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ABSTRACT

Estimating surface elevation changes in mangrove forests is dynamic because 
it is barely visible physically and because of the canopy-covered factor that restricts 
aerial monitoring. It demands a technique that filters the mangrove canopy at the top 
of the vegetation and the complex understory structures. Hence, this study estimated 
surface elevation changes underneath the mangrove canopy through geospatial and 
geomorphological approaches. The first objective of this study was to discover 
vegetation filtering algorithms for estimating surface elevation underneath the 
mangrove canopy, followed by generating an unmanned aerial vehicle-digital 
elevation model (UAV-DEM) underneath the mangrove canopy with vertical accuracy 
comparable to physical topography measurement. The other objective was to evaluate 
the rates of surface elevation changes using the geomorphological change detection 
method. The last objective was to correlate the interactions between mangrove surface 
elevation changes and sea level rise. This study's data processing stages included 
photogrammetric data processing using Structure from Motion-Multiview Stereo 
(SfM-MVS), filtering using the surface estimation from Nearest Elevation and 
Repetitive Lowering (SNERL) algorithm, and geomorphological change detection 
(GCD) analysis. Two epochs of UAV data collection were carried out in 2016 and 
2017 at low tide conditions. UAV data processing was performed using the SfM-MVS 
method. Next, the SNERL algorithm was employed to extract the surface from the 
mangrove canopy and generate the mangrove ground as a DEM. Subsequently, GCD 
analysis was utilized to quantify the elevation change rates at the ground surface, 
which comprise erosion, accretion, and sedimentation, using the differential DEM 
(DoD) technique. The finding illustrated that the generated UAV-DEM using SNERL 
algorithms reached vertical accuracy of 0.345 m (RMSE), 0.107 m (mean), and 0.503 
m (standard deviation). The other finding indicated that region of interest 5 (ROI 5) 
experienced the highest volumetric accretion (surface raising) at 0.566 cm3/yr. The 
highest erosion (surface lowering) was identified at ROI 8 at -2.469 cm3/yr. In contrast, 
for vertical change average rates, ROI 6 experienced the highest vertical accretion 
(surface raising) at 1.281 m/yr, while the highest vertical erosion (surface lowering) 
was spotted at ROI 3 at -0.568 m/yr. In conclusion, a geospatial approach comprising 
SfM-MVS, vegetation index (VI) segregation, and the SNERL filtering algorithm are 
efficient in generating UAV-DEM underneath the mangrove canopy at the closest 
level to the terrain level. The GCD map and the rates of surface elevation changes at 
Kilim River enabled authorities like Langkawi Development Authority (LADA) and 
the Department of Drainage and Irrigation (DID) to fully understand the situation and 
prepare a mitigation plan to avoid unbalanced surface elevation changes that could 
lead to long-term devastation of the mangrove ecosystem in the future.
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ABSTRAK

Menganggarkan perubahan ketinggian permukaan tanah dalam kawasan bakau 
adalah dinamik kerana ia hampir tidak kelihatan secara fizikal dan kerana teknik 
litupan kanopi yang menghalang pemantauan udara. Ia memerlukan teknik yang boleh 
menuras kanopi bakau di bahagian atas tumbuh-tumbuhan dan struktur tanaman 
rendah yang kompleks. Oleh itu, kajian ini menganggarkan perubahan ketinggian 
permukaan tanah yang dilitupi kanopi bakau melalui pendekatan geospatial dan 
geomorfologi. Objektif pertama kajian ini adalah untuk menemui algorithma 
penurasan tumbuh-tumbuhan untuk menganggarkan permukaan bakau di bawah 
kanopi bakau, diikuti dengan penjanaan model ketinggian berdigit-pesawat udara 
tanpa pemandu (UAV-DEM) di bawah kanopi bakau dengan ketepatan menegak yang 
setaraf dengan pengukuran topografi secara fizikal. Objektif lain adalah untuk menilai 
kadar perubahan ketinggian tanah menggunakan kaedah pengesanan perubahan 
geomorfologi. Objektif terakhir adalah untuk menghubungkait interaksi antara 
perubahan ketinggian permukaan bakau dengan peningkatan aras laut. Peringkat 
pemprosesan data dalam kajian ini meliputi pemprosesan data fotogrametrik 
menggunakan Structure from  motion-multiview stereo (SfM-MVS), penurasan 
menggunakan anggaran permukaan dari algoritma ketinggian terdekat dan 
pengurangan berulang (SNERL) dan analisis pengesanan perubahan geomorfologi 
(GCD). Dua tempoh masa pengumpulan data UAV telah dijalankan pada 2016 dan 
2017 ketika fasa air surut. Pemprosesan data UAV dilakukan menggunakan kaedah 
SfM-MVS. Seterusnya, algoritma SNERL digunakan untuk mengekstrak permukaan 
dari kanopi bakau dan menjana permukaan bakau sebagai DEM. Kemudian, analisis 
GCD telah digunakan untuk mengukur kadar perubahan ketinggian di permukaan 
tanah, merangkumi hakisan, tokokan dan pemendapan, meggunakan teknik perubahan 
DEM (DoD). Hasil dapatan menunjukkan bahawa UAV-DEM yang dijana 
menggunakan algoritma SNERL mencapai ketepatan menegak 0.345 m (RMSE),
0.107 m (min) dan 0.503 m (sisihan piawai). Dapatan lain mendapati bahawa kawasan 
keutamaan 5 (R O I5) mengalami tokokan isipadu (kenaikan permukaan) tertinggi pada
0.566 cm3 per tahun. Hakisan isipadu (penurunan permukaan) dikenal pasti pada ROI 
8 pada -2.469 cm3 per tahun. Sebaliknya, untuk kadar purata perubahan menegak, ROI 
6 mengalami tokokan menegak tertinggi (kenaikan permukaan) pada 1.281 m per 
tahun manakala hakisan menegak tertinggi (penurunan permukaan) dikesan pada ROI 
3 pada -0.568 m per tahun. Sebagai kesimpulan, pendekatan geospatial yang terdiri 
daripada SfM-MVS, pengasingan indeks tumbuh-tumbuhan (VI) dan algoritma 
penurasan SNERL adalah berkesan dalam menjana UAV-DEM di bawah kanopi 
bakau pada ketepatan menghampiri aras permukaan. Peta GCD dan kadar perubahan 
ketinggian tanah di Sungai Kilim membolehkan pihak berkuasa seperti Perbadanan 
Pembangunan Langkawi (LADA) dan Jabatan Pengairan dan Saliran (JPS) memahami 
sepenuhnya keadaan dan menyediakan pelan mitigasi untuk mengelakkan berlakunya 
ketidakseimbangan perubahan ketinggian tanah yang boleh membawa kepada 
kemusnahan jangka panjang ekosistem bakau pada masa hadapan.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Mangrove forests serve as one of the most productive and biologically diverse 

