggunakan teknik altimeter satelit tolak tolok pasang surut, dan untuk 

mengintegrasikan kadar pergerakan menegak tanah dalam tempoh 19 tahun, bermula 

dari tahun 1999 sehingga 2017 di kawasan Malaysia menggunakan teknik geodetik 

berasaskan angkasa. Untuk mencapai objektif kajian, metodologi pertama adalah 

untuk menjana siri masa kedudukan menegak GPS menggunakan perisian Bernese 5.2 

dengan mengambil kira pelbagai sumber geofizik variasi bermusim. Kemudian, 

anjakan menegak permukaan bumi diperoleh daripada ukuran GRACE, diikuti dengan 

pengukuran pergerakan menegak bagi kawasan pantai menggunakan pendekatan 

secara langsung dan lanjutan. Kadar pergerakan tanah menegak kemudiannya 

diperoleh daripada setiap teknik geodetik berasaskan angkasa berbagai sensor sebelum 

nilai tersebut diintegrasikan menggunakan kaedah kolokasi kuadrat terkecil di 

kawasan Malaysia. Analisis kadar pergerakan tanah menegak menghasilkan dapatan 

lepas. Khususnya, Malaysia mengalami pergerakan tanah secara menurun berdasarkan 

kadar pergerakan tanah menegak secara bersepadu. Gerakan mutlak menunjukkan 

anjakan keseluruhan dari kadar penurunan -20 mm/yr. hingga peningkatan 5 mm/yr. 

Kadar penurunan yang ketara dikenal pasti di kawasan tertentu di Semenanjung 

Malaysia disebabkan oleh pengeluaran air bawah tanah dan pemadatan semula jadi, 

kecuali Pantai Tok Jembal yang mengalami hakisan tanah. Di Malaysia Timur, 

kawasan lain yang mengalami penurunan tanah akibat tanah gambut, tidak termasuk 

Kota Belud dan Kota Marudu kerana pelaksanaan projek pembangunan air bawah 

tanah telah berlaku di kawasan ini yang membuktikan kesan dominan penurunan tanah 

di Malaysia. Kesimpulannya, penggabungan teknologi berbagai sensor dalam 

mengukur pergerakan tanah bukan sahaja dapat membantu penyelidik memberi 

gambaran terhadap trend pergerakan tanah, tetapi ia juga berfungsi sebagai kunci 

untuk meramalkan keperluan penduduk dan persekitaran agar pemantauan dan 

langkah pencegahan terhadap penilaian risiko bahaya geologi di masa akan datang 

dapat dilaksanakan. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Vertical land motion can be defined as the vertical movement of land, generally 

associated with land subsidence and uplift. These two movements are closely related 

as the land will act upon the dynamic of the Earth based on the foundation underneath 

the ground. This ground deformation might occur due to geophysical processes, known 

as natural causes and/or artificial processes due to anthropogenic activities. Generally, 

vertical land motion is a part of land geohazard, and it can be referred to as an event 

caused by any process happening on the surface of the Earth that is most likely to harm 

humans, structures, and the environment (AGSO, 2020). These processes might 

develop instantly or could take thousands of years to respond (Culshaw, 2018). 

Therefore, in land areas, vertical land motion is an important aspect to be considered 

in order to prevent extensive damage jeopardising human life and property. 

Meanwhile, it is fundamental to understanding sea level behaviours in coastal areas, 

given that the coastal subsidence can exacerbate the impact of sea level rise. Even 

though the land deformation has become a prominent issue in sea level rise studies 

over the past period of ten to hundred years (Douglas, 2001; Woodworth, 2006; 

Blewitt et al., 2010; Din et al., 2019), how exactly the rising sea levels play out locally 

are not well understood especially when the ground itself is moving (Strelich, 2016). 

To highlight this event, the vertical land motion is significant not only in flat and low 

land, but also in coastal areas. 

Furthermore, attributable to the location of Malaysia close to the equator, it is 

exposed to tropical climate dealing with the effect of El-Nino, which reduces rainfall 

in the dry season and increases rainfall during monsoon season. The heavy rain will 

cause the floodwater to submerge, specifically the flat and low areas. This could result 

in severe environmental consequences and economic losses, especially in urban areas. 
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The vertical land motion at flat and low land would get worse, particularly with the 

existence of uncontrollable anthropogenic activities and the effect of seismic activities 

resulting from the Eurasian tectonic plate motion. The effect of vertical land motion 

will eventually contribute to inundation, threatening the nearby communities and 

ecosystems in the coming century. 

Despite the attention given to the estimation of vertical ground displacements 

of the Earth surface using the most developed geodetic techniques in the past quarter-

century, it is yet a challenging part of research in geodesy (Carter et al., 1989; Carter, 

1994; Schone et al., 2009; Blewitt et al., 2010, Woppelmann & Marcos, 2016). 

Previously, the vertical deformation of the Earth surface only depends on the 

instrumental data, either from the Global Positioning System (GPS) or Gravity 

Recovery and Climate Experiment (GRACE) in land areas and GPS or satellite 

altimeter and tide gauge in coastal areas. Based on the study conducted by 

Woppelmann and Marcos (2016), they implemented the techniques of GPS, satellite 

altimeter, and tide gauge to measure the vertical land motion only in the coastal area. 

Consequently, with the emergence of space-based geodetic technologies, such as GPS, 

GRACE, and satellite altimeter missions, such as TOPEX, Jason-1, Jason-2, and 

Environmental Satellite (Envisat), the dynamical phenomena, namely vertical land 

motion, can be quantified by integrating those approaches. 

Therefore, this study demonstrates an endeavour to estimate the vertical land 

motion using an integration of multi-sensor technology comprising GPS, GRACE, and 

satellite altimeter minus tide gauge techniques for a period of 19-year, beginning from 

1999 to 2017 in the Malaysian region as illustrated in Figure 1.1. The effect of seasonal 

variations on GPS measurement for the vertical component is hardly reduced during 

data processing which would downgrade the precision of the GPS observations. 

Hence, this study attempts to mitigate the effect of ocean tide loading by executing the 

combination of local and global models in GPS processing, as well as performing 

moving average filtering for the excess variations. On GRACE measurement, the 

deformation of the Earth surface is derived based on the hydrological loading and the 

effect of crustal motion due to earthquake. Meanwhile, in the coastal area, the vertical 

land motion is measured using the satellite altimeter minus tide gauge technique. 
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Consequently, it is expected that quantifying the vertical land motion would be vital 

in forecasting the essentials of communities and ecosystems by adopting appropriate 

monitoring and prevention measures for future geohazards. The findings contributed 

by this study would also help disaster risk assessment and the level of planning and 

preparedness in Malaysia. 

 

Figure 1.1 Conceptual model of this study 

1.2 Problem Statement 

Malaysia is geographically located in the northern hemisphere near the equator, 

which is bounded by water, specifically the South China Sea, Malacca Strait, Sulu Sea, 

and the Celebes Sea, with a large number of inhabitants populated lands and coastal 

areas. For that reason, Malaysia only deals with tropical climate, hot and humid climate 

throughout the year with the rainy period during monsoon season. In land areas, 

rainfall contributes a part towards hydrological; hence, increasing the risk of flood, 

specifically with the existence of vertical land movement (Miller & Shirzaei, 2019). 

Whereas, in coastal areas, Strelich (2016), Martinez-Asensio et al. (2019), Din et al. 

(2019), and Nandika et al. (2019) mentioned that with the existence of vertical land 

motion, the impact of sea level rise can be exacerbated. Both land and coastal areas 

will eventually encounter inundation, particularly at the flat and low surface in the 
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presence of land subsidence. Due to the forenamed evidences, better comprehension 

of the vertical land motion is essential to estimate the necessities of human and 

ecological communities for geohazard risk assessment. 

Vertical deformation might happen as the consequences of natural causes 

and/or anthropogenic activities, for examples crustal movement, groundwater or gas 

extraction (Cenni et al., 2013). During monsoon season, rainfall that acts as the surface 

mass load would be a major factor in the deluge, specifically at flat and low land in 

the presence land subsidence. In Kelantan, 47% of the public water supply is extracted 

from groundwater; the other 53% is from the source of surface water (Suratman, 2012). 

Besides, Suratman (2012) and Karim et al. (2014) also stated that the local 

communities had used around 38% of the total year-long national groundwater usage, 

and due to that, Md Din et al. (2015a) had analysed extensive land subsidence existed 

in Pintu Geng, Tanjung Mas, and Tumpat which are -1.78 mm/yr., -2.39 mm/yr., and 

-1.87 mm/yr., respectively. This has proven that land subsidence is one of the factors 

of the massive flood in 2014, apart from the heavy rainfall brought by the northeast 

monsoon. 