ecosystems on the planet. Mangrove forests are found along sheltered coasts where 

they grow abundantly in saline soil and brackish water, subject to periodic fresh-and- 

salt-water inundation. Mangrove trees have unique characteristics such as rigid root 

systems, striking bark and leaf structures, and other adaptations that allow them to 

survive in harsh conditions in their habitat (WWF, 2020). The habitat is soft, silty, and 

shallow, coupled with the endless ebb and flow of water, providing very little support 

for most mangrove plants, which have aerial or prop roots (known as pneumatophores, 

or respiratory roots) and buttressed trunks. It is critical to human well-being because 

it provides basic necessities such as food, shelter, and employment. Mangroves reduce 

the loss of property and the vulnerability of local communities.

Mangrove forests play a dynamic role in maintaining the sustainability of the 

environment, biodiversity, and environmental values. Mangrove forests protect 

coastlines against erosive wave action and strong coastal winds, and they serve as 

natural barriers against tsunamis and torrential storms. Furthermore, the mangrove 

forest acts as a climate regulator, absorbing up to four times more carbon dioxide than 

upland terrestrial forest areas (Donato et al., 2011). Mangrove trees protect coastal 

areas from storm surges and tsunamis by lowering the magnitude of the big waves by 

half or three-quarters (Onrizal et al., 2017). In a prior study in Vietnam (Bao, 2011), 

the lowering of the wave was found to increase with the height of the water. Another 

study discovered that mangrove forests have the ability to generate "living seawalls," 

which are more cost-effective in terms of coast protection than concrete seawalls and 

other man-made structures (Ca and Xuyen, 2008). Mangrove trees can adapt to sea
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level dwellings and interact effectively with tidal fluctuations when it comes to sea 

level increase.

In the year 2017, Malaysia had a total of 629,038 hectares (ha) of mangrove 

forest, with Sabah comprising 60%, while the remaining 22% and 18% were spotted 

in Sarawak and Peninsular Malaysia (Figure 1.1). The total mangrove area for Sabah 

is 378,195 ha, while for Sarawak and Peninsular Malaysia, it is 139,890 ha and 

110,953 ha. Mangroves in Peninsular Malaysia have been found on the sheltered west 

coast that borders the Straits of Malacca in the states of Kedah, Perak, Selangor, 

Melaka and Johor. Meanwhile, in Sabah, mangroves are mostly in Pedalaman, Pantai 

Barat, Kudat, Sandakan, and Tawau. In Sarawak, the mangroves are mostly populated 

in Kuching, Samarahan, Sri Aman, Sarikei, Sibu, and Limbang. The largest mangrove 

forest occurs in Perak, which covers about 38% of the total mangrove area found in 

Peninsular Malaysia, followed by Johor, Selangor, Pahang, Kedah, Terengganu, 

Negeri Sembilan, Pulau Pinang, Melaka, Kelantan, and Perlis. The distribution of 

mangroves that occur along Peninsular Malaysia, Sabah, and Sarawak’s coastlines is 

depicted in Figure 1.1.
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Figure 1.1 Mangrove forest distribution and extent in Peninsular Malaysia, Sabah, 
and Sarawak (Omar, Husin, and Parian, 2020).
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Between 1990 and 2020, the global area of mangroves shrank by 1.04 million 

ha (Table 1.1). Over the last three decades, the rate of loss has decreased by more than 

half, from 46,700 ha per year in 1990-2000 to 36,300 ha per year in 2000-2010 and 

21,200 ha per year in the most recent decade. In Africa, the average annual rate of loss 

decreased from 6610 hectares in 1990-2000 to 2330 hectares in 2010-2020. Oceania 

has seen a decrease in the rate of loss, from 29,600 ha per year in the 1990s to 5,900 

ha per year in the last decade. There was an increase in mangroves in South America 

in 2010-2020 at an average annual rate of 14,800 ha, reversing the declining trend in 

1990-2000, when the region lost mangroves at a rate of 10200 ha per year. Mangrove 

areas increased at a rate of 10,500 ha per year on average in North and Central America 

from 2010 to 2020 (with only a minor change between 1990 and 2010). The increase 

in the region from 2010 to 2020 was largely due to Cuba, which gained 12,000 ha per 

year throughout that time. This increase, like in Guyana, is attributable to improved 

data collection and restoration programmes and does not reflect genuine changes in 

mangrove acreage. The average yearly rate of mangrove loss in Asia increased 

dramatically from 1,030 ha in 1990-2000 to 38,200 ha in 2010-2020. Indonesia, which 

recorded an average yearly loss of 6,800 ha from 1990 to 2000 and 21,100 ha in the 

most recent decade, was primarily responsible for the increased rate of loss.

In Malaysia, the area of mangroves decreased from 65,0311 ha in the year 1990 

to 642,063 ha in the year 2000 (Table 1.2). Meanwhile, in the year 2020, the number 

keeps shrinking from 642,063 in the year 2000 to 629,038 ha. The changing pattern of 

mangrove extent seems consistent from 1990 to 2000 and 2000 to 2020 (Omar et al.,

2020). Between 1990 and 2000, the mangroves lost 8,248 ha, while the next 20 years 

showed another loss of mangroves at 13,025 ha. In Peninsular Malaysia, the mangrove 

pattern is changing from 116,746 ha in 1990 to 114,353 ha in 2000, while in 2020, the 

number will keep shrinking to 110,953 ha. For Sabah, the number also keeps shrinking, 

from 385,630 ha in 1990 to 382,448 ha in 2020, while in 2020, the mangrove area will 

change to 378,195 ha. In Sarawak, the mangroves changed from 147,936 ha to 145,263 

ha, and in 2020, the mangrove area will be 139,890 ha. The number of mangrove losses 

is frightening, and the likelihood of the number remaining lower in the future is higher 

if  the authorities ignore the mitigation plan.
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Table 1.1 Trends in the area of mangroves by region, 1990-2020 (retabulated from FAO, 2020).

Region / Sub-region

Area of mangroves (‘000 ha)

Year

1990 2000 2010 2020

Total Africa 3398 3332 3264 3240

(East Asia) 24 22 25 32

(South and Southeast Asia) 6117 6108 5713 5330

(Western and Central Asia) 190 190 190 184

Total Asia 6331 6320 5928 5545

Total Europe 0 0 0 0

(Caribbean) 787 789 774 891

(Central America) 492 482 483 466

(North America) 1152 1167 1190 1195

Total North and Central America 2431 2439 2447 2552

Total Oceania 1447 1150 1314 1255

Total South America 2152 2050 1976 2124

World 15759 15292 14928 14717
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Table 1.2 The extent of mangroves in Malaysia (retabulated from Omar et al.,

2020).

Region

Mangroves 1990 

(ha)

Mangroves 

2000(ha)

Mangroves 2020 

(ha)

Peninsular Malaysia 116,746 114,353 110,953

Sabah 385,630 382,448 378,195

Sarawak 147,936 145,263 139,890

Total 650,311 642,063 629,038

Mangrove degradation is related to natural and anthropological factors (Jusoff, 

2013; Abd. Shukor, 2004). The natural factors comprised soil erodibility, riverbank 

slope, the velocity of water flow, water runoff, rainfall intensity, and harsh climate 

conditions. In another way, anthropological factors affect the mangrove through 

coastal development, aquaculture, agriculture, pollution, boat wake effects, sea level 

rise (SLR), and logging activities, as shown in Figure 1.2. Mangrove degradation is a 

complex issue because some researchers discovered that it is an apparent human-made 

factor that affects the mangrove ecosystem instantly, much like coastal development 

that instantly wipes out the mangrove population. Other factors, such as boat wake and 

SLR, are less well known as man-made factors that gradually impact the mangrove 

population. Boat wake and SLR factors might look less harmful, but they are far more 

dangerous because the effect is not instantaneous, and it causes mangrove degradation 

in a long-term way.

5



THREATS
D rivers of m angrove loss

M a n y iu v e  loss
36%  Oetvreen 1 »80 end 2000 ’ • 

me equivalent o f losing almost 
150 .000  annually anO 

4 l im e s  h ig h e r  m en -weran 
global luteal lot* a*

*-
.1 .1 I I I .

( lim nfp  rh a n q t
Air temperature sod  rainfall 

r©Qifr»no influence global inongiovo 
J *l'iL>ul»jn‘ abiupl Lhange* m 
se e  level a re  e  P» imary tau se  

o f lo c a l  a n d  r e g io n a l 
e x t in c t io n s  •

logging
oen niIm' kiI

species  composition 
f r a g m e n ta t io n  a n d  
lo la l  c le a ra n c e  •>» 

m angrcvt forests A t jm u l t i r r
C o r w e tn i i  to >*ce paddies 

responsible for 8 8 %  o f  
m a n g ro v e  lo s s  »n M ynrm ai

•IS 5

Ai|u«iiulluiv
u u m s  more than 

h a lf  o f  m a n g ro v e  
lo s s o a  g lo b a l ly

mostly due lo  
shrimp culture*

Pollution *
M angrove 's eorlal roots, 

through —tMcri tr>s v ob ten  
OHygen. can easily be 

tm oth erM  and c ioogea  
by s e d im e n t ,  s o l id  

w a s te  a n d  o il*

In t '. iM  drvrtapmrn! 
U tbax iu bu n  dnves 
m angrove loss ana 
degredetlon itumen 
pnpm etnn 4xn iny 
•n coastal regions 
3 t im e s  h ig h e r  

th an  g lo b a l 
a v e r a g e

Figure 1.2 The threats to the mangrove ecosystem (IUHN, 2020).