Moreover, the information on vertical land movement is highlighted to be 

prominent in coastal areas as the long-term vertical motion can be equivalent or bigger 

than the local absolute sea level; hence, concealing the climatic-related information of 

the tidal data (Peltier & Tushingham, 1989; Baker, 1993; Klos et al., 2019; NASA, 

2021; IPCC, 2021). Woppelmann and Marcos (2016), in their study, revealed that 

ground deformation should be defined preferably with standard errors that are one 

order of magnitude smaller than contemporaneous climate signals of 1 to 3 mm/yr. for 

long-term sea level studies showing how significant the precise value of vertical 

ground movement should be quantified. Moreover, the effect of vertical land motion 

can be clearly observed from the enormous coastal flooding in Torres Islands (Ballu 

et al., 2011), a significant sea level fall in Fennoscandia (Johansson, 2002), a 

continuous shrinking of coastal zone in Semarang (Nandika et al., 2019), and an 

inestimable damage in Venice (NASA, 2021). Eventually, the low-lying islands, 

coasts, and communities will experience extensive and diverse damage (Martinez-

Asensio et al., 2019; IPCC, 2021). 
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Therefore, this study demonstrates an attempt to quantify the vertical land 

motion using a combination of multi-sensor space-based geodetic approaches: GPS, 

GRACE, and satellite altimeter minus tide gauge. To increase the accuracy and 

precision in measuring vertical land deformation, the effect of seasonal variations on 

GPS measurements should first be mitigated. Seasonal variations that correlated to 

GPS measurement include ocean tide loading and Earth body tide, reflecting the up-

component cycle in the GPS time series, as eloquently stated by Din (2014) and Din 

et al. (2019). This situation could result in an error of up to 6 cm per year in Peninsular 

Malaysia (Alihan et al., 2019). Ocean tide loading is one of the geophysical loadings 

triggered by the gravitational pull of the Moon and the Sun due to the mass of the 

ocean tide, which, in turn, initiates the deformation of the Earth (Agnew, 2015; Bos et 

al., 2015). The deformation caused by this element varies based on location, tidal 

frequency or constituent, and sidereal time. The effect of ocean tide loading on GPS 

measurement is not as large as the effect of the Earth tide or the Earth body tide for 

the horizontal (5 cm) and the vertical component (20 – 30 cm) (Heroux & Kouba, 

2001; Zheng, 2006; Cai, 2009; Bastos et al., 2010; Peng et al., 2020; Abbaszadeh et 

al., 2020) but poses a huge issue if the geodetic station is located near the shore 

(Pagiatakis, 1988; Lysaker et al., 2008; Yuan et al., 2010). Therefore, by using the 

combination of local and global ocean tide loading models, the effect of seasonal 

variations due to this geophysical effect can be minimised to increase the precision of 

the GPS measurement’s vertical component. Previous studies have suggested 

implementing the moving average technique to filter excess seasonal variations caused 

by other sources, namely solid Earth body tide, pole tide, atmospheric pressure 

loading, nontidal oceanic mass, and groundwater loading. 

Furthermore, to derive the deformation of the Earth surface from GRACE 

observation, the seasonal variation, namely hydrological loading, should be 

considered. The environmental mass loading in Malaysia is influenced by the tropical 

climate throughout the year. The climate type, along with the influence of terrestrial 

water storage (TWS), including groundwater storage (GWS), which can be measured 

by GRACE, would also contribute to the impact of seasonal loading deformation (Gu 

et al., 2017). Besides, the effect of tectonic motion from the seismic event of the 

Sumatra-Andaman earthquake that struck on 26th December 2004 in Indonesia has 

caused local tsunami travelling towards a dozen countries (Geist et al., 2007). 
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Peninsular Malaysia is no exception to receive the impact of secondary tsunami waves 

originating from the undersea earthquake (Ghobarah et al., 2006; Tun et al., 2006; 

Ahmadun et al., 2020). The vertical displacement regarding the earthquake can be 

derived from the GRACE measurement reflecting fluctuations in vertical time series 

before and after the event. 

Additionally, both the direct and advanced approaches between altimetric and 

tide gauge data are implemented to quantify the coastal vertical land motion. The 

particular reason for this circumstance is to estimate the vertical deformation along the 

coast better. As stated by Searle (2006) and Foster et al. (2006), the earthquake that hit 

Indonesia has led to land uplift and caused severe damage to coral reefs, which has 

been raised out of water up to 2 m in the Andaman Islands, resulting in the changes of 

shoreline. Besides, this information would also indirectly be beneficial for sea level 

rise studies. Due to the uneven physically-allocated tide gauge stations in the coastal 

areas, there will be a gap in sea level data (Mohamed, 2003, Hamid et al., 2018; Din 

et al., 2019). Therefore, the advanced method of double-difference will not only 

overcome the geographically limited to semi-enclosed oceans, but it can also be 

implemented at stations in coastal area with adequate quality data (Santamaria-Gomez 

et al., 2014). In addition, the mutual trend errors and most of the spatially correlated 

signals can be cancelled if the double-difference approach is to be executed 

(Santamaria-Gomez et al., 2014). 