Long-term mangrove degradation affects the mangrove population by 

changing the surface elevation, especially at the riverbank, through surface processes 

that comprise erosion, accretion, and sedimentation (Mclvor et al., 2013). Erosion is 

the loss of surface material caused by water flows shearing off the top layer of the 

sediment surface, resulting in a loss of height. When the deposited material becomes 

cemented in place, it is called an accretion (the tides or waves can no longer wash it 

away). The deposition of inorganic sediments and organic debris on the surface is 

referred to as sedimentation. The deposited material can be allochthonous (i.e., from 

outside the mangrove area) or autochthonous (i.e., from within the mangrove area) 

(i.e., created within the mangrove area). These surface processes usually take time to 

change the mangrove surface elevation, and the effect is not as apparent as other 

mangrove threats, such as coastal development and logging. Still, it could cause 

mangrove degradation, and if neglected, more hectares of the mangrove population 

will disappear in the next decades.

This study uses vegetation filtering and geomorphological change detection 

(GCD) analysis from unmanned aerial vehicle (UAV) data to estimate surface 

elevation changes underneath the mangrove canopy. A novel method named "Surface 

estimation from Nearest Elevation and Repetitive Lowering (SNERL) filtering" has 

been developed to remove the mangrove canopy that covers the riverbank surfaces. 

The filtering method used the identified nearest surface level based on visible 

vegetation index (VVI) classification and repetitive lowering filtering to estimate the
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elevation underneath the mangrove canopy. The filtered features would be a bare 

surface on which the elevation is referred to as the nearest identified elevation. 

Integrating UAV photogrammetry data, a novel SNERL algorithm and volumetric 

analysis from geomorphological change detection (GCD) could evaluate surface 

elevation changes underneath the mangrove canopy in intensive ways. This study 

contributes to new knowledge and enables the beneficiary to understand this issue 

profoundly and might assist in any mitigation plan in the future.

1.2 Problem Statement

Most previous surface extraction research has focused on surface elevation and 

surface change monitoring of the bare earth topography. The studies by Maktav, 

Erbek, and Kabdasli (2002); Sesli et al., (2009); Jayson-Quashigah, Addo, and Kodzo, 

(2013); Tamassoki, Amiri, and Soleymani, (2014); Aryastana, Ardantha, and 

Candrayana, (2018); Ragia and Krassakis (2019) and Ragia and Krassakis (2019) use 

satellite imagery to monitor erosion in the coastal region. Meanwhile, Casado et al., 

(2015); Neugirg et al., (2016); Wang et al., (2016); Hamshaw et al., (2017); Duro et 

al., (2018); Hemmelder et al., (2018); and Hamshaw et al., (2019) used UAV imagery 

to assess erosion in bare earth areas. The previous scholar monitors the erosion based 

on the visible changes in topography based on the bare Earth’s spatial and temporal 

analysis. Previous researchers had made fewer attempts to evaluate the surface 

elevation changes caused by erosion, accretion (deposition), and sedimentation rates 

at riverbank areas covered by canopies or trees. At the canopy-covered riverbank area, 

the canopy has obstructed the surface, especially from an aerial view. The mangrove 

canopy covering the riverbank should be removed using the vegetation filtering 

method to monitor erosion in the canopy-covered area.

For a bare earth area like a coastal or open riverbank, any geomorphological 

changes are easily detected using several image analyses, such as change detection, 

image classification, thresholding and other remote-sensing related methods (Jayappa, 

Mitra and Mishra, 2006; Ghanavati et al., 2008; Kuleli et al., 2011; Anders, 

Seijmonsbergen and Bouten, 2013; Guimaraes et al., 2014; Ramirez-Cuesta et al.,
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2016; Kaliraj, Chandrasekar and Ramachandran, 2017; Cook, 2017; Le Mauff et al., 

2018). Both satellite imageries provided high resolution elevation data at the global 

scale and were used by previous researchers to evaluate changes on the Earth's surface 

over time (Nikolakopoulos, Kamaratakis, and Chrysoulakis, 2006; Siart, Bubenzer, 

and Eitel, 2009; Hirt, Filmer, and Fetherstone, 2010; Forkuor and Maathuis, 2012; 

Gesch, Oimoen, and Evans, 2014; Jing et al., 2014; Yue et al., 2017 and Elkhrachy, 

2018). Most of them used the DEM uncertainty process based on the Monte Carlo 

approach (James, Robson, and Smith, 2017) with post-processing tools in SFM- 

georeferencing software (James and Robson, 2012). Precision maps were created by 

interpolating the vertical standard deviation (H) determined from the precision 

estimate (1-mm grid size) (Taylor, 1997; Brasington, Langham and Rumsby, 2003; 

Lane, Westaway and Murray Hicks, 2003; and Wheaton et al., 2010).

Mangrove canopy covering is the main issue in this study, since it conceals the 

riverbank topography structures underneath. Physical erosion monitoring in the 

canopy-covered area is challenging to detect because of harsh mangrove environments 

and ecosystems such as route accessibility, tidal influence, and difficulty setting up 

surveying instruments in muddy and root-complex conditions (Kuenzer et al., 2011; 

Azian and Mubarak, 2012). Total stations, terrestrial laser scanners (TLS), electronic 

distance measurement (EDM), and other surveying equipment that needs a tripod are 

hardly set up in this terrain. The alternative way to monitor erosion in the mangrove 

environment is to use mangrove boundary/vegetation line shifting, such as that 

discovered by Mohamad et al. (2017); (2018); and (2019). The study, however, only 

examines the surface of the mangrove canopy and ignores the hidden features beneath 

it. Any physical changes on the ground are hidden by mangrove vegetation, especially 

from an aerial view, and these obstacles have inspired this study. A few terrestrial 

measurements, including physical surveys, erosion pins, and the SET-MH method, 

commonly quantify surface elevation changes. However, aerial monitoring is still 

convenient compared to terrestrial monitoring in terms of mobility, time-consuming, 

data abundance, and the ability to cover a large area in a short time. Besides, tidal 

inundation in mangrove areas that often becomes a problem for researchers (if using a 

physical survey method) could be avoided using the aerial monitoring method 

(Kanniah et al., 2015; Wang et al., 2019).
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Researchers have developed many filtering methods to remove above-ground 

objects such as vegetation, buildings, and other human-made structures for decades. 

Filtering approaches such as LAStools triangulated irregular networks (TIN) 

densification, the typical method in Agisoft Photoscan (PS), and others have been used 

to filter point clouds by utilising light detection and ranging (LiDAR) (Yilmaz and 

Gungor, 2018; Anders et al., 2019; Zeybek and §anlioglu, 2019). Similar to UAV 

imagery data, it uses several algorithms, for instance, a progressive morphological 

filter (PMF), a simple morphological filter (SMRF), or a cloth simulation filter (CSF), 

and a structural filter, CANUPO (CAracterisation de NUages de POints) for vegetation 

filtering purposes (Stroner et al., 2021). Unlike LiDAR, a UAV photogrammetric 

survey could not penetrate partly through the vegetation layer and, therefore, might 

have failed to generate actual ground points underneath a vegetated surface. The aerial 

photograph could not capture the information underneath dense vegetation using a 

typical sensor (e.g., RGB sensor) unless the captured RGB images are analysed using 

a specific method, like an excessive greenness vegetation index (ExG-VI), for surface 

extraction in dense forest areas (Anders et al., 2019). Even though sensor technologies 

rapidly grow every day, getting the surface information underneath the tree is still 

challenging if the filtering technique is unsuitable for the environment. Anders et al. 

(2019) also evaluated the comparison of DEM accuracy using common filtering 

algorithms such as the standard method in Agisoft Photoscan (PS), colour-based 

filtering using an excessive greenness vegetation index (VI), iterative surface lowering 

(ISL), triangulated irregular network densification from LAStools (TIN), and a 

combination of iterative surface lowering and the VI method (ISL+VI).

Hence, this study focuses on improving the vegetation filtering algorithm for 

extracting the surface elevation underneath the mangrove canopy to form a novel 

algorithm called Surface estimation from Nearest Elevation and Repetitive Lowering 

(SNERL). This algorithm was chosen due to its capability to reduce mangrove canopy 

height to terrain level and then generate an unmanned aerial vehicle-digital elevation 

model (UAV-DEM) with an accuracy comparable to physical measurements, such as 

total station, leveling, or the Global Positioning System (GPS). The vertical datum 

underneath the mangrove canopy is based on the nearest identified surface level, such 

as a riverbank or opening surface in the middle of a dense vegetation area. The 

unmanned aerial vehicle-digital surface model (UAV-DSM), which represents
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elevation at mangrove canopy height, has been collected from UAV data that 

comprises two different flying durations, during low and high tide. UAV raw data (in 

the form of raw aerial images) is processed based on the structure from motion (SfM- 

MVS) method using commercial software such as Agisoft Metashape. Although it can 

generate orthophoto, contours, and three-dimensional (3D) models, the UAV-DSM is 

the most crucial output in this study, with the other outputs, such as orthophoto, serving 

as supporting data. Since the UAV-DSM only captures the top of topographic features 

such as vegetation and buildings, it needs a filtering method to filter and reduce it until 

it reaches terrain level (ground surface). This study requires additional data, such as 

physical topographic data from RTK-GPS observations, to validate the accuracy of the 

filtered UAV-DEM.

1.3 Research Question

The first objective is to discover the vegetation filtering algorithm for 

estimating the surface elevation underneath the mangrove canopy. The first objectives 

have been supported by:

i. Why is this filtering algorithm considered a novel approach? How is it 

different compared with the other approaches?

ii. How does the SNERL algorithm reduce vegetation surface height until 

it achieves the surface elevation level?

The second objective is to generate a digital elevation model (DEM) 

underneath the mangrove canopy with vertical accuracy comparable to physical 

topography measurement. The following research question supports the 

implementation of the second objective:

i. Why is the SNERL algorithm capable of generating such high accuracy 

in the filtered output?

ii. How is vertical accuracy assessment made on the filtered DEM?
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The third objective is to evaluate the rates of surface elevation changes using a 

geomorphological change detection method. The research questions supporting this 

objective are:

i. What is the method for quantifying the rate of surface elevation change 

in the study area?

ii. How does GCD analysis determine the region that experienced a severe 

surface elevation change?

The fourth objective is to correlate the interactions between mangrove surface 

elevation changes and sea level rise. The research questions supporting this objective 

are:

i. What is the impact of geomorphological changes on mangrove 

geomorphology and the interactions with sea level changes?