Consequently, this research performs a comprehensive study on estimating the 

vertical land motion in the Malaysian region by associating the integration of space-

based geodetic approaches: GPS, GRACE, and satellite altimeter minus tide gauge. 

With the limitations of each technique, such as station dependent offering point-wise 

data from GPS measurement (Md Din et al., 2015b; Din et al., 2019), limited data 

availability due to the active battery management during the certain period on one of 

the GRACE satellites (Fu et al., 2015), and restrained to only vertical land motion 

along the coast as altimetric and tidal data only provide information relative to sea 

level changes, can be conquered. Eventually, these three methods can complement 

each other; hence, providing better accuracy in vertical land motion quantification. 

Moreover, by integrating GPS, GRACE, satellite altimeter, and tide gauge 
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measurement, denser information on the vertical land motion rates covering land and 

coastal areas can be obtained in the Malaysian region. 

1.3 Research Questions 

The research questions closely associated with the research objectives are 

foreseen to be significant in developing the main ideas of this research. The research 

questions are as follows: 

 How can the accuracy of the vertical component on GPS measurement be 

improved? 

 What is the measurement used to derive deformation of the Earth surface 

induced by hydrological loading and tectonic motion? 

 What is the method adopted to quantify the coastal vertical land motion? 

 How does the vertical land motion rates from the space-based geodetic 

techniques are combined? 

1.4 Research Aim and Objectives 

The aim of this research is to estimate the vertical land motion using an 

integration of multi-sensor space-based geodetic technology: GPS, GRACE, and 

satellite altimeter minus tide gauge techniques. Four objectives are outlined in order 

to realise the aim of this research. The objectives are as follows: 

 To improve the accuracy of the vertical component on GPS measurement by 

mitigating the effect of seasonal variations. 

 To derive the deformation of the Earth surface induced by hydrological loading 

and tectonic motion on GRACE measurement. 
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 To quantify the coastal vertical land motion using satellite altimeter minus tide 

gauge technique. 

 To integrate the vertical land motion rates within a 19-year period, from 1999 

to 2017, for the region of Malaysia using space-based geodetic techniques. 

1.5 Research Scope 

This research seeks to measure the vertical land motion using an integration of 

multi-sensor technology within a 19-year period, beginning from 1999 to 2017, for the 

region of Malaysia by mitigating the effect of seasonal variations on GPS time series, 

deriving ground deformation from GRACE measurement induced by hydrological 

loading and tectonic motion, and implementing satellite altimeter minus tide gauge 

technique for coastal vertical land motion estimation. Therefore, this research is 

limited to the following scope: 

1.5.1 Research Area 

The area covered in this research is shown in Figure 1.2. It is approximately 

range between 0.5° ≤ Latitude ≤ 8.0° and 98.5° ≤ Longitude ≤ 120.5°, comprising the 

whole Malaysian region including land and coastal areas. GPS and GRACE data 

interpretations are focused on land areas, whereas satellite altimetry and tidal data 

measurement are emphasised in the Malaysian coastal region for coastal vertical land 

motion. 
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Figure 1.2 Study area comprising Malaysian region. Red boxes emphasis 

Peninsular and East Malaysia 

1.5.2 GPS Data 

The daily GPS data used in this research are gathered from nine Malaysian 

Active GPS System (MASS) stations (from 1999 – 2003), 78 Malaysia Real-Time 

Kinematic Global Navigation Satellite System (GNSS) Network (MyRTKnet) stations 

(from 2004 – 2017), and 53 International GNSS Service (IGS) stations (from 1999 – 

2017). The GPS data of MyRTKnet and MASS stations are obtained from the 

Department of Survey and Mapping Malaysia (DSMM). Meanwhile, the GPS data of 

IGS stations are downloaded from the Crustal Dynamics Data Information System 

(CDDIS) data archive (https://cddis.nasa.gov/archive/gnss/data/daily/). CDDIS serves 

as a global data centre for IGS data and products. 

1.5.3 GRACE Data 

GRACE data involved in this research are divided into two categories which 

are the products of Level-2 and Level-3 Release 06 (RL06). GRACE products of 

Level-2 consist of spherical harmonic coefficients (SHC) during specific timespan 

https://cddis.nasa.gov/archive/gnss/data/daily
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from three different data providers: University of Texas Center for Space Research 

(UTCSR), GeoForschungsZentrum (GFZ), and Jet Propulsion Laboratory (JPL). The 

products of Level-3 give information on the liquid water equivalent thickness (LWET) 

covering the TWS of GWS, soil moisture (SM), snow water equivalent (SWE), and 

surface water (SW). Both data in monthly solutions are acquired from the Physical 

Oceanography Distributed Active Archive Center (PO.DAAC) drive (https://podaac-

tools.jpl.nasa.gov/drive/files/GeodeticsGravity/grace), a National Aeronautics and 

Space Administration (NASA) Earth Observing System Data and Information System 

(EOSDIS) data centre managed by the Earth Science Data and Information System 

(ESDIS) Project, for a period of 16-year (from April 2002 – June 2017). 

1.5.4 Global Land Data Assimilation System (GLDAS) Model 

Global Land Data Assimilation System (GLDAS) is the land surface modelling 

developed from the assimilation techniques, which consists of hydrological products 

of SM, SWE, and SW. It is used in this research to obtain information on GWS. The 

monthly GLDAS data are downloaded from the PO.DAAC drive (https://podaac-

tools.jpl.nasa.gov/drive/files/GeodeticsGravity/tellus/L3/gldas_monthly), beginning 

from April 2002 until June 2017. 

1.5.5 Satellite Altimeter Missions’ Data 

Ten satellite altimeter missions used in this research are TOPEX, Poseidon, 

Jason-1, Jason-2, Jason-3, European Remote Sensing (ERS)-2, Envisat, CryoSat-2, 

Satellite with Argos and ALtiKa (SARAL), and Sentinel-3A (S3A), covering the 

period from January 1999 to December 2017. Even though the period of each satellite 

altimeter mission is dissimilar due to the limited life span of the satellite, nevertheless, 

by utilising the 10 multi-mission satellite altimeters, denser coverage of the monthly 

absolute sea level data can be retrieved continuously for a period of 19-year. 

https://podaac-tools.jpl.nasa.gov/drive/files/GeodeticsGravity/grace
https://podaac-tools.jpl.nasa.gov/drive/files/GeodeticsGravity/grace
https://podaac-tools.jpl.nasa.gov/drive/files/GeodeticsGravity/tellus/L3/gldas_monthly
https://podaac-tools.jpl.nasa.gov/drive/files/GeodeticsGravity/tellus/L3/gldas_monthly
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1.5.6 Tide Gauges Data 

The monthly tidal data collected by DSMM are downloaded from the 

Permanent Service for Mean Sea Level (PSMSL) website 

(https://www.psmsl.org/data/). The tide gauge data used in this research covers from 

1999 to 2017, for a period of 19-year. The list of selected Malaysian coastal tide gauge 

stations is tabulated in Table 1.1. 

Table 1.1 Coordinates of tide gauge stations used in this research (PSMSL, 2018) 

Number Tide gauge Station Latitude Longitude 

1 Geting 6° 13’ 34” 102° 06’ 25” 

2 Cendering 5° 15’ 54” 103° 11’ 13” 

3 Tanjung Gelang 3° 58’ 30” 103° 25’ 48” 

4 Pulau Tioman 2° 48’ 26” 104° 08’ 24” 

5 Pelabuhan Kelang 3° 03’ 00” 101° 21’ 30” 

6 Pulau Pinang 5° 25’ 19” 100° 20’ 49” 

7 Lumut 4° 14’ 24” 100° 36’ 47” 

8 Kukup 1° 19’ 31” 103° 26’ 34” 

9 Pulau Langkawi 6° 25’ 52” 99° 45’ 50” 

10 Tanjung Sedili 1° 55’ 55” 104° 06’ 54” 

11 Tanjung Keling 2° 12’ 54” 102° 09’ 11” 

12 Bintulu 3° 15’ 43” 113° 03’ 50” 

13 Kudat 6° 52’ 44” 116° 50’ 38” 

14 Kota Kinabalu 5° 58’ 59” 116° 04’ 01” 

15 Sandakan 5° 48’ 36” 118° 04’ 01” 

16 Tawau 4° 14’ 00” 117° 53’ 00” 

17 Labuan 5° 16’ 23” 115° 15’ 00” 

18 Lahat Datu 5° 16’ 22” 118° 20’ 46” 
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1.5.7 Software 

1.5.7.1 High-precision Bernese GNSS Processing Software Version 5.2 

GPS data are processed using the double-difference approach in daily, weekly, 

and monthly solutions with respect to the International Terrestrial Reference Frame 

(ITRF) 2014 using Bernese 5.2 software. 