1.4 Aim and Objectives of Study

The aim of the study is to estimate surface elevation changes underneath the 

mangrove canopy using vegetation filtering and the geomorphological change 

detection (GCD) method on unmanned aerial vehicle (UAV) data. This study is 

supported by four objectives:

i. To discover vegetation filtering algorithms for estimating surface 

elevation underneath the mangrove canopy;

ii. To generate a digital elevation model (DEM) underneath the mangrove 

canopy with vertical accuracy comparable to physical topography 

measurement;
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iii. To evaluate the rates of surface elevation changes using 

geomorphological change detection method;

iv. To correlate the interactions between mangrove surface elevation 

changes and sea level rise.

1.5 Significance of Study

The significance of the study is as below:

• Improving the existing filtering algorithm.

• Vertical datum identification underneath mangrove canopy.

• Highlighting the importance and the contribution of mangrove forest.

1.5.1 Improving the Existing Filtering Algorithm

This study presents new knowledge by improving the existing filtering 

algorithm from UAV aerial photogrammetry products to monitor the surface elevation 

changes underneath the mangrove canopy. The major challenge in this study is the part 

of filtering mangrove-covered riverbanks to generate actual surface elevation. Several 

algorithms in the past, like morphological filtering, multi-scale curvature classification 

(MCC), surface-based filtering, LasTool-LasGround module, progressive TIN 

Algorithm, and cloth simulation filtering (CSF), are effective in filtering unwanted 

features on the ground and have been well-proven in certain study areas. However, 

some algorithms are not suitable for the mangrove ecosystem environment, which is 

dense at the canopy and has a complex understory element. Hence, this study attempts 

to develop a novel algorithm to filter and extract surface from the mangrove canopy 

based on the nearest identified surface level as the referenced vertical datum. This 

algorithm improves the filtering process for extracting the surface elevation 

underneath the mangrove canopy to form a novel algorithm called Surface Estimation 

from Nearest Elevation and Repetitive Lowering (SNERL). This filtering algorithm
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removes the mangrove canopy from the terrain level. It then generates a DEM whose 

accuracy is almost comparable to the physical measurement, using total station, 

levelling, or the Global Positioning System (GPS).

1.5.2 Vertical Datum Identification Underneath Mangrove Canopy

The major issue in this study is the position of the vertical datum at surface 

level, which is located underneath the canopy. In mangrove terrain, which is full of 

roots, mangrove seedlings, muddy soil, and other understory features, it is hard to 

identify the vertical datum of surface elevation except by using physical measurements 

like surface elevation table-marker horizon (SET-MH) and topographic surveys using 

total station or electronic distance measurement (EDM). Recently, the advancement of 

technology such as UAVs has revolutionised the way of mapping the earth's 

topography. The lower cost of purchasing, maintaining, and upgrading a UAV sensor 

compared to an airborne sensor is why this technology is gaining traction, particularly 

in mapping and geospatial applications. In this study, an actual terrain surface 

underneath the mangrove canopy will be displayed in the DEM model. To generate an 

actual elevation on the ground, the DEM model would be filtered using a filtering 

algorithm that has been developed to remove the mangrove canopy and the complex 

structure underneath, such as roots, mangrove seedlings, and muddy soil. The vertical 

datum underneath the mangrove canopy is based on the nearest identified surface level, 

such as a riverbank or opening surface in the middle of a dense vegetation area. The 

vertical datum is based on the nearest open surface in a dense mangrove forest, such 

as the bare riverbank or a falling tree that reveals the surface elevation. This opening 

surface will be the key element in the proposed filtering algorithm for interpolating the 

entire elevation area.

1.5.3 Highlighting the Importance and the Contribution of Mangrove

The last significance of the study is to highlight the importance and the 

contribution of mangrove forests, especially to humans. Mangroves play a dynamic
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role in maintaining the sustainability of the environment, biodiversity, and economic 

values. In terms of environmental sustainability, mangroves protect the coast by 

lowering wave height by up to 66%, reducing erosion and flood risk in the coastal 

region. Mangroves are also carbon sinks, storing three to five times more carbon per 

hectare than tropical rainforests. Mangroves are considered a wildlife habitat for 

various species of animals, whether on land or in the water, and thus contribute to 

biodiversity conservation. It is also important as they provide a natural habitat for 

numerous species of fish, prawn, crab and other species that are dominant in muddy 

estuary areas. Mangroves are considered fish factories for the 210 million people who 

live and depend on them for food. Regarding economic value, mangroves contribute 

by providing eco-tourism activities that generate income for the locality, government 

agency, and whole country. In this study area, eco-tourism is the major contribution to 

the local economy as it helps create jobs, boasts the existing eco-tourism-based 

economy, and attracts domestic and international tourists to Langkawi Island. 

Mangrove forests are also valuable for charcoal and timber industries as they provide 

a source for manufacturing. Due to their endurance, tenacity, and hardiness to water, 

mangrove trees receive high demand for their charcoal and timber sectors, which could 

therefore bring economic value for the country. Hence, this study will explore the 

relationship between human need, mangrove contribution and its correlation impact 

for short and long-term periods.

1.6 Scope of Study

The scope of study answers a few questions, including "what," "where," 

"when," and "how" the research was undertaken. "What" refers to the data that was 

utilised as the study's input. "Where" refers to the location of the case study area, which 

was chosen based on a number of factors. "When" refers to the start and completion 

of the study period as well as the time when data is collected. The term "how" refers 

to the process and method used to generate output and determine whether or not the 

objectives are attainable.
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1.6.1 ‘What’ -  Data and Equipment

This study focuses on UAV data as the primary data and GPS vertical data as 

the secondary data. The Phantom 4 Advanced model from Da-Jiang Innovations (DJI) 

was employed in this study. It has been chosen for this study due to its low cost of 

purchase and maintenance, its built-in RGB sensor, and its photogrammetry-friendly 

capabilities. A previous researcher conducted less research on the filtering process of 

mangrove vegetation using red, blue, and green (RGB) sensors and photogrammetry- 

based surveying. The UAV photogrammetry data includes orthophoto, point cloud 

data, 3D models, DSMs, and DEMs. UAV data is chosen instead of satellite images 

because low altitude data capture requirements range between 100 and 300 m for low 

altitude. The lower the flying altitude, the better the output data captured by the UAV 

with higher resolution. In addition, fewer fatalities occur if a crash happens at a low 

altitude. The UAV is also chosen as a data source because the pilot can fly the UAV 

while selecting the appropriate weather conditions to avoid any worsening incidents. 

Previous researchers chose small-scale photogrammetric mapping related to the 

surface elevation of a river or coastal area due to DTM accuracy of less than 10 cm 

(Flener et al., 2015). For UAV-DSM in small scale areas, the study by Uysal, Toprak, 

and Polat (2015) discovered its vertical accuracy at 6.62 cm. The UAV-DSM products 

serve as an altimeter for determining sea level changes throughout various tidal phases, 

with vertical precision of ±0.50 m (50 cm) (Mohamad et al., 2019).

1.6.2 ‘Where’ -  Location of Study Area

The study area was chosen to be a specific section of the Kilim River in the 

north-eastern part of Langkawi Island, Kedah, Malaysia, in order to adapt the UAV 

capability to capture data on a small scale (Figure 1.3). The study area is within the 

Kilim Karst Geoforest Park (KKGP). This geoforest park is being granted by the 

United Nations Educational, Scientific, and Cultural Organization (UNESCO) because 

of its fascinating rock formations (limestone or karst) and its unique geological 

significance. This area was chosen because of the richness of the mangrove forest that 

hides the terrain underneath. The mangrove tree, which is dense and complicated,
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especially the understory features of mangrove morphology (i.e., roots, bark, and soil 

formation), has inspired the objective of this study. However, because of the limitation 

of UAV capabilities to cover all parts of KKGP, only a small part of the Kilim River 

was chosen. The study area only covers 0.649 kilometres of KKGP and is located 

approximately 1.7 kilometres from the coast. The traffic conditions in this area are 

intense and busy because of the tourism factor, which strengthens this selection of 

study areas. The traffic factor also becomes a catalyst factor that changes the surface 

elevation at the riverbank, and the possibility of this study area showing a clear change 

trend is higher than the other parts of KKGP. More discussion on the study area has 

been explained in Sub-section 3.3 in Chapter 3.
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Figure 1.3 The study area's location includes: (A) the location of Langkawi Island 
on a map of Peninsular Malaysia; and (B) the location of the Kilim River on a map of 
Langkawi Island.
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1.6.3 ‘When’ -  Duration of Study and Date of Data Taken

The duration of the study is approximately one year, starting from the year 

2016 until 2017. For the year 2016, the data collection comprised UAV data 

acquisition, which is carried out during low tide conditions. Then, a similar process 

was repeated in the year 2017. The reason for flying the UAV during low tide 

conditions is to avoid tidal influence, especially during high tide. Both flights captured 

data in the same study area, which is the Kilim River. The time interval between the 

first and second epochs of data acquisition in one year is to get the short-term impacts 

of surface elevation change components (erosion, accretion, and sedimentation) and 

the rate of changes within a one-year interval. Since many studies have been conducted 

based on the long-term impact of surface elevation changes (especially erosion and 

accretion), this study attempts to study the mangrove ecosystem based on its short

term impact.

1.6.4 ‘How’ -  Methodology and Technique

The focus of this study comprises three stages. The first part is UAV image 

processing based on the structure of the motion-multiview stereo (SfM-MVS) 

algorithm using Agisoft Metashape software. The SFM-MVS workflow starts with 

image loading and alignment, followed by ground control point (GCP) data insert and 

camera and image optimisation. The last process of the SfM-MVS method is 

constructing the point cloud, building the mesh, and texturing the model. The output 

of this process comprises orthophoto, DSM, 3D model, tiled model, point cloud data, 

contours, and a quality report. In stage two, the filtering process is to extract surface 

elevation from the mangrove canopy. The filtering process used a novel algorithm 

developed based on filtering and extracting surface from mangrove canopy from the 

nearest identified surface level as the referenced vertical datum. The last stage is the 

evaluation of surface elevation changes, which includes erosion, accretion, and 

sedimentation, using the geomorphological change detection (GCD) method. The 

GCD method uses DEM of difference (DoD) and a few other analysis tools to evaluate 

and display models for each surface elevation change process.
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1.7 General Methodology

The study is divided into six major sections: literature review, study area 

selection, data acquisition, data processing, data analysis, and study output (Figure 

1.4). A literature review is a part of revising the past related studies and extracting the 

relevant information to search for the novel for this study. Then, the selection of the 

study area is a part of when the criteria of certain places are being evaluated to fulfil 

the requirements of this study, where the area has significant value in terms of 

geography, geology, demography, and geomorphology. The next part of the 

methodology is data acquisition, which is one of the crucial elements in this study. The 

chosen data should be capable of processing, analysing, and visualising the findings 

of the study. Data also needs to be measurable and achievable to avoid delays in further 

methods. The other part of the general methodology shows the data processing that is 

important to generate the result for further discussion and analysis. Data processing 

involves data manipulation using a specific method to produce a quality and accurate 

result. Furthermore, data analysis is required to analyse the results and discuss the 

findings. The analysis determines whether the result is accurate before reaching the 

last method, which is the visualisation of the output of the study. More information 

about the methodology of the study can be found in Chapter 3.