1.5.7.2 Matrix Laboratory (MATLAB) Software 

Matrix Laboratory (MATLAB) programming language is used to derive 

vertical displacement of the surface of the Earth from GRACE SHC. This software is 

also used to integrate the vertical land motion rates obtained from GPS, GRACE, and 

satellite altimeter minus tide gauge techniques. Furthermore, analysis and 

interpretation of vertical land motion rates, as well as sea level data are also executed 

using MATLAB software; thus, developing the Vertical Land Motion Information 

System (VLMIS) for the Malaysian region as by-product of this study. 

1.5.7.3 Radar Altimeter Database System (RADS) 

Multi-mission satellite altimetry data are processed using Radar Altimeter 

Database System (RADS) with absolute sea level anomaly (SLA) as the final output 

with respect to Denmark Technical University (DTU) 15 Mean Sea Surface (MSS) in 

daily and monthly solutions. 



 

13 

1.5.7.4 Surfer Software 

The surfer software is used to interpolate vertical land motion rate during 

mapping in Peninsular and East Malaysia (Sabah and Sarawak), incorporated into 

MATLAB software. 

1.5.8 Data Interpretation and Analysis 

At this stage, the vertical land motion rate within 19 years period, beginning 

from 1999 to 2017 in the Malaysian region is interpreted and analysed based on each 

technique that has been implemented, which is GPS, GRACE, and satellite altimeter 

minus tide gauge. The scope of data analyses is limited to: 

(a) Quantification and interpretation of vertical land motion rate using GPS at 

MASS and MyRTKnet stations. 

(b) Quantification and interpretation of vertical land motion rate derived from 

GRACE measurement, induced by hydrological loading and tectonic motion. 

(c) Quantification and interpretation of vertical land motion rate derived from 

satellite altimeter and tide gauge via altimeter minus tide gauge technique. 

(d) Comparison of vertical land motion rates between those derived from GPS, 

GRACE, and altimeter minus tide gauge techniques. 

(e) Interpretation of integrated vertical land motion rates from GPS, GRACE, and 

satellite altimeter minus tide gauge technique. 

1.6 Research Significances 

The significances of this research are recapitulated as follows: 
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 This research emphasises the importance of the vertical land motion 

information for Malaysia’s development, security, and geohazard risk 

assessment in land and coastal areas. The information on the vertical land 

motion is able to help disaster risk assessments and increase the level of 

planning and preparedness in Malaysia. Additionally, the authorities can 

characterise the areas affected by geological hazards and forecast the regions 

that are potentially susceptible to land subsidence, therefore reducing and 

compensating for the impact of land deformation. 

 As the accuracy of the vertical components on GPS measurement is still 

substandard, this research initiates an improvement to reduce the effect of 

seasonal variations by implementing the combination of local and global ocean 

tide loading models in GPS processing and performing moving average 

filtering against GPS vertical position time series. 

 This research endeavours to specify the significant factors that contribute to 

the deformation of the Earth surface based on GRACE measurement in the 

Malaysian region. The impact of hydrological loading and tectonic motion 

towards vertical land deformation are highlighted in this research. 

 This research demonstrates the direct and advanced ‘altimeter minus tide 

gauge’ techniques in deriving the rate of vertical land motion. These 

approaches exemplify the potential estimation of vertical land motion rate not 

only at tide gauge stations, but also along the coastal in between the pair of tide 

gauge stations, based on the information on absolute and relative sea level data. 

 This research intends to originate an integration of multi-sensor space-based 

geodetic approaches: GPS, GRACE, and satellite altimeter minus tide gauge in 

order to quantify and interpret the vertical land motion rates in the Malaysian 

region based on relatively long (~19 years) geodetic analysis. These methods 

evidently complement each other to obtain denser information on vertical land 

motion in Malaysia, hence generating the spatial map. The results are 

anticipated to be beneficial for geohazard risk assessments, specifically land 

subsidence, as well as for precise long-term sea level rise study from the 

information of coastal vertical land motion. 
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1.7 General Research Methodology 

The flowchart of general research methodology consists of five phases, as 

justified in Figure 1.3. 

 

Figure 1.3 Flowchart of general research methodology 
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1.7.1 PHASE 1 

1.7.1.1 Literature Review 

Literature review is a significant stage to have a better understanding in 

completing this research. There are the topics highlighted for further improvisation on 

the research methodology, such as: 

(a) Theories of vertical land motion, seasonal variations, hydrological loading, 

tectonic motion, and sea level. 