Figure 1.4 General methodology of study.
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1.8 Thesis Outline

This research is divided into five chapters. This chapter provides an overview 

of the study, including its background, problem statement, aims and objectives, 

research question, significance, scope and limitations, and general methodology. For 

the scope of the study section, it comprises a few questions such as "what" to justify 

certain data and equipment, "where" to clarify why certain study areas were chosen, 

"when" to explain the duration of the study and period of data acquisition, and last, 

"how" to describe the method and technique that were used in this study.

Chapter 2 debriefs the literature review of this study, which comprises an 

introduction to the mangrove ecosystem, mangrove surface elevation changes and their 

factors, an overview of UAV, the elements of digital photogrammetry and the SfM- 

MVS concept, vegetation filtering from UAV-based photogrammetry data, 

quantification of surface elevation changes using geomorphological change detection 

(GCD) analysis, and a summary of the key literature review. In Section 2.2 (mangrove 

ecosystem), the explanation comprises an overview of the mangrove ecosystem and 

mangrove surface topographies and landform types. Then, in Section 2.3 (mangrove 

surface elevation changes and their factor), the topic contains the definition of 

mangrove surface elevation changes and their process, the factor of mangrove surface 

elevation changes, and previous studies related to the physical measurement of surface 

elevation changes. Meanwhile, in Section 2.4 (an overview of UAV), the sub-section 

discusses the introduction to UAV and its terminology, the history and development 

trend of UAV, the types of advantages and disadvantages of UAV, and the elements 

of the positioning system in UAV mapping. In Section 2.5 (the elements of digital 

photogrammetry and the SfM-MVS concept), the topics involve an overview of digital 

photogrammetry; an overview of SfM-MVS in digital photogrammetry; and principles 

of SfM-MVS. Following that, Section 2.6 (Vegetation filtering from UAV-based 

photogrammetry data) includes an overview of vegetation filtering from UAV-based 

photogrammetry, previous studies related to vegetation filtering technique, vegetation 

index (VI) for segregating vegetation and non-vegetation areas, and surface estimation 

from nearest elevation and repetitive lowering (SNERL) algorithm at mangrove 

vegetation area. Subsequently, for Section 2.7 (the quantification of surface elevation
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changes using geomorphological change detection (GCD) analysis), the section 

comprises an overview of geomorphological change detection (GCD), DEM of 

difference (DoD), DEM error assessment, and previous studies related to the GCD 

quantification method. Section 2.8 (summary of key literature reviews) comprises a 

critical review of the previous study and the novelty and contribution of this study.

Chapter 3 describes the methodology of this study. The chapter started with the 

introduction, methodology, study area, data collection, data processing, data analysis, 

and the output of the study. In Section 3.4 (data collection), the section explained UAV 

and GPS data acquisition. Section 3.5 (data processing): the section discussed the SfM- 

MVS workflow, segregation of vegetation and non-vegetation areas using vegetation 

indices (VI), vegetation filtering using the SNERL algorithm, and quantification of 

surface elevation changes using the geomorphological change detection (GCD) 

method. Section 3.6 (data analysis) comprises accuracy assessment for GCPs, 

accuracy assessment of UAV-DSM (unfiltered DEM), and accuracy assessment of 

UAV-DEM (filtered DEM). Section 3.7 (output of the study) explains briefly the 

results that will be generated in the next chapter.

Chapter 4 emphasises the results and analysis in this study. The chapter 

outlines the introduction, results of SfM-MVS processing, results of vegetation 

filtering processing, results of geomorphological change detection (GCD) processing 

and analysis, and, lastly, discussions. For Section 4.2 (results of SfM-MVS 

processing), the section highlights UAV survey parameters, UAV survey results, and 

camera calibration results. Meanwhile, Section 4.3 (results of vegetation filtering 

processing) discusses non-vegetation removal results using vegetation index (VI) 

filtering and vegetation filtering results using the SNERL algorithm. Section 4.4 (the 

result of geomorphological change detection (GCD) processing) explains qualitative 

and quantitative analysis of GCD output for regions of interest (ROIs). In Section 4.5 

(analysis), the section focuses on the accuracy assessment of GCPs, UAV-DSM 

(unfiltered DEM), UAV-DEM (filtered DEM), and GCD-erosion pin rates. Based on 

these findings, in Section 4.6 (discussion), the section emphasises geomorphological 

changes underneath the mangrove canopy at Kilim River. Section 4.6 also discussed
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the short- and long-term impacts of geomorphological changes on the mangrove 

surface and their interaction with sea level rise.

Chapter 5 concluded the whole study based on the findings and analysis of this 

study. The chapter outlined the introduction, fulfilment of objective and research 

questions, recommendations for future study, and conclusion.
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