(b) Principle of GPS, GRACE, satellite altimeter, and tide gauge. 

(c) Derivation of vertical land motion rates from the measurement of GPS, 

GRACE, and satellite altimeter minus tide gauge techniques. 

(d) High precision GNSS processing software: Bernese version 5.2. 

(e) MATLAB programming language. 

(f) Altimeter processing software: RADS 

(g) Filtering and least squares methods. 

1.7.1.2 Research Area Identification 

The area of this study covers the whole Malaysian region comprising land and 

coastal areas, as shown in Figure 1.2. 
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1.7.2 PHASE 2 

1.7.2.1 Data Acquisition and Processing 

Five techniques involved in data gathering are enlisted as follows: 

(a) GPS 

The GPS data are gathered from nine MASS stations (from 1999 – 2006), 78 

MyRTKnet stations (from 2004 – 2017), and 53 IGS stations (from 1999 – 

2017). These data are further processed in Bernese version 5.2 using double-

difference strategy in daily, weekly, and monthly solutions. In addition, to 

increase the accuracy of the vertical component, the combination of local and 

global ocean tide loading models is incorporated in the Bernese processing. 

Once the time series of vertical position are generated, the moving average 

method is executed to filter the residue of the seasonal variation effect. 

(b) GRACE 

GRACE products of Level-2 and Level-3 (from April 2002 – June 2017) RL06 

are downloaded from the PO.DAAC drive. The Level-2 products consist of 

SHC of cosine and sine coefficients for specific degrees, and order is used in 

the MATLAB programming platform. The calculation involves certain 

mathematical equations, such as Legendre function and load Love numbers to 

derive the displacement of the Earth surface in the radial direction. Meanwhile, 

the Level-3 ready-to-use products can directly be used to derive mass changes 

from the information on the LWET. The LWET reflects the information of 

TWS, including GWS, SM, SWE, and SW, which more or less influence the 

occurrence of vertical deformation. 

(c) GLDAS 

The land surface modelling, namely GLDAS, is downloaded from PO.DAAC 

drive as well, covering a period from April 2002 until June 2017. It comprises 
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information on SM, SWE, and SW, dissimilar to the GRACE product of Level-

3, which includes information on GWS. GLDAS data are used in conjunction 

with the Level-3 data of GRACE products to derive information on GWS, 

involving simple mathematical calculation. 

(d) Satellite altimeter 

Data retrieval and processing of multi-mission satellite altimeter: TOPEX, 

Poseidon, Jason-1, Jason-2, ERS-2, Envisat, CryoSat-2, SARAL, and S3A are 

performed in RADS. Any corrections applied to the data during processing are 

also executed in RADS. The output obtained from the processing is sea level 

anomaly, where it is used to quantify absolute sea level rate for a period of 19-

year, beginning from January 1999 until December 2017 using robust fit 

regression in MATLAB software. 

(e) Tide gauge 

Tidal data gathered and archived by DSMM are downloaded from PSMSL 

(from 1999 – 2017) involving 18 stations, as listed in Table 1.1. The tide gauge 

data only requires cleaning process to remove outliers and bad data before tidal 

analysis is performed. Unlike GPS, GRACE, and altimetry data, tidal data do 

not entail complicated processing. Data cleaning is easily performed in 

Microsoft Excel and/ or TextPad. Subsequently, the relative sea level rate is 

derived from the SLA of tidal data. 

1.7.3 PHASE 3 

1.7.3.1 Derivation of Vertical Land Motion Rate 

In this research, the rate of vertical land motion is quantified from the three 

space-based geodetic approaches: GPS, GRACE, and satellite altimeter minus tide 

gauge. The rates are acquired from the GPS vertical position time series, displacement 

of the Earth surface in radial direction derived from GRACE, and rate of sea level via 
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satellite altimeter minus tide gauge, using robust fit regression analysis in MATLAB 

software. 

1.7.3.2 Derivation of Groundwater Storage Rate 

The derivation of GWS rate requires input from the GRACE products: Level-

3 and the GLDAS surface model. Since GRACE measurement consists of all 

information on TWS, including GWS, for GLDAS measurement, it is necessary to 

compute the anomaly of GWS since it does not include GWS in the observation data. 

Only simple mathematical calculation is involved in obtaining the information on 

GWS before the rate is calculated using robust fit regression in the MATLAB 

programming platform. 

1.7.4 PHASE 4 

1.7.4.1 Integration of Vertical Land Motion Rates 

This phase integrates the rate of vertical land motion within a period of 19-

year, from 1999 to 2017, in the Malaysian region based on land and coastal areas 

derived from GPS, GRACE, satellite altimeter, and tide gauge measurements. The 

integration is executed using MATLAB programming language by adopting the least-

squares collocation method. Prior to the integration, the assessment and interpretation 

of each measurement technique in deriving the rate of vertical land motion are 

evaluated such follows: 

(a) Evaluation of vertical land motion rate using GPS at MASS and MyRTKnet 

stations after implementing the combination of local and global ocean tide 

loading models in GPS processing. 
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(b) Evaluation of GPS vertical time series after performing moving average 

method to filter the effect of the seasonal variation. 

(c) Evaluation of vertical land motion rate derived from GRACE measurement. 

(d) Evaluation of GWS rate derived from the ready-to-use GRACE data and 

GLDAS land surface model. 

(e) Evaluation of absolute sea level rate derived using multi-mission satellite 

altimeter. 

(f) Evaluation of relative sea level rate derived using tidal data. 

(g) Evaluation of coastal vertical land motion rate derived from satellite altimeter 

and tide gauge via altimeter minus tide gauge. 

(h) Comparison of vertical land motion rates between those derived from GPS, 

GRACE, and satellite altimeter minus tide gauge techniques. 

1.7.4.2 Development of Vertical Land Motion Information System (VLMIS) 

VLMIS is developed as a by-product of the research. The system consists of 

updated data analysis on vertical land motion rates for the Malaysian region estimated 

from GPS, GRACE, satellite altimeter minus tide gauge, and the combination of the 

three geodetic techniques for 19-year, from 1999 to 2017. The VLMIS allows users to 

analyse and interpret the data in spite of serving as a data cache and analysis medium 

for vertical land motion rates. MATLAB programming language involving the App 

Designer to lay out the visual components of a graphical user interface (GUI) and 

program app behaviour. 
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1.7.5 PHASE 5 

1.7.5.1 Results and Data Analyses 

This phase concentrates on the analyses and discussions based on the results 

obtained from this research. The findings include vertical land motion rate, pattern, 

and trend in the Malaysian region comprising land and coastal areas. The outputs from 

each measurement method and the outcomes on the parameters or strategies 

incorporated during data processing to achieve the optimum results are presented in 

this section. 

1.7.5.2 Conclusion and Recommendations 

The conclusion is made relative to the objectives and outputs of the research. 

Then, suggestions and recommendations to enhance future studies are provided. 

1.8 Thesis Outlines 

This thesis aims to estimate and interpret the vertical land motion in Malaysia 

using an integration of GPS, GRACE, and satellite altimeter minus tide gauge 

techniques. To realise the aim, this thesis is composed of five chapters as follows: 

Chapter 1 introduces the definition of this research comprising of research 

background, problem statement, research aim, and objectives. Research scope, 

significances and a brief general research methodology for this research are also 

discussed in this chapter. 

Chapter 2 reviews the theory on the vertical land motion related to the seasonal 

variations, hydrological loading, tectonic motion, and sea level. The explanation on 
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how each measurement technique (GPS, GRACE, and satellite altimeter minus tide 

gauge) is translated into vertical land motion rate is also included. Eventually, a novel 

method to quantify the rate of vertical land motion by combining the three multi-sensor 

space-based geodetic technology techniques is discussed in this chapter.  

Chapter 3 details the methodology on the derivation of vertical land motion 

rates for each space-based geodetic method: GPS, GRACE, and satellite altimeter 

minus tide gauge, as well as the integration of those methods. Moreover, Chapter 3 

also describes data acquisition, preparation, and processing using Bernese version 5.2, 

MATLAB, and RADS software for every method implemented. Any mathematical 

equation and calculation involved to derive vertical land motion are also demonstrated. 

Chapter 4 discusses the results and interpretation of the vertical land motion 

for each technique implemented, namely GPS, GRACE, and satellite altimeter minus 

tide gauge. The data that have been processed are presented as evidence of the research 

methodology. Subsequently, the assessment of vertical land motion rates derived from 

every method is conducted before the output is integrated to attain the best accuracy 

of the vertical land motion rates. Nevertheless, the main focus of Chapter 4 is to 

provide the rate and trend of vertical land motion over the Malaysian region for a 

period of 19-year based on the three multi-sensor technologies in the form of spatial 

map and vertical position time series. 

Chapter 5 summarises the whole research idea, major findings, and conclusion 

of the research. The suggestions and recommendations for future studies are also 

outlined. 
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